Measurement of multijet azimuthal correlations and determination of the strong coupling in proton-proton collisions at s = 13 Te V

. 2024 ; 84 (8) : 842. [epub] 20240821

Status PubMed-not-MEDLINE Jazyk angličtina Země Francie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39185726

A measurement is presented of a ratio observable that provides a measure of the azimuthal correlations among jets with large transverse momentum p T . This observable is measured in multijet events over the range of p T = 360 - 3170 Ge V based on data collected by the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 Te V , corresponding to an integrated luminosity of 134 fb - 1 . The results are compared with predictions from Monte Carlo parton-shower event generator simulations, as well as with fixed-order perturbative quantum chromodynamics (pQCD) predictions at next-to-leading-order (NLO) accuracy obtained with different parton distribution functions (PDFs) and corrected for nonperturbative and electroweak effects. Data and theory agree within uncertainties. From the comparison of the measured observable with the pQCD prediction obtained with the NNPDF3.1 NLO PDFs, the strong coupling at the Z boson mass scale is α S ( m Z ) = 0.1177 ± 0.0013 (exp) - 0.0073 + 0.0116 (theo) = 0 . 1177 - 0.0074 + 0.0117 , where the total uncertainty is dominated by the scale dependence of the fixed-order predictions. A test of the running of α S in the Te V region shows no deviation from the expected NLO pQCD behaviour.

Zobrazit více v PubMed

C.G. Callan Jr., Broken scale invariance in scalar field theory. Phys. Rev. D 2, 1541 (1970). 10.1103/PhysRevD.2.1541

K. Symanzik, Small distance behavior in field theory and power counting. Commun. Math. Phys. 18, 227 (1970). 10.1007/BF01649434

K. Symanzik, Small distance behavior analysis and Wilson expansion. Commun. Math. Phys. 23, 49 (1971). 10.1007/BF01877596

P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Five-loop running of the QCD coupling constant. Phys. Rev. Lett. 118, 082002 (2017). 10.1103/PhysRevLett.118.082002. arXiv:1606.08659 PubMed

Particle Data Group, R.L. Workman et al., Review of particle physics. Prog. Theor. Exp. Phys. 2022, 083C01 (2022). 10.1093/ptep/ptac097

D. d’Enterria et al., The strong coupling constant: state of the art and the decade ahead. J. Phys. G (2022). arXiv:2203.08271

D0 Collaboration, Measurement of angular correlations of jets at [Image: see text] TeV and determination of the strong coupling at high momentum transfers. Phys. Lett. B 718, 56 (2012). 10.1016/j.physletb.2012.10.003. arXiv:1207.4957

M. Wobisch et al., A new quantity for studies of dijet azimuthal decorrelations. JHEP 01, 172 (2013). 10.1007/JHEP01(2013)172. arXiv:1211.6773

ATLAS Collaboration, Measurement of dijet azimuthal decorrelations in pp collisions at [Image: see text] TeV with the ATLAS detector and determination of the strong coupling. Phys. Rev. D 98, 092004 (2018). 10.1103/PhysRevD.98.092004. arXiv:1805.04691

CMS Collaboration, Precision luminosity measurement in proton-proton collisions at [Image: see text] TeV in 2015 and 2016 at CMS. Eur. Phys. J. C 81, 800 (2021). 10.1140/epjc/s10052-021-09538-2. arXiv:2104.01927 PubMed PMC

CMS Collaboration, CMS luminosity measurement for the 2017 data-taking period at [Image: see text] TeV. CMS Physics Analysis Summary CMS-PAS-LUM-17-004 (2018). https://cds.cern.ch/record/2621960/

CMS Collaboration, CMS luminosity measurement for the 2018 data-taking period at [Image: see text] TeV. CMS Physics Analysis Summary CMS-PAS-LUM-18-002 (2019). https://cds.cern.ch/record/2676164/

CDF Collaboration, Measurement of the strong coupling constant from inclusive jet production at the Tevatron [Image: see text] collider. Phys. Rev. Lett. 88, 042001 (2002). 10.1103/PhysRevLett.88.042001. arXiv:hep-ex/0108034 PubMed

D0 Collaboration, Determination of the strong coupling constant from the inclusive jet cross section in p [Image: see text] collisions at [Image: see text] TeV. Phys. Rev. D 80, 111107 (2009). 10.1103/PhysRevD.80.111107. arXiv:0911.2710

