High Performance MXene/MnCo2O4 Supercapacitor Device for Powering Small Robotics
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39464193
PubMed Central
PMC11500404
DOI
10.1021/acsaelm.4c01204
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The development of advanced energy storage devices is critical for various applications including robotics and portable electronics. The energy storage field faces significant challenges in designing devices that can operate effectively for extended periods while maintaining exceptional electrochemical performance. Supercapacitors, which bridge the gap between batteries and conventional capacitors, offer a promising solution due to their high power density and rapid charge-discharge capabilities. This study focuses on the fabrication and evaluation of a MXene/MnCo2O4 nanocomposite supercapacitor electrode using a simple and cost-effective electrodeposition method on a copper substrate. The MXene/MnCo2O4 nanocomposite exhibits superior electrochemical properties, including a specific capacitance of 668 F g-1, high energy density (35 Wh kg-1), and excellent cycling stability (94.6% retention over 5000 cycles). The combination of MXene and MnCo2O4 enhances the redox activity, electronic conductivity, and structural integrity of the electrode. An asymmetric supercapacitor device, incorporating MXene/MnCo2O4 as the positive electrode and Bi2O3 as the negative electrode, demonstrates remarkable performance in powering small robotics and small electronics. This work underscores the potential of MXene-based nanocomposites for high-performance supercapacitor applications, paving the way for future advancements in energy storage technologies.
Zobrazit více v PubMed
Simon P.; Gogotsi Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163. 10.1038/s41563-020-0747-z. PubMed DOI
Nandi S.; Pumera M. Transition metal dichalcogenide-based materials for rechargeable aluminium-ion batteries: A mini-review. ChemSusChem 2024, 17, e20230143410.1002/cssc.202301434. PubMed DOI
Yang M.; Guo M.; Xu E.; Ren W.; Wang D.; Li S.; Zhang S.; Nan C.; Shen Y. Polymer nanocomposite dielectrics for capacitive energy storage. Nat. Nanotechnol. 2024, 19, 588–603. 10.1038/s41565-023-01541-w. PubMed DOI
Yu M.; Peng Y.; Wang X.; Ran F. Emerging design strategies toward developing next-generation implantable batteries and supercapacitors. Adv. Funct. Mater. 2023, 33, 2301877.10.1002/adfm.202301877. DOI
Liu S.; Kang L.; Henzie J.; Zhang J.; Ha J.; Amin M.; A. Hossain M.; Jun S.; Yamauchi Y. Recent advances and perspectives of battery- type anode Materials for potassium ion storage. ACS Nano 2021, 15, 18931–18973. 10.1021/acsnano.1c08428. PubMed DOI
Wang J.; Ma J.; Zhuang Z.; Liang Z.; Jia K.; Ji G.; Zhou G.; Cheng H. Toward direct regeneration of spent lithium-ion batteries: a next-generation recycling method. Chem. Rev. 2024, 124, 2839–2887. 10.1021/acs.chemrev.3c00884. PubMed DOI
Nandi A.; Chatterjee D. A review on the recent advances in hybrid supercapacitors. J. Mater. Chem. A 2021, 9, 15880–15918. 10.1039/D1TA02505H. DOI
Tang G.; Liang J.; Wu W. Transition metal selenides for supercapacitors. Adv. Funct. Mater. 2023, 34, 2310399.10.1002/adfm.202310399. DOI
Kang L.; Liu S.; Zhang Q.; Zou J.; Ai J.; Qiao D.; Zhong W.; Liu Y.; Jun S.; Yamauchi Y.; Zhang J. Hierarchical spatial confinement unlocking the storage limit of MoS2 for flexible high-energy supercapacitors. ACS Nano 2024, 18, 2149–2161. 10.1021/acsnano.3c09386. PubMed DOI
Hu M.; Zhang H.; Hu T.; Fan B.; Wang X.; Li Z. Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 2020, 49, 6666–6693. 10.1039/D0CS00175A. PubMed DOI
