Extraction and validation of a new set of CMS pythia8 tunes from underlying-event measurements

. 2020 ; 80 (1) : 4. [epub] 20200103

Status PubMed-not-MEDLINE Jazyk angličtina Země Francie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31976986

New sets of CMS underlying-event parameters ("tunes") are presented for the pythia8 event generator. These tunes use the NNPDF3.1 parton distribution functions (PDFs) at leading (LO), next-to-leading (NLO), or next-to-next-to-leading (NNLO) orders in perturbative quantum chromodynamics, and the strong coupling evolution at LO or NLO. Measurements of charged-particle multiplicity and transverse momentum densities at various hadron collision energies are fit simultaneously to determine the parameters of the tunes. Comparisons of the predictions of the new tunes are provided for observables sensitive to the event shapes at LEP, global underlying event, soft multiparton interactions, and double-parton scattering contributions. In addition, comparisons are made for observables measured in various specific processes, such as multijet, Drell-Yan, and top quark-antiquark pair production including jet substructure observables. The simulation of the underlying event provided by the new tunes is interfaced to a higher-order matrix-element calculation. For the first time, predictions from pythia8 obtained with tunes based on NLO or NNLO PDFs are shown to reliably describe minimum-bias and underlying-event data with a similar level of agreement to predictions from tunes using LO PDF sets.

Academy of Scientific Research and Technology of the Arab Republic of Egypt Egyptian Network of High Energy Physics Cairo Egypt

Baylor University Waco USA

Beihang University Beijing China

Benemerita Universidad Autonoma de Puebla Puebla Mexico

Bhabha Atomic Research Centre Mumbai India

Bogazici University Istanbul Turkey

Boston University Boston USA

Brown University Providence USA

Brunel University Uxbridge UK

California Institute of Technology Pasadena USA

Carnegie Mellon University Pittsburgh USA

Catholic University of America Washington DC USA

Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules CNRS IN2P3 Villeurbanne France

Centro Brasileiro de Pesquisas Fisicas Rio de Janeiro Brazil

Centro de Investigacion y de Estudios Avanzados del IPN Mexico City Mexico

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas Madrid Spain

CERN European Organization for Nuclear Research Geneva Switzerland

Charles University Prague Czech Republic

Chonnam National University Institute for Universe and Elementary Particles Kwangju Korea

Chulalongkorn University Faculty of Science Department of Physics Bangkok Thailand

CNRS IN2P3 Institut de Physique Nucléaire de Lyon Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne France

Cornell University Ithaca USA

Çukurova University Physics Department Science and Art Faculty Adana Turkey

Department of Physics University of California Santa Barbara Santa Barbara USA

Department of Physics University of Helsinki Helsinki Finland

Department of Physics University of Ruhuna Matara Sri Lanka

Deutsches Elektronen Synchrotron Hamburg Germany

Escuela Politecnica Nacional Quito Ecuador

ETH Zurich Institute for Particle Physics and Astrophysics Zurich Switzerland

Faculty of Electrical Engineering Mechanical Engineering and Naval Architecture University of Split Split Croatia

Faculty of Physics and VINCA Institute of Nuclear Sciences University of Belgrade Belgrade Serbia

Faculty of Science University of Split Split Croatia

Fermi National Accelerator Laboratory Batavia USA

Florida Institute of Technology Melbourne USA

Florida International University Miami USA

Florida State University Tallahassee USA

Georgian Technical University Tbilisi Georgia

Ghent University Ghent Belgium

Hanyang University Seoul Korea

Helsinki Institute of Physics Helsinki Finland

Imperial College London UK

Indian Institute of Science Bangalore India

Indian Institute of Science Education and Research Pune India

Indian Institute of Technology Madras Madras India

INFN Laboratori Nazionali di Frascati Frascati Italy

INFN Sezione di Bari Università di Bari Politecnico di Bari Bari Italy

INFN Sezione di Bologna Università di Bologna Bologna Italy

INFN Sezione di Catania Università di Catania Catania Italy

INFN Sezione di Firenze Università di Firenze Firenze Italy

INFN Sezione di Genova Università di Genova Genova Italy

INFN Sezione di Milano Bicocca Università di Milano Bicocca Milano Italy

INFN Sezione di Napoli Università di Napoli 'Federico II' Napoli Italy Università della Basilicata Potenza Italy Università G Marconi Roma Italy