B. Malaescu, P. Starovoitov, Evaluation of the strong coupling constant [Image: see text] using the ATLAS inclusive jet cross-section data. Eur. Phys. J. C 72, 2041 (2012). 10.1140/epjc/s10052-012-2041-y. arXiv:1203.5416

CMS Collaboration, Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in pp collisions at [Image: see text] TeV and first determination of the strong coupling constant in the TeV range. Eur. Phys. J. C 73, 2604 (2013). 10.1140/epjc/s10052-013-2604-6. arXiv:1304.7498

ATLAS Collaboration, Measurement of transverse energy-energy correlations in multi-jet events in pp collisions at [Image: see text] TeV using the ATLAS detector and determination of the strong coupling constant [Image: see text]. Phys. Lett. B 750, 427 (2015). 10.1016/j.physletb.2015.09.050. arXiv:1508.01579

CMS Collaboration, Determination of the top-quark pole mass and strong coupling constant from the [Image: see text] production cross section in pp collisions at [Image: see text] TeV. Phys. Lett. B 728, 496 (2014). 10.1016/j.physletb.2013.12.009. arXiv:1307.1907. [Erratum: 10.1016/j.physletb.2014.08.040]

CMS Collaboration, Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range. Eur. Phys. J. C 75, 186 (2015). 10.1140/epjc/s10052-015-3376-y. arXiv:1412.1633 PubMed PMC

CMS Collaboration, Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at [Image: see text] TeV. Eur. Phys. J. C 75, 288 (2015). 10.1140/epjc/s10052-015-3499-1. arXiv:1410.6765 PubMed PMC

CMS Collaboration, Determination of the strong coupling constant [Image: see text] from measurements of inclusive [Image: see text] and Z boson production cross sections in proton-proton collisions at [Image: see text] and 8 [Image: see text]. JHEP 06, 018 (2020). 10.1007/JHEP06(2020)018. arXiv:1912.04387

D. d’Enterria, A. Poldaru, Extraction of the strong coupling [Image: see text] from a combined NNLO analysis of inclusive electroweak boson cross sections at hadron colliders. JHEP 06, 016 (2020). 10.1007/JHEP06(2020)016. arXiv:1912.11733

ATLAS Collaboration, Determination of the strong coupling constant [Image: see text] from transverse energy-energy correlations in multijet events at [Image: see text]  TeV using the ATLAS detector. Eur. Phys. J. C 77, 872 (2017). 10.1140/epjc/s10052-017-5442-0. arXiv:1707.02562 PubMed PMC

CMS Collaboration, Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at [Image: see text]  TeV and cross section ratios to 2.76 and 7 TeV. JHEP 03, 156 (2017). 10.1007/JHEP03(2017)156. arXiv:1609.05331

CMS Collaboration, Measurement of the triple-differential dijet cross section in proton-proton collisions at [Image: see text] TeV and constraints on parton distribution functions. Eur. Phys. J. C 77, 746 (2017). 10.1140/epjc/s10052-017-5286-7. arXiv:1705.02628 PubMed PMC

CMS Collaboration, Measurement of jet substructure observables in [Image: see text] events from proton-proton collisions at [Image: see text] 13 [Image: see text]. Phys. Rev. D 98, 092014 (2018). 10.1103/PhysRevD.98.092014. arXiv:1808.07340

CMS Collaboration, Measurement of the [Image: see text] production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at [Image: see text] TeV. Eur. Phys. J. C 79, 368 (2019). 10.1140/epjc/s10052-019-6863-8. arXiv:1812.10505 PubMed PMC

CMS Collaboration, Measurement of [Image: see text] normalised multi-differential cross sections in pp collisions at [Image: see text] TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions. Eur. Phys. J. C 80, 658 (2020). 10.1140/epjc/s10052-020-7917-7. arXiv:1904.05237

ATLAS Collaboration, Determination of the strong coupling constant from transverse energy-energy correlations in multijet events at [Image: see text]  TeV with the ATLAS detector. JHEP 07, 085 (2023). 10.1007/JHEP07(2023)085. arXiv:2301.09351

CMS Collaboration, Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at [Image: see text] TeV. JHEP 02, 142 (2022). 10.1007/JHEP02(2022)142. arXiv:2111.10431. [Addendum: 10.1007/JHEP12(2022)035 ]

