Laser-Induced MXene-Functionalized Graphene Nanoarchitectonics-Based Microsupercapacitor for Health Monitoring Application
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37792563
PubMed Central
PMC10604107
DOI
10.1021/acsnano.3c07319
Knihovny.cz E-zdroje
- Klíčová slova
- Laser-induced MXene, biomonitoring device, covalent bonding, laser-induced graphene, microsupercapacitor,
- MeSH
- arterie MeSH
- grafit * MeSH
- lasery MeSH
- lidé MeSH
- oxidy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- grafit * MeSH
- MXene MeSH Prohlížeč
- oxidy MeSH
Microsupercapacitors (micro-SCs) with mechanical flexibility have the potential to complement or even replace microbatteries in the portable electronics sector, particularly for portable biomonitoring devices. The real-time biomonitoring of the human body's physical status using lightweight, flexible, and wearable micro-SCs is important to consider, but the main limitation is, however, the low energy density of micro-SCs as compared to microbatteries. Here using a temporally and spatially controlled picosecond pulsed laser, we developed high-energy-density micro-SCs integrated with a force sensing device to monitor a human body's radial artery pulses. The photochemically synthesized spherical laser-induced MXene (Ti3C2Tx)-derived oxide nanoparticles uniformly attached to laser-induced graphene (LIG) act as active electrode materials for micro-SCs. The molecular dynamics simulations and detailed spectroscopic analysis reveal the synergistic interfacial interaction mechanism of Ti-O-C covalent bonding between MXene and LIG. The incorporation of MXene nanosheets improves the graphene sheet alignment and ion transport while minimizing self-restacking. Furthermore, the micro-SCs based on a nano-MXene-LIG hybrid demonstrate high mechanical flexibility, durability, ultrahigh energy density (21.16 × 10-3 mWh cm-2), and excellent capacitance (∼100 mF cm-2 @ 10 mV s-1) with long cycle life (91% retention after 10 000 cycles). Such a single-step roll-to-roll highly reproducible manufacturing technique using a picosecond pulsed laser to induce MXene-derived spherical oxide nanoparticles (size of quantum dots) attached uniformly to laser-induced graphene for biomedical device fabrication is expected to find a wide range of applications.
Zobrazit více v PubMed
Park S.-I.; Xiong Y.; Kim R.-H.; Elvikis P.; Meitl M.; Kim D.-H.; Wu J.; Yoon J.; Yu C.-J.; Liu Z.; Huang Y.; Hwang K.; Ferreira P.; Li X.; Choquette K.; Rogers J. A. Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays. Science 2009, 325 (5943), 977–981. 10.1126/science.1175690. PubMed DOI
Vaghasiya J. V.; Mayorga-Martinez C. C.; Vyskočil J.; Sofer Z.; Pumera M. Integrated Biomonitoring Sensing with Wearable Asymmetric Supercapacitors Based on Ti3C2MXene and 1T-Phase WS2 Nanosheets. Adv. Funct. Mater. 2020, 30 (39), 2003673.10.1002/adfm.202003673. DOI