INFN Sezione di Padova Università di Padova Padova Italy Università di Trento Trento Italy

INFN Sezione di Pavia Università di Pavia Pavia Italy

INFN Sezione di Perugia Università di Perugia Perugia Italy

INFN Sezione di Pisa Università di Pisa Scuola Normale Superiore di Pisa Pisa Italy

INFN Sezione di Roma Sapienza Università di Roma Rome Italy

INFN Sezione di Torino Università di Torino Torino Italy Università del Piemonte Orientale Novara Italy

INFN Sezione di Trieste Università di Trieste Trieste Italy

Institut für Hochenergiephysik Wien Austria

Institute for High Energy Physics of National Research Centre 'Kurchatov Institute' Protvino Russia

Institute for Nuclear Problems Minsk Belarus

Institute for Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences Sofia Bulgaria

Institute for Nuclear Research Moscow Russia

Institute for Research in Fundamental Sciences Tehran Iran

Institute for Scintillation Materials of National Academy of Science of Ukraine Kharkov Ukraine

Institute for Theoretical and Experimental Physics Moscow Russia

Institute of Experimental Physics Faculty of Physics University of Warsaw Warsaw Poland

Institute of High Energy Physics Beijing China

Institute of Nuclear and Particle Physics NCSR Demokritos Aghia Paraskevi Greece

Institute of Nuclear Research ATOMKI Debrecen Hungary

Institute of Physics University of Debrecen Debrecen Hungary

Institute Rudjer Boskovic Zagreb Croatia

Instituto de Física de Cantabria CSIC Universidad de Cantabria Santander Spain

IRFU CEA Université Paris Saclay Gif sur Yvette France

Istanbul Technical University Istanbul Turkey

Johns Hopkins University Baltimore USA

Joint Institute for Nuclear Research Dubna Russia

Kansas State University Manhattan USA

Karlsruher Institut fuer Technologie Karlsruhe Germany

Korea University Seoul Korea

Kyungpook National University Daegu Korea

Laboratoire Leprince Ringuet Ecole polytechnique CNRS IN2P3 Université Paris Saclay Palaiseau France

Laboratório de Instrumentação e Física Experimental de Partículas Lisboa Portugal

Lappeenranta University of Technology Lappeenranta Finland

Lawrence Livermore National Laboratory Livermore USA

Massachusetts Institute of Technology Cambridge USA

Middle East Technical University Physics Department Ankara Turkey

Moscow Institute of Physics and Technology Moscow Russia

MTA ELTE Lendület CMS Particle and Nuclear Physics Group Eötvös Loránd University Budapest Hungary

National and Kapodistrian University of Athens Athens Greece

National Central University Chung Li Taiwan

National Centre for Nuclear Research Swierk Poland

National Centre for Particle Physics Universiti Malaya Kuala Lumpur Malaysia

National Centre for Physics Quaid 1 Azam University Islamabad Pakistan

National Institute of Chemical Physics and Biophysics Tallinn Estonia

National Institute of Science Education and Research HBNI Bhubaneswar India

National Research Nuclear University 'Moscow Engineering Physics Institute' Moscow Russia

National Research Tomsk Polytechnic University Tomsk Russia

National Scientific Center Kharkov Institute of Physics and Technology Kharkov Ukraine

National Taiwan University Taipei Taiwan

National Technical University of Athens Athens Greece

Northeastern University Boston USA

Northwestern University Evanston USA

Novosibirsk State University Novosibirsk Russia

P N Lebedev Physical Institute Moscow Russia

Panjab University Chandigarh India

Paul Scherrer Institut Villigen Switzerland

Petersburg Nuclear Physics Institute Gatchina Russia

Princeton University Princeton USA

Purdue University Northwest Hammond USA

Purdue University West Lafayette USA

Rice University Houston USA

Rutgers The State University of New Jersey Piscataway USA

Rutherford Appleton Laboratory Didcot UK

RWTH Aachen University 1 Physikalisches Institut Aachen Germany

RWTH Aachen University 3 Physikalisches Institut A Aachen Germany

RWTH Aachen University 3 Physikalisches Institut B Aachen Germany

Saha Institute of Nuclear Physics HBNI Kolkata India

Sejong University Seoul Korea

Seoul National University Seoul Korea

Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University Moscow Russia

State Key Laboratory of Nuclear Physics and Technology Peking University Beijing China