CMS Collaboration, Measurement of multidifferential cross sections for dijet production in proton-proton collisions at [Image: see text] = 13 [Image: see text]. Eur. Phys. J. C (2023). arXiv:2312.16669

CMS Collaboration, Measurement of energy correlators inside jets and determination of the strong coupling [Image: see text]. Phys. Rev. Lett. (2024). arXiv:2402.13864 PubMed

HEPData record for this analysis, (2024). 10.17182/hepdata.150596

CMS Collaboration, The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). 10.1088/1748-0221/3/08/S08004

CMS Collaboration, Performance of the CMS level-1 trigger in proton-proton collisions at [Image: see text] TeV. JINST 15, P10017 (2020). 10.1088/1748-0221/15/10/P10017. arXiv:2006.10165

CMS Collaboration, The CMS trigger system. JINST 12, P01020 (2017). 10.1088/1748-0221/12/01/P01020. arXiv:1609.02366

CMS Collaboration, Particle-flow reconstruction and global event description with the CMS detector. JINST 12, P10003 (2017). 10.1088/1748-0221/12/10/P10003. arXiv:1706.04965

CMS Collaboration, Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid, CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02 (2015). http://cds.cern.ch/record/2020886

M. Cacciari, G.P. Salam, G. Soyez, The anti- [Image: see text] jet clustering algorithm. JHEP 04, 063 (2008). 10.1088/1126-6708/2008/04/063. arXiv:0802.1189

M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C 72, 1896 (2012). 10.1140/epjc/s10052-012-1896-2. arXiv:1111.6097

CMS Collaboration, Pileup mitigation at CMS in 13 TeV data. JINST 15, P09018 (2020). 10.1088/1748-0221/15/09/P09018. arXiv:2003.00503

CMS Collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV. JINST 12, P02014 (2017). 10.1088/1748-0221/12/02/P02014. arXiv:1607.03663

CMS Collaboration, Jet algorithms performance in 13 [Image: see text] data, CMS Physics Analysis Summary CMS-PAS-JME-16-003 (2017). https://cds.cern.ch/record/2256875

CMS Collaboration, Performance of missing transverse momentum reconstruction in proton-proton collisions at [Image: see text] TeV using the CMS detector. JINST 14, P07004 (2019). 10.1088/1748-0221/14/07/P07004. arXiv:1903.06078

CMS Collaboration, Performance of the CMS electromagnetic calorimeter in pp collisions at [Image: see text] , Technical Report CERN-EP-2024-014, CMS-EGM-18-002-003 (2024). http://cds.cern.ch/record/2892650

T. Sjöstrand et al., An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159 (2015). 10.1016/j.cpc.2015.01.024. arXiv:1410.3012

CMS Collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements. Eur. Phys. J. C 76, 155 (2016). 10.1140/epjc/s10052-016-3988-x. arXiv:1512.00815 PubMed PMC

CMS Collaboration, Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements. Eur. Phys. J. C 80, 4 (2020). 10.1140/epjc/s10052-019-7499-4. arXiv:1903.12179 PubMed PMC

S. Schmitt, TUnfold: an algorithm for correcting migration effects in high energy physics. JINST 7, T10003 (2012). 10.1088/1748-0221/7/10/T10003. arXiv:1205.6201

V. Blobel, Unfolding, ch. 6 (Wiley, 2013), p. 187. 10.1002/9783527653416.ch6

GEANT4 Collaboration, Geant4-a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003). 10.1016/S0168-9002(03)01368-8

J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07, 079 (2014). 10.1007/JHEP07(2014)079. arXiv:1405.0301

J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions. Eur. Phys. J. C 53, 473 (2008). 10.1140/epjc/s10052-007-0490-5. arXiv:0706.2569

M. Bähr et al., Herwig++ physics and manual. Eur. Phys. J. C 58, 639 (2008). 10.1140/epjc/s10052-008-0798-9. arXiv:0803.0883

S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP 06, 043 (2010). 10.1007/JHEP06(2010)043. arXiv:1002.2581

C. Bierlich et al., Robust independent validation of experiment and theory: Rivet version 3. SciPost Phys. 8, 026 (2020). 10.21468/SciPostPhys.8.2.026. arXiv:1912.05451

B.R. Webber, A QCD model for jet fragmentation including soft gluon interference. Nucl. Phys. B 238, 492 (1984). 10.1016/0550-3213(84)90333-X