Lipomi D. J.; Vosgueritchian M.; Tee B. C.-K.; Hellstrom S. L.; Lee J. A.; Fox C. H.; Bao Z. Skin-like Pressure and Strain Sensors Based on Transparent Elastic Films of Carbon Nanotubes. Nat. Nanotechnol. 2011, 6 (12), 788–792. 10.1038/nnano.2011.184. PubMed DOI
Lu Y.; Biswas M. C.; Guo Z.; Jeon J.-W.; Wujcik E. K. Recent Developments in Bio-Monitoring via Advanced Polymer Nanocomposite-Based Wearable Strain Sensors. Biosens. Bioelectron. 2019, 123, 167–177. 10.1016/j.bios.2018.08.037. PubMed DOI
Gao W.; Emaminejad S.; Nyein H. Y. Y.; Challa S.; Chen K.; Peck A.; Fahad H. M.; Ota H.; Shiraki H.; Kiriya D.; Lien D.-H.; Brooks G. A.; Davis R. W.; Javey A. Fully Integrated Wearable Sensor Arrays for Multiplexed in Situ Perspiration Analysis. Nature 2016, 529 (7587), 509–514. 10.1038/nature16521. PubMed DOI PMC
Yu L.; Yi Y.; Yao T.; Song Y.; Chen Y.; Li Q.; Xia Z.; Wei N.; Tian Z.; Nie B.; Zhang L.; Liu Z.; Sun J. All VN-Graphene Architecture Derived Self-Powered Wearable Sensors for Ultrasensitive Health Monitoring. Nano Res. 2019, 12 (2), 331–338. 10.1007/s12274-018-2219-1. DOI
Yu D.; Goh K.; Wang H.; Wei L.; Jiang W.; Zhang Q.; Dai L.; Chen Y. Scalable Synthesis of Hierarchically Structured Carbon Nanotube-Graphene Fibres for Capacitive Energy Storage. Nat. Nanotechnol. 2014, 9 (7), 555–562. 10.1038/nnano.2014.93. PubMed DOI
El-Kady M. F.; Strong V.; Dubin S.; Kaner R. B. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science 2012, 335 (6074), 1326–1330. 10.1126/science.1216744. PubMed DOI
Deshmukh S.; Jakobczyk P.; Ficek M.; Ryl J.; Geng D.; Bogdanowicz R. Tuning the Laser-Induced Processing of 3D Porous Graphenic Nanostructures by Boron-Doped Diamond Particles for Flexible Microsupercapacitors. Adv. Funct. Mater. 2022, 32 (36), 2206097.10.1002/adfm.202206097. DOI
Pumera M. Graphene-Based Nanomaterials for Energy Storage. Energy Environ. Sci. 2011, 4 (3), 668–674. 10.1039/C0EE00295J. DOI
Miller J. R.; Outlaw R. A.; Holloway B. C. Graphene Double-Layer Capacitor with Ac Line-Filtering Performance. Science 2010, 329 (5999), 1637–1639. 10.1126/science.1194372. PubMed DOI
Zhu Y.; Murali S.; Stoller M. D.; Ganesh K. J.; Cai W.; Ferreira P. J.; Pirkle A.; Wallace R. M.; Cychosz K. A.; Thommes M.; Su D.; Stach E. A.; Ruoff R. S. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011, 332 (6037), 1537–1541. 10.1126/science.1200770. PubMed DOI
Polsen E. S.; McNerny D. Q.; Viswanath B.; Pattinson S. W.; John Hart A. High-Speed Roll-to-Roll Manufacturing of Graphene Using a Concentric Tube CVD Reactor. Sci. Rep. 2015, 5 (1), 10257.10.1038/srep10257. PubMed DOI PMC
Luong D. X.; Bets K. V.; Algozeeb W. A.; Stanford M. G.; Kittrell C.; Chen W.; Salvatierra R. V.; Ren M.; McHugh E. A.; Advincula P. A.; Wang Z.; Bhatt M.; Guo H.; Mancevski V.; Shahsavari R.; Yakobson B. I.; Tour J. M. Gram-Scale Bottom-up Flash Graphene Synthesis. Nature 2020, 577 (7792), 647–651. 10.1038/s41586-020-1938-0. PubMed DOI