State University of New York at Buffalo Buffalo USA

Sungkyunkwan University Suwon Korea

Tata Institute of Fundamental Research A Mumbai India

Tata Institute of Fundamental Research B Mumbai India

Tbilisi State University Tbilisi Georgia

Texas A and M University College Station USA

Texas Tech University Lubbock USA

The Ohio State University Columbus USA

The University of Alabama Tuscaloosa USA

The University of Iowa Iowa City USA

The University of Kansas Lawrence USA

Tsinghua University Beijing China

Universidad Autónoma de Madrid Madrid Spain

Universidad Autónoma de San Luis Potosí San Luis Potosí Mexico

Universidad de Los Andes Bogota Colombia

Universidad de Oviedo Oviedo Spain

Universidad de Sonora Hermosillo Mexico

Universidad Iberoamericana Mexico City Mexico

Universidad San Francisco de Quito Quito Ecuador

Universidade do Estado do Rio de Janeiro Rio de Janeiro Brazil

Universidade Estadual Paulista Universidade Federal do ABC São Paulo Brazil

Universität Zürich Zurich Switzerland

Université Catholique de Louvain Louvain la Neuve Belgium

Université de Strasbourg CNRS IPHC UMR 7178 Strasbourg France

Université Libre de Bruxelles Bruxelles Belgium

Universiteit Antwerpen Antwerpen Belgium

University College Dublin Dublin Ireland

University of Auckland Auckland New Zealand

University of Bristol Bristol UK

University of California Davis Davis USA

University of California Los Angeles USA

University of California Riverside Riverside USA

University of California San Diego La Jolla USA

University of Canterbury Christchurch New Zealand

University of Colorado Boulder Boulder USA

University of Cyprus Nicosia Cyprus

University of Delhi Delhi India

University of Florida Gainesville USA

University of Hamburg Hamburg Germany

University of Illinois at Chicago Chicago USA

University of Ioánnina Ioánnina Greece

University of Maryland College Park USA

University of Minnesota Minneapolis USA

University of Mississippi Oxford USA

University of Nebraska Lincoln Lincoln USA

University of Notre Dame Notre Dame USA

University of Puerto Rico Mayaguez USA

University of Rochester Rochester USA

University of Seoul Seoul Korea

University of Sofia Sofia Bulgaria

University of Tennessee Knoxville USA

University of Virginia Charlottesville USA

University of Wisconsin Madison Madison WI USA

Vanderbilt University Nashville USA

Vilnius University Vilnius Lithuania

Vrije Universiteit Brussel Brussel Belgium

Wayne State University Detroit USA

Wigner Research Centre for Physics Budapest Hungary

Yerevan Physics Institute Yerevan Armenia

Zobrazit více v PubMed

Sjöstrand T, et al. An introduction to Pythia 8.2. Comput. Phys. Commun. 2015;191:159. doi: 10.1016/j.cpc.2015.01.024. DOI

Bahr M, et al. Herwig++ physics and manual. Eur. Phys. J. C. 2008;58:639. doi: 10.1140/epjc/s10052-008-0798-9. DOI

Bellm J, et al. Herwig 7.0/Herwig++ 3.0 release note. Eur. Phys. J. C. 2016;76:196. doi: 10.1140/epjc/s10052-016-4018-8. DOI

Gleisberg T, et al. Event generation with SHERPA 1.1. JHEP. 2009;02:7. doi: 10.1088/1126-6708/2009/02/007. DOI

CMS Collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements. Eur. Phys. J. C 76, 155 (2016). 10.1140/epjc/s10052-016-3988-x. arXiv:1512.00815 PubMed PMC

Skands P, Carrazza S, Rojo J. Tuning PYTHIA 8.1: the Monash 2013 tune. Eur. Phys. J. C. 2014;74:3024. doi: 10.1140/epjc/s10052-014-3024-y. DOI

S. Carrazza, S. Forte, J. Rojo, Parton distributions and event generators, In Proceedings of the 43rd International Symposium on Multiparticle Dynamics (ISMD 13). 2013. arXiv:1311.5887