Islam M.; Afroj S.; Karim N. Scalable production of 2D material heterostructure textiles for high-performance wearable supercapacitors. ACS Nano 2023, 17, 18481–18493. 10.1021/acsnano.3c06181. PubMed DOI PMC
Zhu Y.; Rajoua K.; Le Vot S.; Fontaine O.; Simon P.; Favier F. Modifications of MXene layers for supercapacitors. Nano Energy 2020, 73, 104734.10.1016/j.nanoen.2020.104734. DOI
Li K.; Liang M.; Wang H.; Wang X.; Huang Y.; Coelho J.; Pinilla S.; Zhang Y.; Qi F.; Nicolosi V.; Xu Y. 3D Architectures: 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 2020, 30, 2000842.10.1002/adfm.202000842. DOI
Shekhirev M.; Busa J.; Shuck C.; Torres A.; Bagheri S.; Sinitskii A.; Gogotsi Y. Ultralarge flakes of Ti3C2Tx MXene via soft delamination. ACS Nano 2022, 16, 13695–13703. 10.1021/acsnano.2c04506. PubMed DOI
Deshmukh S.; Ghosh K.; Pykal M.; Otyepka M.; Pumera M. Laser-induced MXene-functionalized graphene nano architectonics-based micro supercapacitor for health monitoring application. ACS Nano 2023, 17, 20537–20550. 10.1021/acsnano.3c07319. PubMed DOI PMC
Novcic K. A.; Iffelsberger C.; Palacios-Corella M.; Pumera M. Solvents dramatically influence the atomic composition and catalytic properties of Ti3C2Tx MXenes. J. Mater. Chem. A 2023, 11, 13419–13431. 10.1039/D3TA01441J. DOI
Alhabeb M.; Maleski K.; Anasori B.; Lelyukh P.; Clark L.; Sin S.; Gogotsi Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. 10.1021/acs.chemmater.7b02847. DOI
Ghosh K.; Ng S.; Lazar P.; Padinjareveetil A.; Michalička J.; Pumera M. 2D Germanane-MXene heterostructures for cations intercalation in energy storage applications. Adv. Funct. Mater. 2024, 34, 2308793.10.1002/adfm.202308793. DOI
Thakur A.; Chandran B.; Davidson K.; Bedford A.; Fang H.; Im Y.; Kanduri V.; Wyatt B.; Nemani S.; Poliukhova V.; Kumar R.; Fakhraai Z.; Anasori B. Step-by-step guide for synthesis and delamination of Ti3C2Tx MXene. Small Methods 2023, 7, 2300030.10.1002/smtd.202370045. PubMed DOI
Mashtalir O.; Naguib M.; Mochalin V. N.; Dall’Agnese Y.; Heon M.; Barsoum M. W.; Gogotsi Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013, 4, 1716.10.1038/ncomms2664. PubMed DOI
Pomerantseva E.; Gogotsi Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2017, 2, 17089.10.1038/nenergy.2017.89. DOI
Chen C.; Xie X.; Anasori B.; Sarycheva A.; Makaryan T.; Zhao M.; Urbankowski P.; Miao L.; Jiang J.; Gogotsi Y. MoS2-on-MXene heterostructures as highly reversible anode materials for Lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 1846–1850. 10.1002/anie.201710616. PubMed DOI
Vaghasiya J.; Mayorga-Martinez C.; Pumera M. Smart Energy Bricks: Ti3C2@Polymer electrochemical energy storage inside bricks by 3D printing. Adv. Funct. Mater. 2021, 31, 2106990.10.1002/adfm.202106990. DOI
Xin G.; Wang Y.; Zhang J.; Jia S.; Zang J.; Wang Y. A self-supporting graphene/ MnO2 composite for high-performance supercapacitors. Int. J. Hydrogen Energy 2015, 40, 10176–10184. 10.1016/j.ijhydene.2015.06.060. DOI
Vyskočil J.; Mayorga-Martinez C.; Szőkölová K.; Dash A.; Gonzalez-Julian J.; Sofer Z.; Pumera M. 2D Stacks of MXene Ti3C2 and 1T-Phase WS2 with enhanced capacitive behavior. Chem. Electro Chem. 2019, 6, 3982–3986. 10.1002/celc.201900643. DOI
Javed M.; Mateen A.; Hussain I.; Ahmad A.; Mubashir M.; Khan S.; Assiri M.; Eldin S.; Shah S.; Han W. Recent progress in the design of advanced MXene/Metal oxides-hybrid materials for energy storage devices. Energy Storage Mater. 2022, 53, 827–872. 10.1016/j.ensm.2022.10.005. DOI
Li Z.; Sui Y.; Qi J.; Wei F.; He Y.; Meng Q.; Ren Y.; Zhang X.; Zhan Z.; Sun Z. 3D core-shell pistil-like MnCo2O4.5/polyaniline nanocomposites as high-performance supercapacitor electrodes. Compos. Interfaces 2020, 27, 631–644. 10.1080/09276440.2019.1680204. DOI