Lin J.; Peng Z.; Liu Y.; Ruiz-Zepeda F.; Ye R.; Samuel E. L. G.; Yacaman M. J.; Yakobson B. I.; Tour J. M. Laser-Induced Porous Graphene Films from Commercial Polymers. Nat. Commun. 2014, 5, 5714.10.1038/ncomms6714. PubMed DOI PMC
Duy L. X.; Peng Z.; Li Y.; Zhang J.; Ji Y.; Tour J. M. Laser-Induced Graphene Fibers. Carbon 2018, 126, 472–479. 10.1016/j.carbon.2017.10.036. DOI
Deshmukh S.; Banerjee D.; Marin Quintero J. S.; Fishlock S. J.; McLaughlin J.; Waghmare P. R.; Roy S. S. Polarity Dependent Electrowetting for Directional Transport of Water through Patterned Superhydrophobic Laser Induced Graphene Fibers. Carbon 2021, 182, 605–614. 10.1016/j.carbon.2021.06.033. DOI
Luong D. X.; Subramanian A. K.; Silva G. A. L.; Yoon J.; Cofer S.; Yang K.; Owuor P. S.; Wang T.; Wang Z.; Lou J.; Ajayan P. M.; Tour J. M. Laminated Object Manufacturing of 3D-Printed Laser-Induced Graphene Foams. Adv. Mater. 2018, 30 (28), 1707416.10.1002/adma.201707416. PubMed DOI
Ye R.; James D. K.; Tour J. M. Laser-Induced Graphene. Acc. Chem. Res. 2018, 51 (7), 1609–1620. 10.1021/acs.accounts.8b00084. PubMed DOI
Ye R.; James D. K.; Tour J. M. Laser-Induced Graphene: From Discovery to Translation. Adv. Mater. 2019, 31 (1), 1803621.10.1002/adma.201803621. PubMed DOI
El-Kady M. F.; Kaner R. B. Scalable Fabrication of High-Power Graphene Micro-Supercapacitors for Flexible and on-Chip Energy Storage. Nat. Commun. 2013, 4 (1), 1475.10.1038/ncomms2446. PubMed DOI
Lee S.-H.; Kim K.-Y.; Yoon J.-R. Binder- and Conductive Additive-Free Laser-Induced Graphene/LiNi1/3Mn1/3Co1/3O2 for Advanced Hybrid Supercapacitors. NPG Asia Mater. 2020, 12 (1), 28.10.1038/s41427-020-0204-0. DOI
Clerici F.; Fontana M.; Bianco S.; Serrapede M.; Perrucci F.; Ferrero S.; Tresso E.; Lamberti A. In Situ MoS2 Decoration of Laser-Induced Graphene as Flexible Supercapacitor Electrodes. ACS Appl. Mater. Interfaces 2016, 8 (16), 10459–10465. 10.1021/acsami.6b00808. PubMed DOI
Li X.; Yin X.; Song C.; Han M.; Xu H.; Duan W.; Cheng L.; Zhang L. Self-Assembly Core-Shell Graphene-Bridged Hollow MXenes Spheres 3D Foam with Ultrahigh Specific EM Absorption Performance. Adv. Funct. Mater. 2018, 28 (41), 1803938.10.1002/adfm.201803938. DOI
Zhang J.; Kong N.; Uzun S.; Levitt A.; Seyedin S.; Lynch P. A.; Qin S.; Han M.; Yang W.; Liu J.; Wang X.; Gogotsi Y.; Razal J. M. Scalable Manufacturing of Free-Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity. Adv. Mater. 2020, 32 (23), 2001093.10.1002/adma.202001093. PubMed DOI
Huang X.; Tang J.; Luo B.; Knibbe R.; Lin T.; Hu H.; Rana M.; Hu Y.; Zhu X.; Gu Q.; Wang D.; Wang L. Sandwich-Like Ultrathin TiS2 Nanosheets Confined within N, S Codoped Porous Carbon as an Effective Polysulfide Promoter in Lithium-Sulfur Batteries. Adv. Energy Mater. 2019, 9 (32), 1901872.10.1002/aenm.201901872. DOI
