High Performance MXene/MnCo2O4 Supercapacitor Device for Powering Small Robotics

. 2024 Oct 22 ; 6 (10) : 7339-7345. [epub] 20240919

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39464193

The development of advanced energy storage devices is critical for various applications including robotics and portable electronics. The energy storage field faces significant challenges in designing devices that can operate effectively for extended periods while maintaining exceptional electrochemical performance. Supercapacitors, which bridge the gap between batteries and conventional capacitors, offer a promising solution due to their high power density and rapid charge-discharge capabilities. This study focuses on the fabrication and evaluation of a MXene/MnCo2O4 nanocomposite supercapacitor electrode using a simple and cost-effective electrodeposition method on a copper substrate. The MXene/MnCo2O4 nanocomposite exhibits superior electrochemical properties, including a specific capacitance of 668 F g-1, high energy density (35 Wh kg-1), and excellent cycling stability (94.6% retention over 5000 cycles). The combination of MXene and MnCo2O4 enhances the redox activity, electronic conductivity, and structural integrity of the electrode. An asymmetric supercapacitor device, incorporating MXene/MnCo2O4 as the positive electrode and Bi2O3 as the negative electrode, demonstrates remarkable performance in powering small robotics and small electronics. This work underscores the potential of MXene-based nanocomposites for high-performance supercapacitor applications, paving the way for future advancements in energy storage technologies.

Zobrazit více v PubMed

Simon P.; Gogotsi Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163. 10.1038/s41563-020-0747-z. PubMed DOI

Nandi S.; Pumera M. Transition metal dichalcogenide-based materials for rechargeable aluminium-ion batteries: A mini-review. ChemSusChem 2024, 17, e20230143410.1002/cssc.202301434. PubMed DOI

Yang M.; Guo M.; Xu E.; Ren W.; Wang D.; Li S.; Zhang S.; Nan C.; Shen Y. Polymer nanocomposite dielectrics for capacitive energy storage. Nat. Nanotechnol. 2024, 19, 588–603. 10.1038/s41565-023-01541-w. PubMed DOI

Yu M.; Peng Y.; Wang X.; Ran F. Emerging design strategies toward developing next-generation implantable batteries and supercapacitors. Adv. Funct. Mater. 2023, 33, 2301877.10.1002/adfm.202301877. DOI

Liu S.; Kang L.; Henzie J.; Zhang J.; Ha J.; Amin M.; A. Hossain M.; Jun S.; Yamauchi Y. Recent advances and perspectives of battery- type anode Materials for potassium ion storage. ACS Nano 2021, 15, 18931–18973. 10.1021/acsnano.1c08428. PubMed DOI

Wang J.; Ma J.; Zhuang Z.; Liang Z.; Jia K.; Ji G.; Zhou G.; Cheng H. Toward direct regeneration of spent lithium-ion batteries: a next-generation recycling method. Chem. Rev. 2024, 124, 2839–2887. 10.1021/acs.chemrev.3c00884. PubMed DOI

Nandi A.; Chatterjee D. A review on the recent advances in hybrid supercapacitors. J. Mater. Chem. A 2021, 9, 15880–15918. 10.1039/D1TA02505H. DOI

Tang G.; Liang J.; Wu W. Transition metal selenides for supercapacitors. Adv. Funct. Mater. 2023, 34, 2310399.10.1002/adfm.202310399. DOI

Kang L.; Liu S.; Zhang Q.; Zou J.; Ai J.; Qiao D.; Zhong W.; Liu Y.; Jun S.; Yamauchi Y.; Zhang J. Hierarchical spatial confinement unlocking the storage limit of MoS2 for flexible high-energy supercapacitors. ACS Nano 2024, 18, 2149–2161. 10.1021/acsnano.3c09386. PubMed DOI

Hu M.; Zhang H.; Hu T.; Fan B.; Wang X.; Li Z. Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 2020, 49, 6666–6693. 10.1039/D0CS00175A. PubMed DOI

Islam M.; Afroj S.; Karim N. Scalable production of 2D material heterostructure textiles for high-performance wearable supercapacitors. ACS Nano 2023, 17, 18481–18493. 10.1021/acsnano.3c06181. PubMed DOI PMC

Zhu Y.; Rajoua K.; Le Vot S.; Fontaine O.; Simon P.; Favier F. Modifications of MXene layers for supercapacitors. Nano Energy 2020, 73, 104734.10.1016/j.nanoen.2020.104734. DOI

Li K.; Liang M.; Wang H.; Wang X.; Huang Y.; Coelho J.; Pinilla S.; Zhang Y.; Qi F.; Nicolosi V.; Xu Y. 3D Architectures: 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 2020, 30, 2000842.10.1002/adfm.202000842. DOI