M.H. Seymour, A. Siódmok, Constraining MPI models using [Image: see text] and recent Tevatron and LHC underlying event data. JHEP 10, 113 (2013). 10.1007/JHEP10(2013)113. arXiv:1307.5015

D. Stump et al., Inclusive jet production, parton distributions, and the search for new physics. JHEP 10, 046 (2003). 10.1088/1126-6708/2003/10/046. arXiv:hep-ph/0303013

B. Andersson, The Lund Model, vol. 7 (Cambridge University Press, 2005), p. 7. 10.1017/CBO9780511524363

NNPDF Collaboration, Parton distributions with QED corrections. Nucl. Phys. B 877, 290 (2013). 10.1016/j.nuclphysb.2013.10.010. arXiv:1308.0598

NNPDF Collaboration, Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO. Nucl. Phys. B 855, 153 (2012). 10.1016/j.nuclphysb.2011.09.024. arXiv:1107.2652

CMS Collaboration, Investigations of the impact of the parton shower tuning in Pythia 8 in the modelling of [Image: see text] at [Image: see text] and 13 TeV. CMS Physics Analysis Summary CMS-PAS-TOP-16-021 (2016). https://cds.cern.ch/record/2235192

NNPDF Collaboration, Parton distributions for the LHC Run II. JHEP 04, 040 (2015). 10.1007/JHEP04(2015)040. arXiv:1410.8849

P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP 11, 040 (2004). 10.1088/1126-6708/2004/11/040. arXiv:hep-ph/0409146

S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method. JHEP 11, 070 (2007). 10.1088/1126-6708/2007/11/070. arXiv:0709.2092

Z. Nagy, Three-jet cross sections in hadron-hadron collisions at next-to-leading order. Phys. Rev. Lett. 88, 122003 (2002). 10.1103/PhysRevLett.88.122003. arXiv:hep-ph/0110315 PubMed

Z. Nagy, Next-to-leading order calculation of three-jet observables in hadron-hadron collision. Phys. Rev. D 68, 094002 (2003). 10.1103/PhysRevD.68.094002. arXiv:hep-ph/0307268

T. Kluge, K. Rabbertz, M. Wobisch, FastNLO: Fast pQCD calculations for PDF fits, in 14th International Workshop on Deep Inelastic Scattering, p. 483 (2006). 10.1142/9789812706706_0110. arXiv:hep-ph/0609285

fastNLO Collaboration, D. Britzger, K. Rabbertz, F. Stober, M. Wobisch, New features in version 2 of the fastNLO project, in 20th International Workshop on Deep-Inelastic Scattering and Related Subjects, p. 217 (2012). 10.3204/DESY-PROC-2012-02/165. arXiv:1208.3641

A. Buckley et al., LHAPDF6: parton density access in the LHC precision era. Eur. Phys. J. C 75, 132 (2015). 10.1140/epjc/s10052-015-3318-8. arXiv:1412.7420

J. Currie et al., Infrared sensitivity of single jet inclusive production at hadron colliders. JHEP 10, 155 (2018). 10.1007/JHEP10(2018)155. arXiv:1807.03692

M. Czakon, A. Mitov, R. Poncelet, Next-to-next-to-leading order study of three-jet production at the LHC. Phys. Rev. Lett. 127, 152001 (2021). 10.1103/PhysRevLett.127.152001. arXiv:2106.05331. [Erratum: 10.1103/PhysRevLett.129.119901] PubMed

M. Alvarez et al., NNLO QCD corrections to event shapes at the LHC. JHEP 03, 129 (2023). 10.1007/JHEP03(2023)129. arXiv:2301.01086

M. Cacciari et al., The top-antitop cross-section at 1.8 TeV and 1.96 TeV: a study of the systematics due to parton densities and scale dependence. JHEP 04, 068 (2004). 10.1088/1126-6708/2004/04/068. arXiv:hep-ph/0303085

S. Catani, D. de Florian, M. Grazzini, P. Nason, Soft gluon resummation for Higgs boson production at hadron colliders. JHEP 07, 028 (2003). 10.1088/1126-6708/2003/07/028. arXiv:hep-ph/0306211

A. Banfi, G.P. Salam, G. Zanderighi, Phenomenology of event shapes at hadron colliders. JHEP 06, 038 (2010). 10.1007/JHEP06(2010)038. arXiv:1001.4082