Wang Z.; Wei F.; Sui Y.; Qi J.; He Y.; Meng Q. A novel core-shell polyhedron Co3O4/MnCo2O4.5 as electrode materials for supercapacitors. Ceram. Int. 2019, 45, 12558–12562. 10.1016/j.ceramint.2019.03.010. DOI
Huo W.; Liu X.; Yuan Y.; Li N.; Lan T.; Liu X.; Zhang Y. Facile synthesis of manganese cobalt oxide/nickel cobalt oxide composites for high-performance supercapacitors. Front. Chem. 2019, 6, 661.10.3389/fchem.2018.00661. PubMed DOI PMC
Iyer M.; Rajangam l. Hybrid nanostructures made of Porous binary Transition metal oxides for high performance asymmetric supercapacitor application. J. Energy Storage 2023, 67, 107530.10.1016/j.est.2023.107530. DOI
Asen P.; Esfandiar A.; Mehdipour H. Urchin-like hierarchical ruthenium cobalt oxide nanosheets on Ti3C2Tx MXene as binder free bi-functional electrode for overall water splitting and supercapacitors. Nanoscale 2022, 14, 1347–1362. 10.1039/D1NR07145A. PubMed DOI
Wang Y.; Sun J.; Qian X.; Zhang Y.; Yu L.; Niu R.; Zhao H.; Zhu J. 2D/2D heterostructures of nickel molybdate and MXene with strong coupled synergistic effect towards enhanced supercapacitor performance. J. Power Sources 2019, 414, 540–546. 10.1016/j.jpowsour.2019.01.036. DOI
Song J.; Hu P.; Liu Y.; Song W.; Wu X. Enhanced electrochemical performance of Co2NiO4/Ti3C2Tx structures through coupled synergistic effects. ChemistrySelect 2019, 4, 12886–12890. 10.1002/slct.201903511. DOI
Xia Q.; Cao W.; Xu F.; Liu Y.; Zhao W.; Chen N.; Du G. Assembling MnCo2O4 nanoparticles embedded into MXene with effectively improved electrochemical performance. J. Energy Storage 2022, 47, 103906.10.1016/j.est.2021.103906. DOI
Beknalkar S.; Teli A.; Khot A.; Mane S.; Shin J. Preparation of CuMn2O4/Ti3C2 MXene composite electrodes for supercapacitors with high energy density and study on their charge transfer kinetics. Ceram. Int. 2023, 49, 31236–31247. 10.1016/j.ceramint.2023.07.071. DOI
Bai Y.; Liu C.; Chen T.; Li W.; Zheng S.; Pi Y.; Luo Y.; Pang H. MXene-copper/cobalt hybrids via Lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew. Chem., Int. Ed. 2021, 60, 25318–25322. 10.1002/anie.202112381. PubMed DOI
Ghosh K.; Pumera M. MXene and MoS3–x coated 3D-printed hybrid electrode for solid-state asymmetric supercapacitor. Small Methods 2021, 5, 12100451.10.1002/smtd.202100451. PubMed DOI
Nasrin K.; Sudharshan V.; Subramani K.; Sathish M. Insights into 2D/2D MXene heterostructures for improved synergy in structure toward next-generation supercapacitors: A Review. Adv. Funct. Mater. 2022, 32, 2110267.10.1002/adfm.202110267. DOI
Hui X.; Ge X.; Zhao R.; Li Z.; Yin L. Interface Chemistry on MXene-based materials for enhanced energy storage and conversion performance. Adv. Funct. Mater. 2020, 30, 2005190.10.1002/adfm.202005190. DOI
Gajraj V.; Azmi R.; Indris S.; Mariappan C. Boosting the multifunctional properties of MnCo2O4-MnCo2S4 heterostructure for portable all-solid-State symmetric supercapacitor, methanol oxidation and hydrogen evolution reaction. ChemistrySelect 2021, 6, 11466–1481. 10.1002/slct.202103138. DOI
Kunwar J.; Acharya D.; Chhetri K.; Karki B.; Deo B.; Bhattarai M.; Neupane S.; Adhikari M.; Yadav A. Cobalt oxide Decorated 2D MXene: A hybrid nanocomposite electrode for high-performance supercapacitor application. J. Elec. Chem. 2023, 950, 117915.10.1016/j.jelechem.2023.117915. DOI
Li K.; Liao J.; Huang S.; Lei Y.; Zhang Y.; Zhu W. In situ synthesis of oxidized MXene-based metal cobalt spinel nanocomposites for an excellent promotion in thermal decomposition of ammonium perchlorate. Inorg. Chem. Front. 2021, 8, 4864.10.1039/D1QI00722J. DOI