Shekhirev M.; Busa J.; Shuck C.; Torres A.; Bagheri S.; Sinitskii A.; Gogotsi Y. Ultralarge flakes of Ti3C2Tx MXene via soft delamination. ACS Nano 2022, 16, 13695–13703. 10.1021/acsnano.2c04506. PubMed DOI

Deshmukh S.; Ghosh K.; Pykal M.; Otyepka M.; Pumera M. Laser-induced MXene-functionalized graphene nano architectonics-based micro supercapacitor for health monitoring application. ACS Nano 2023, 17, 20537–20550. 10.1021/acsnano.3c07319. PubMed DOI PMC

Novcic K. A.; Iffelsberger C.; Palacios-Corella M.; Pumera M. Solvents dramatically influence the atomic composition and catalytic properties of Ti3C2Tx MXenes. J. Mater. Chem. A 2023, 11, 13419–13431. 10.1039/D3TA01441J. DOI

Alhabeb M.; Maleski K.; Anasori B.; Lelyukh P.; Clark L.; Sin S.; Gogotsi Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. 10.1021/acs.chemmater.7b02847. DOI

Ghosh K.; Ng S.; Lazar P.; Padinjareveetil A.; Michalička J.; Pumera M. 2D Germanane-MXene heterostructures for cations intercalation in energy storage applications. Adv. Funct. Mater. 2024, 34, 2308793.10.1002/adfm.202308793. DOI

Thakur A.; Chandran B.; Davidson K.; Bedford A.; Fang H.; Im Y.; Kanduri V.; Wyatt B.; Nemani S.; Poliukhova V.; Kumar R.; Fakhraai Z.; Anasori B. Step-by-step guide for synthesis and delamination of Ti3C2Tx MXene. Small Methods 2023, 7, 2300030.10.1002/smtd.202370045. PubMed DOI

Mashtalir O.; Naguib M.; Mochalin V. N.; Dall’Agnese Y.; Heon M.; Barsoum M. W.; Gogotsi Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013, 4, 1716.10.1038/ncomms2664. PubMed DOI

Pomerantseva E.; Gogotsi Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2017, 2, 17089.10.1038/nenergy.2017.89. DOI

Chen C.; Xie X.; Anasori B.; Sarycheva A.; Makaryan T.; Zhao M.; Urbankowski P.; Miao L.; Jiang J.; Gogotsi Y. MoS2-on-MXene heterostructures as highly reversible anode materials for Lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 1846–1850. 10.1002/anie.201710616. PubMed DOI

Vaghasiya J.; Mayorga-Martinez C.; Pumera M. Smart Energy Bricks: Ti3C2@Polymer electrochemical energy storage inside bricks by 3D printing. Adv. Funct. Mater. 2021, 31, 2106990.10.1002/adfm.202106990. DOI

Xin G.; Wang Y.; Zhang J.; Jia S.; Zang J.; Wang Y. A self-supporting graphene/ MnO2 composite for high-performance supercapacitors. Int. J. Hydrogen Energy 2015, 40, 10176–10184. 10.1016/j.ijhydene.2015.06.060. DOI

Vyskočil J.; Mayorga-Martinez C.; Szőkölová K.; Dash A.; Gonzalez-Julian J.; Sofer Z.; Pumera M. 2D Stacks of MXene Ti3C2 and 1T-Phase WS2 with enhanced capacitive behavior. Chem. Electro Chem. 2019, 6, 3982–3986. 10.1002/celc.201900643. DOI

Javed M.; Mateen A.; Hussain I.; Ahmad A.; Mubashir M.; Khan S.; Assiri M.; Eldin S.; Shah S.; Han W. Recent progress in the design of advanced MXene/Metal oxides-hybrid materials for energy storage devices. Energy Storage Mater. 2022, 53, 827–872. 10.1016/j.ensm.2022.10.005. DOI

Li Z.; Sui Y.; Qi J.; Wei F.; He Y.; Meng Q.; Ren Y.; Zhang X.; Zhan Z.; Sun Z. 3D core-shell pistil-like MnCo2O4.5/polyaniline nanocomposites as high-performance supercapacitor electrodes. Compos. Interfaces 2020, 27, 631–644. 10.1080/09276440.2019.1680204. DOI

Wang Z.; Wei F.; Sui Y.; Qi J.; He Y.; Meng Q. A novel core-shell polyhedron Co3O4/MnCo2O4.5 as electrode materials for supercapacitors. Ceram. Int. 2019, 45, 12558–12562. 10.1016/j.ceramint.2019.03.010. DOI