S. Alekhin, J. Blümlein, S. Moch, R. Plačakyté, Parton distribution functions, [Image: see text] , and heavy-quark masses for LHC Run II. Phys. Rev. D 96, 014011 (2017). 10.1103/PhysRevD.96.014011. arXiv:1701.05838

T.-J. Hou et al., New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC. Phys. Rev. D 103, 014013 (2021). 10.1103/PhysRevD.103.014013. arXiv:1912.10053

S. Bailey et al., Parton distributions from LHC, HERA, Tevatron and fixed target data: MSHT20 PDFs. Eur. Phys. J. C 81, 341 (2021). 10.1140/epjc/s10052-021-09057-0. arXiv:2012.04684

NNPDF Collaboration, Parton distributions from high-precision collider data. Eur. Phys. J. C 77, 663 (2017). 10.1140/epjc/s10052-017-5199-5. arXiv:1706.00428 PubMed PMC

M. Reyer, M. Schönherr, S. Schumann, Full NLO corrections to 3-jet production and [Image: see text] at the LHC. Eur. Phys. J. C 79, 321 (2019). 10.1140/epjc/s10052-019-6815-3. arXiv:1902.01763

Sherpa Collaboration, Event generation with Sherpa 2.2. SciPost Phys. 7, 034 (2019). 10.21468/SciPostPhys.7.3.034. arXiv:1905.09127

S. Actis et al., Recursive generation of one-loop amplitudes in the Standard Model. JHEP 04, 037 (2013). 10.1007/JHEP04(2013)037. arXiv:1211.6316

S. Actis et al., RECOLA: REcursive Computation of One-Loop Amplitudes. Comput. Phys. Commun. 214, 140 (2017). 10.1016/j.cpc.2017.01.004. arXiv:1605.01090

B. Biedermann et al., Automation of NLO QCD and EW corrections with Sherpa and Recola. Eur. Phys. J. C 77, 492 (2017). 10.1140/epjc/s10052-017-5054-8. arXiv:1704.05783

M. Schönherr, An automated subtraction of NLO EW infrared divergences. Eur. Phys. J. C 78, 119 (2018). 10.1140/epjc/s10052-018-5600-z. arXiv:1712.07975 PubMed PMC

J. Pumplin et al., Uncertainties of predictions from parton distribution functions. 2. The Hessian method. Phys. Rev. D 65, 014013 (2001). 10.1103/PhysRevD.65.014013. arXiv:hep-ph/0101032

W.T. Giele, S.A. Keller, D.A. Kosower, Parton distribution function uncertainties (2001). arXiv:hep-ph/0104052

ZEUS Collaboration, Jet-radius dependence of inclusive-jet cross-sections in deep inelastic scattering at HERA. Phys. Lett. B 649, 12 (2007). 10.1016/j.physletb.2007.03.039. arXiv:hep-ex/0701039

H1 Collaboration, Measurement of multijet production in ep collisions at high [Image: see text] and determination of the strong coupling [Image: see text]. Eur. Phys. J. C 75, 65 (2015). 10.1140/epjc/s10052-014-3223-6. arXiv:1406.4709

D. Britzger et al., Determination of the strong coupling constant using inclusive jet cross section data from multiple experiments. Eur. Phys. J. C 79, 68 (2019). 10.1140/epjc/s10052-019-6551-8. arXiv:1712.00480

ZEUS Collaboration, Multijet production in neutral current deep inelastic scattering at HERA and determination of [Image: see text]. Eur. Phys. J. C 44, 183 (2005). 10.1140/epjc/s2005-02347-1. arXiv:hep-ex/0502007

H1 Collaboration, Jet production in ep collisions at high [Image: see text] and determination of [Image: see text]. Eur. Phys. J. C 65, 363 (2010). 10.1140/epjc/s10052-009-1208-7. arXiv:0904.3870

H1 Collaboration, Jet production in ep collisions at low [Image: see text] and determination of [Image: see text]. Eur. Phys. J. C 67, 1 (2010). 10.1140/epjc/s10052-010-1282-x. arXiv:0911.5678

ZEUS Collaboration, Inclusive-jet photoproduction at HERA and determination of [Image: see text]. Nucl. Phys. B 864, 1 (2012). 10.1016/j.nuclphysb.2012.06.006. arXiv:1205.6153

Najít záznam

Citační ukazatele

Možnosti archivace