Zhao S.; Chen C.; Zhao X.; Chu X.; Du F.; Chen G.; Gogotsi Y.; Gao Y.; Dall’Agnese Y. Flexible Nb4C3Tx Film with Large Interlayer Spacing for High-Performance Supercapacitors. Adv. Funct. Mater. 2020, 30 (47), 2000815.10.1002/adfm.202000815. DOI
Yan J.; Ren C. E.; Maleski K.; Hatter C. B.; Anasori B.; Urbankowski P.; Sarycheva A.; Gogotsi Y. Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance. Adv. Funct. Mater. 2017, 27 (30), 1701264.10.1002/adfm.201701264. DOI
Yao L.; Gu Q.; Yu X. Three-Dimensional MOFs@MXene Aerogel Composite Derived MXene Threaded Hollow Carbon Confined CoS Nanoparticles toward Advanced Alkali-Ion Batteries. ACS Nano 2021, 15 (2), 3228–3240. 10.1021/acsnano.0c09898. PubMed DOI
Naguib M.; Kurtoglu M.; Presser V.; Lu J.; Niu J.; Heon M.; Hultman L.; Gogotsi Y.; Barsoum M. W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23 (37), 4248–4253. 10.1002/adma.201102306. PubMed DOI
Wu Z.; Shang T.; Deng Y.; Tao Y.; Yang Q.-H. The Assembly of MXenes from 2D to 3D. Adv. Sci. 2020, 7 (7), 1903077.10.1002/advs.201903077. PubMed DOI PMC
Wu G.; Li T.; Wang Z.; Li M.; Wang B.; Dong A. Molecular Ligand-Mediated Assembly of Multicomponent Nanosheet Superlattices for Compact Capacitive Energy Storage. Angew. Chemie Int. Ed. 2020, 59 (46), 20628–20635. 10.1002/anie.202009086. PubMed DOI
Zang X.; Jian C.; Zhu T.; Fan Z.; Wang W.; Wei M.; Li B.; Follmar Diaz M.; Ashby P.; Lu Z.; Chu Y.; Wang Z.; Ding X.; Xie Y.; Chen J.; Hohman J. N.; Sanghadasa M.; Grossman J. C.; Lin L. Laser-Sculptured Ultrathin Transition Metal Carbide Layers for Energy Storage and Energy Harvesting Applications. Nat. Commun. 2019, 10 (1), 3112.10.1038/s41467-019-10999-z. PubMed DOI PMC
Li Z.; Wang L.; Sun D.; Zhang Y.; Liu B.; Hu Q.; Zhou A. Synthesis and Thermal Stability of Two-Dimensional Carbide MXene Ti3C2. Mater. Sci. Eng., B 2015, 191, 33–40. 10.1016/j.mseb.2014.10.009. DOI
Kedambaimoole V.; Kumar N.; Shirhatti V.; Nuthalapati S.; Sen P.; Nayak M. M.; Rajanna K.; Kumar S. Laser-Induced Direct Patterning of Free-Standing Ti3C2-MXene Films for Skin Conformal Tattoo Sensors. ACS Sensors 2020, 5 (7), 2086–2095. 10.1021/acssensors.0c00647. PubMed DOI
Li H.; Liu Y.; Lin S.; Li H.; Wu Z.; Zhu L.; Li C.; Wang X.; Zhu X.; Sun Y. Laser Crystallized Sandwich-like MXene/Fe3O4/MXene Thin Film Electrodes for Flexible Supercapacitors. J. Power Sources 2021, 497, 229882.10.1016/j.jpowsour.2021.229882. DOI
Tang J.; Wan H.; Chang L.; Hu B.; Cui S.; Chen Y.; Chen W.; Hao J.; Tang H.; Wang X.; Wang K.; Zhang C.; Wen Q.; Xiao X.; Xu B. Tunable Infrared Sensing Properties of MXenes Enabled by Intercalants. Adv. Opt. Mater. 2022, 10 (17), 2200623.10.1002/adom.202200623. DOI
Deshmukh S.; Sankaran K. J.; Banerjee D.; Yeh C. J.; Leou K. C.; Phase D. M.; Gupta M.; Lin I. N.; Haenen K.; Roy S. S.; Waghmare P. R. Direct Synthesis of Electrowettable Nanostructured Hybrid Diamond. J. Mater. Chem. A 2019, 7 (32), 19026–19036. 10.1039/C9TA04165F. DOI