Huo W.; Liu X.; Yuan Y.; Li N.; Lan T.; Liu X.; Zhang Y. Facile synthesis of manganese cobalt oxide/nickel cobalt oxide composites for high-performance supercapacitors. Front. Chem. 2019, 6, 661.10.3389/fchem.2018.00661. PubMed DOI PMC

Iyer M.; Rajangam l. Hybrid nanostructures made of Porous binary Transition metal oxides for high performance asymmetric supercapacitor application. J. Energy Storage 2023, 67, 107530.10.1016/j.est.2023.107530. DOI

Asen P.; Esfandiar A.; Mehdipour H. Urchin-like hierarchical ruthenium cobalt oxide nanosheets on Ti3C2Tx MXene as binder free bi-functional electrode for overall water splitting and supercapacitors. Nanoscale 2022, 14, 1347–1362. 10.1039/D1NR07145A. PubMed DOI

Wang Y.; Sun J.; Qian X.; Zhang Y.; Yu L.; Niu R.; Zhao H.; Zhu J. 2D/2D heterostructures of nickel molybdate and MXene with strong coupled synergistic effect towards enhanced supercapacitor performance. J. Power Sources 2019, 414, 540–546. 10.1016/j.jpowsour.2019.01.036. DOI

Song J.; Hu P.; Liu Y.; Song W.; Wu X. Enhanced electrochemical performance of Co2NiO4/Ti3C2Tx structures through coupled synergistic effects. ChemistrySelect 2019, 4, 12886–12890. 10.1002/slct.201903511. DOI

Xia Q.; Cao W.; Xu F.; Liu Y.; Zhao W.; Chen N.; Du G. Assembling MnCo2O4 nanoparticles embedded into MXene with effectively improved electrochemical performance. J. Energy Storage 2022, 47, 103906.10.1016/j.est.2021.103906. DOI

Beknalkar S.; Teli A.; Khot A.; Mane S.; Shin J. Preparation of CuMn2O4/Ti3C2 MXene composite electrodes for supercapacitors with high energy density and study on their charge transfer kinetics. Ceram. Int. 2023, 49, 31236–31247. 10.1016/j.ceramint.2023.07.071. DOI

Bai Y.; Liu C.; Chen T.; Li W.; Zheng S.; Pi Y.; Luo Y.; Pang H. MXene-copper/cobalt hybrids via Lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew. Chem., Int. Ed. 2021, 60, 25318–25322. 10.1002/anie.202112381. PubMed DOI

Ghosh K.; Pumera M. MXene and MoS3–x coated 3D-printed hybrid electrode for solid-state asymmetric supercapacitor. Small Methods 2021, 5, 12100451.10.1002/smtd.202100451. PubMed DOI

Nasrin K.; Sudharshan V.; Subramani K.; Sathish M. Insights into 2D/2D MXene heterostructures for improved synergy in structure toward next-generation supercapacitors: A Review. Adv. Funct. Mater. 2022, 32, 2110267.10.1002/adfm.202110267. DOI

Hui X.; Ge X.; Zhao R.; Li Z.; Yin L. Interface Chemistry on MXene-based materials for enhanced energy storage and conversion performance. Adv. Funct. Mater. 2020, 30, 2005190.10.1002/adfm.202005190. DOI

Gajraj V.; Azmi R.; Indris S.; Mariappan C. Boosting the multifunctional properties of MnCo2O4-MnCo2S4 heterostructure for portable all-solid-State symmetric supercapacitor, methanol oxidation and hydrogen evolution reaction. ChemistrySelect 2021, 6, 11466–1481. 10.1002/slct.202103138. DOI

Kunwar J.; Acharya D.; Chhetri K.; Karki B.; Deo B.; Bhattarai M.; Neupane S.; Adhikari M.; Yadav A. Cobalt oxide Decorated 2D MXene: A hybrid nanocomposite electrode for high-performance supercapacitor application. J. Elec. Chem. 2023, 950, 117915.10.1016/j.jelechem.2023.117915. DOI

Li K.; Liao J.; Huang S.; Lei Y.; Zhang Y.; Zhu W. In situ synthesis of oxidized MXene-based metal cobalt spinel nanocomposites for an excellent promotion in thermal decomposition of ammonium perchlorate. Inorg. Chem. Front. 2021, 8, 4864.10.1039/D1QI00722J. DOI

Li Z.; Wang L.; Sun D.; Zhang Y.; Liu B.; Hu Q.; Zhou A. Synthesis and thermal stability of two-dimensional carbide MXeneTi3C2. Mater. Sci. and Eng. B 2015, 191, 33–40. 10.1016/j.mseb.2014.10.009. DOI