Li Z.; Wang L.; Sun D.; Zhang Y.; Liu B.; Hu Q.; Zhou A. Synthesis and thermal stability of two-dimensional carbide MXeneTi3C2. Mater. Sci. and Eng. B 2015, 191, 33–40. 10.1016/j.mseb.2014.10.009. DOI
Zhao J.; Fan Y.; Zhangle J.; Ni C. Electrosorption approach removing PFOA from wastewater using a MXene-polyaniline film. J. Water Process Eng. 2024, 62, 105415.10.1016/j.jwpe.2024.105415. DOI
Vigneshwaran S.; Sirajudheen P.; Vignesh R.; Kim D.; Ko S. Efficient interfacial charge transfer of hierarchical crinkled (2D/2D) Ti3C2Tx MXene assembled on perforated GO heterojunction for enhanced degradation of organic dye. J. Environ. Chem. Eng. 2024, 12, 112266.10.1016/j.jece.2024.112266. DOI
Li Y.; Zhou X.; Wang J.; Deng Q.; Li M.; Du S.; Han Y.; Lee J.; Huang Q. Facile preparation of in situ coated Ti3C2Tx/Ni0.5Zn0.5Fe2O4 composites and their electromagnetic performance. RSC Adv. 2017, 7, 24698.10.1039/C7RA03402D. DOI
Cui Z.; Gao C.; Fan Z.; Wang J.; Cheng Z.; Xie Z.; Liu Y.; Wang Y. Lightweight MXene/Cellulose nanofiber composite Film for electromagnetic interference shielding. J. Electron. Mater. 2021, 50, 2101–2110. 10.1007/s11664-020-08718-2. DOI
Zhang Y.; Jiang H.; Lin Y.; Liu H.; He Q.; Wu C.; Duan T.; Song L. In situ growth of cobalt nanoparticles encapsulated nitrogen-doped carbon nanotubes among Ti3C2Tx (MXene) Matrix for oxygen reduction and evolution. Adv. Mater. Interfaces 2018, 5, 1800392.10.1002/admi.201800392. DOI
Ranganathan K.; Morais A.; Nongwe I.; Longo C.; Nogueira A. F.; Coville N. J. Study of photoelectrochemical water splitting using composite films based on TiO2 nanoparticles and nitrogen or boron doped hollow carbon spheres as photoanodes. J. Mol. Catal. A Chem. 2016, 422, 165–174. 10.1016/j.molcata.2015.10.024. DOI
Zhou J.; Yu J.; Shi L.; Wang Z.; Liu H.; Yang B.; Li C.; Zhu C.; Xu J. A Conductive and highly deformable all-pseudocapacitive composite paper as supercapacitor electrode with improved areal and volumetric capacitance. Small 2018, 14, 1803786.10.1002/smll.201803786. PubMed DOI
Zou R.; Quan H.; Pan M.; Zhou S.; Chen D.; Luo X. Self-assembled MXene (Ti3C2Tx)/α-Fe2O3 nanocomposite as negative electrode material for supercapacitors. Electrochim. Acta 2018, 292, 31–38. 10.1016/j.electacta.2018.09.149. DOI
Kunwar J.; Acharya D.; Chhetri K.; Karki B.; Deo B.; Bhattarai M.; Neupane S.; Adhikari M.; Yadav A. Cobalt oxide decorated 2D MXene: A hybrid nanocomposite electrode for high-performance supercapacitor application. J. Elec. Chem. 2023, 950, 117915.10.1016/j.jelechem.2023.117915. DOI
Luo W.; Wei Y.; Zhuang Z.; Lin Z.; Li X.; Hou C.; Li T.; Ma Y. Fabrication of Ti3C2Tx MXene/polyaniline composite films with adjustable thickness for high-performance flexible all-solid-state symmetric supercapacitors. Electrochim. Acta 2022, 406, 139871.10.1016/j.electacta.2022.139871. DOI
Oyedotun K.; Momodu D.; Naguib M.; Mirghni A.; Masikhwa T.; Khaleed A.; Kebede M.; Manyala N. Electrochemical performance of two-dimensional Ti3C2-Mn3O4 nanocomposites and carbonized iron cations for hybrid supercapacitor electrodes. Electrochim. Acta 2019, 301, 487–499. 10.1016/j.electacta.2019.01.158. DOI
Ambade S.; Ambade R.; Eom W.; Noh S.; Kim S.; Han T. 2D Ti3C2 MXene/WO3 Hybrid architectures for high-rate supercapacitors. Adv. Mater. Interfaces 2018, 5, 1801361.10.1002/admi.201801361. DOI
Guo C.; Tao C.; Yu F.; Zhao Z.; Wang Z.; Deng N.; Huang X. Ball-milled layer double hydroxide as persulfate activator for efficient degradation of organic: Alkaline sites-triggered non-radical mechanism. J. Hazard. Mater. 2024, 461, 132219.10.1016/j.jhazmat.2023.132219. PubMed DOI