Hu T.; Wang J.; Zhang H.; Li Z.; Hu M.; Wang X. Vibrational Properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) Monosheets by First-Principles Calculations: A Comparative Study. Phys. Chem. Chem. Phys. 2015, 17 (15), 9997–10003. 10.1039/C4CP05666C. PubMed DOI
Sarycheva A.; Makaryan T.; Maleski K.; Satheeshkumar E.; Melikyan A.; Minassian H.; Yoshimura M.; Gogotsi Y. Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate. J. Phys. Chem. C 2017, 121 (36), 19983–19988. 10.1021/acs.jpcc.7b08180. DOI
Frank O.; Zukalova M.; Laskova B.; Kürti J.; Koltai J.; Kavan L. Raman Spectra of Titanium Dioxide (Anatase, Rutile) with Identified Oxygen Isotopes (16, 17, 18). Phys. Chem. Chem. Phys. 2012, 14 (42), 14567–14572. 10.1039/c2cp42763j. PubMed DOI
Eckmann A.; Felten A.; Mishchenko A.; Britnell L.; Krupke R.; Novoselov K. S.; Casiraghi C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012, 12 (8), 3925–3930. 10.1021/nl300901a. PubMed DOI
Low J.; Zhang L.; Tong T.; Shen B.; Yu J. TiO2/MXene Ti3C2 Composite with Excellent Photocatalytic CO2 Reduction Activity. J. Catal. 2018, 361, 255–266. 10.1016/j.jcat.2018.03.009. DOI
Urso M.; Ussia M.; Novotný F.; Pumera M. Trapping and Detecting Nanoplastics by MXene-Derived Oxide Microrobots. Nat. Commun. 2022, 13 (1), 3573.10.1038/s41467-022-31161-2. PubMed DOI PMC
Chenoweth K.; van Duin A. C. T.; Goddard W. A. ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation. J. Phys. Chem. A 2008, 112 (5), 1040–1053. 10.1021/jp709896w. PubMed DOI
Ganeshan K.; Shin Y. K.; Osti N. C.; Sun Y.; Prenger K.; Naguib M.; Tyagi M.; Mamontov E.; Jiang D.; van Duin A. C. T. Structure and Dynamics of Aqueous Electrolytes Confined in 2D-TiO2/Ti3C2T2MXene Heterostructures. ACS Appl. Mater. Interfaces 2020, 12 (52), 58378–58389. 10.1021/acsami.0c17536. PubMed DOI
Zhang W.; Li R.; Zheng H.; Bao J.; Tang Y.; Zhou K. Laser-Assisted Printing of Electrodes Using Metal-Organic Frameworks for Micro-Supercapacitors. Adv. Funct. Mater. 2021, 31 (14), 2009057.10.1002/adfm.202009057. DOI
Abdolhosseinzadeh S.; Schneider R.; Verma A.; Heier J.; Nüesch F.; Zhang C. Turning Trash into Treasure: Additive Free MXene Sediment Inks for Screen-Printed Micro-Supercapacitors. Adv. Mater. 2020, 32 (17), 2000716.10.1002/adma.202000716. PubMed DOI
Yuan Y.; Jiang L.; Li X.; Zuo P.; Zhang X.; Lian Y.; Ma Y.; Liang M.; Zhao Y.; Qu L. Ultrafast Shaped Laser Induced Synthesis of MXene Quantum Dots/Graphene for Transparent Supercapacitors. Adv. Mater. 2022, 34 (12), 2110013.10.1002/adma.202110013. PubMed DOI
Zhang C.; McKeon L.; Kremer M. P.; Park S.-H.; Ronan O.; Seral Ascaso A.; Barwich S.; Coileáin C. Ó.; McEvoy N.; Nerl H. C.; Anasori B.; Coleman J. N.; Gogotsi Y.; Nicolosi V. Additive-Free MXene Inks and Direct Printing of Micro-Supercapacitors. Nat. Commun. 2019, 10 (1), 1795.10.1038/s41467-019-09398-1. PubMed DOI PMC