Zhao J.; Fan Y.; Zhangle J.; Ni C. Electrosorption approach removing PFOA from wastewater using a MXene-polyaniline film. J. Water Process Eng. 2024, 62, 105415.10.1016/j.jwpe.2024.105415. DOI

Vigneshwaran S.; Sirajudheen P.; Vignesh R.; Kim D.; Ko S. Efficient interfacial charge transfer of hierarchical crinkled (2D/2D) Ti3C2Tx MXene assembled on perforated GO heterojunction for enhanced degradation of organic dye. J. Environ. Chem. Eng. 2024, 12, 112266.10.1016/j.jece.2024.112266. DOI

Li Y.; Zhou X.; Wang J.; Deng Q.; Li M.; Du S.; Han Y.; Lee J.; Huang Q. Facile preparation of in situ coated Ti3C2Tx/Ni0.5Zn0.5Fe2O4 composites and their electromagnetic performance. RSC Adv. 2017, 7, 24698.10.1039/C7RA03402D. DOI

Cui Z.; Gao C.; Fan Z.; Wang J.; Cheng Z.; Xie Z.; Liu Y.; Wang Y. Lightweight MXene/Cellulose nanofiber composite Film for electromagnetic interference shielding. J. Electron. Mater. 2021, 50, 2101–2110. 10.1007/s11664-020-08718-2. DOI

Zhang Y.; Jiang H.; Lin Y.; Liu H.; He Q.; Wu C.; Duan T.; Song L. In situ growth of cobalt nanoparticles encapsulated nitrogen-doped carbon nanotubes among Ti3C2Tx (MXene) Matrix for oxygen reduction and evolution. Adv. Mater. Interfaces 2018, 5, 1800392.10.1002/admi.201800392. DOI

Ranganathan K.; Morais A.; Nongwe I.; Longo C.; Nogueira A. F.; Coville N. J. Study of photoelectrochemical water splitting using composite films based on TiO2 nanoparticles and nitrogen or boron doped hollow carbon spheres as photoanodes. J. Mol. Catal. A Chem. 2016, 422, 165–174. 10.1016/j.molcata.2015.10.024. DOI

Zhou J.; Yu J.; Shi L.; Wang Z.; Liu H.; Yang B.; Li C.; Zhu C.; Xu J. A Conductive and highly deformable all-pseudocapacitive composite paper as supercapacitor electrode with improved areal and volumetric capacitance. Small 2018, 14, 1803786.10.1002/smll.201803786. PubMed DOI

Zou R.; Quan H.; Pan M.; Zhou S.; Chen D.; Luo X. Self-assembled MXene (Ti3C2Tx)/α-Fe2O3 nanocomposite as negative electrode material for supercapacitors. Electrochim. Acta 2018, 292, 31–38. 10.1016/j.electacta.2018.09.149. DOI

Kunwar J.; Acharya D.; Chhetri K.; Karki B.; Deo B.; Bhattarai M.; Neupane S.; Adhikari M.; Yadav A. Cobalt oxide decorated 2D MXene: A hybrid nanocomposite electrode for high-performance supercapacitor application. J. Elec. Chem. 2023, 950, 117915.10.1016/j.jelechem.2023.117915. DOI

Luo W.; Wei Y.; Zhuang Z.; Lin Z.; Li X.; Hou C.; Li T.; Ma Y. Fabrication of Ti3C2Tx MXene/polyaniline composite films with adjustable thickness for high-performance flexible all-solid-state symmetric supercapacitors. Electrochim. Acta 2022, 406, 139871.10.1016/j.electacta.2022.139871. DOI

Oyedotun K.; Momodu D.; Naguib M.; Mirghni A.; Masikhwa T.; Khaleed A.; Kebede M.; Manyala N. Electrochemical performance of two-dimensional Ti3C2-Mn3O4 nanocomposites and carbonized iron cations for hybrid supercapacitor electrodes. Electrochim. Acta 2019, 301, 487–499. 10.1016/j.electacta.2019.01.158. DOI

Ambade S.; Ambade R.; Eom W.; Noh S.; Kim S.; Han T. 2D Ti3C2 MXene/WO3 Hybrid architectures for high-rate supercapacitors. Adv. Mater. Interfaces 2018, 5, 1801361.10.1002/admi.201801361. DOI

Guo C.; Tao C.; Yu F.; Zhao Z.; Wang Z.; Deng N.; Huang X. Ball-milled layer double hydroxide as persulfate activator for efficient degradation of organic: Alkaline sites-triggered non-radical mechanism. J. Hazard. Mater. 2024, 461, 132219.10.1016/j.jhazmat.2023.132219. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

MXene-Based Nanocomposites for Supercapacitors: Fundamentals and Applications

. 2025 Jul ; 9 (7) : e2401751. [epub] 20250429

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...