Zhang C.; Anasori B.; Seral-Ascaso A.; Park S.-H.; McEvoy N.; Shmeliov A.; Duesberg G. S.; Coleman J. N.; Gogotsi Y.; Nicolosi V. Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance. Adv. Mater. 2017, 29 (36), 1702678.10.1002/adma.201702678. PubMed DOI
Yue Y.; Liu N.; Ma Y.; Wang S.; Liu W.; Luo C.; Zhang H.; Cheng F.; Rao J.; Hu X.; Su J.; Gao Y. Highly Self-Healable 3D Microsupercapacitor with MXene-Graphene Composite Aerogel. ACS Nano 2018, 12 (5), 4224–4232. 10.1021/acsnano.7b07528. PubMed DOI
Peng Z.; Ye R.; Mann J. A.; Zakhidov D.; Li Y.; Smalley P. R.; Lin J.; Tour J. M. Flexible Boron-Doped Laser-Induced Graphene Microsupercapacitors. ACS Nano 2015, 9 (6), 5868–5875. 10.1021/acsnano.5b00436. PubMed DOI
Pech D.; Brunet M.; Durou H.; Huang P.; Mochalin V.; Gogotsi Y.; Taberna P.-L.; Simon P. Ultrahigh-Power Micrometre-Sized Supercapacitors Based on Onion-like Carbon. Nat. Nanotechnol. 2010, 5 (9), 651–654. 10.1038/nnano.2010.162. PubMed DOI
Zhou T.; Wu C.; Wang Y.; Tomsia A. P.; Li M.; Saiz E.; Fang S.; Baughman R. H.; Jiang L.; Cheng Q. Super-Tough MXene-Functionalized Graphene Sheets. Nat. Commun. 2020, 11 (1), 2077.10.1038/s41467-020-15991-6. PubMed DOI PMC
Li L.; Zhong Q.; Kim N. D.; Ruan G.; Yang Y.; Gao C.; Fei H.; Li Y.; Ji Y.; Tour J. M. Nitrogen-Doped Carbonized Cotton for Highly Flexible Supercapacitors. Carbon 2016, 105, 260–267. 10.1016/j.carbon.2016.04.031. DOI
Li Y.; Luong D. X.; Zhang J.; Tarkunde Y. R.; Kittrell C.; Sargunaraj F.; Ji Y.; Arnusch C. J.; Tour J. M. Laser-Induced Graphene in Controlled Atmospheres: From Superhydrophilic to Superhydrophobic Surfaces. Adv. Mater. 2017, 29 (27), 1700496.10.1002/adma.201700496. PubMed DOI
Wang Z. L. Self-Powered Nanosensors and Nanosystems. Adv. Mater. 2012, 24 (2), 280–285. 10.1002/adma.201102958. PubMed DOI
Mashtalir O.; Naguib M.; Mochalin V. N.; Dall’Agnese Y.; Heon M.; Barsoum M. W.; Gogotsi Y. Intercalation and Delamination of Layered Carbides and Carbonitrides. Nat. Commun. 2013, 4 (1), 1716.10.1038/ncomms2664. PubMed DOI
Thompson A. P.; Aktulga H. M.; Berger R.; Bolintineanu D. S.; Brown W. M.; Crozier P. S.; in ’t Veld P. J.; Kohlmeyer A.; Moore S. G.; Nguyen T. D.; Shan R.; Stevens M. J.; Tranchida J.; Trott C.; Plimpton S. J. LAMMPS - a Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Comput. Phys. Commun. 2022, 271, 108171.10.1016/j.cpc.2021.108171. DOI
Senftle T. P.; Hong S.; Islam M. M.; Kylasa S. B.; Zheng Y.; Shin Y. K.; Junkermeier C.; Engel-Herbert R.; Janik M. J.; Aktulga H. M.; Verstraelen T.; Grama A.; van Duin A. C. T. The ReaxFF Reactive Force-Field: Development, Applications and Future Directions. npj Comput. Mater. 2016, 2 (1), 15011.10.1038/npjcompumats.2015.11. DOI
Bussi G.; Donadio D.; Parrinello M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126 (1), 14101.10.1063/1.2408420. PubMed DOI
High Performance MXene/MnCo2O4 Supercapacitor Device for Powering Small Robotics