Corke R, Sjostrand T. Interleaved parton showers and tuning prospects. JHEP. 2011;03:032. doi: 10.1007/JHEP03(2011)032. DOI

Collaboration CDF. Study of the energy dependence of the underlying event in proton–antiproton collisions. Phys. Rev. D. 2015;92:092009. doi: 10.1103/PhysRevD.92.092009. DOI

CMS Collaboration, Measurement of the underlying event activity in pp collisions at the LHC at 7 TeV and comparison with 0.9 TeV. CMS Physics Analysis Summary CMS-PAS-FSQ-12-020 (2012)

Pumplin J, et al. New generation of parton distributions with uncertainties from global QCD analysis. JHEP. 2002;07:12. doi: 10.1088/1126-6708/2002/07/012. DOI

ATLAS Collaboration, ATLAS PYTHIA 8 tunes to 7 TeV data. Technical Report ATL-PHYS-PUB-2014-021 (2015)

ATLAS Collaboration, Summary of ATLAS PYTHIA 8 tunes (2012)

ATLAS Collaboration, Measurement of the

Fischer N, Sjöstrand T. Thermodynamical string fragmentation. JHEP. 2017;01:140. doi: 10.1007/JHEP01(2017)140. DOI

CMS Collaboration, Underlying event measurements with leading particles and jets in pp collisions at

NNPDF Collaboration, Parton distributions from high-precision collider data. Eur. Phys. J. C 77, 663 (2017). 10.1140/epjc/s10052-017-5199-5. arXiv:1706.00428 PubMed PMC

CMS Collaboration, Pseudorapidity distribution of charged hadrons in proton–proton collisions at

P.D.B. Collins, An introduction to Regge theory and high-energy physics. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2009). 10.1017/CBO9780511897603 (ISBN 9780521110358)

CMS Collaboration, Measurement of the underlying event in the Drell-Yan process in proton-proton collisions at

CMS Collaboration, Measurement of the underlying event activity in inclusive Z boson production in proton-proton collisions at

CMS Collaboration, Study of the underlying event in top quark pair production in PubMed PMC

S. Navin, Diffraction in PYTHIA (2010). arXiv:1005.3894

CMS Collaboration, Measurement of charged particle spectra in minimum-bias events from proton-proton collisions at PubMed PMC

CMS Collaboration, Measurement of normalized differential

CMS Collaboration, Investigations of the impact of the parton shower tuning in PYTHIA 8 in the modelling of

ATLAS Collaboration, Measurement of charged-particle distributions sensitive to the underlying event in

Gunnellini P, Jung H, Maharucksit R. Investigation of the energy dependence of the DOI

Harland-Lang LA, Martin AD, Motylinski P, Thorne RS. Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C. 2015;75:204. doi: 10.1140/epjc/s10052-015-3397-6. PubMed DOI PMC

Gieseke S, Loshaj F, Kirchgaeber P. Soft and diffractive scattering with the cluster model in Herwig. Eur. Phys. J. C. 2017;77:156. doi: 10.1140/epjc/s10052-017-4727-7. DOI

Alwall J, et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions. Eur. Phys. J. C. 2008;53:473. doi: 10.1140/epjc/s10052-007-0490-5. DOI

Catani S, Krauss F, Kuhn R, Webber BR. QCD matrix elements + parton showers. JHEP. 2001;11:063. doi: 10.1088/1126-6708/2001/11/063. DOI

Krauss F. Matrix elements and parton showers in hadronic interactions. JHEP. 2002;08:015. doi: 10.1088/1126-6708/2002/08/015. DOI

Cooper B, et al. Importance of a consistent choice of DOI

Particle Data Group Collaboration, Review of particle physics. Phys. Rev. D 98, 30001 (2018). 10.1103/PhysRevD.98.030001

Alioli S, Nason P, Oleari C, Re E. A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP. 2010;06:43. doi: 10.1007/JHEP06(2010)043. DOI

Alwall J, et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP. 2014;07:79. doi: 10.1007/JHEP07(2014)079. DOI

Frederix R, Frixione S. Merging meets matching in MC@NLO. JHEP. 2012;12:61. doi: 10.1007/JHEP12(2012)061. DOI

Frixione S, Nason P, Oleari C. Matching NLO QCD computations with parton shower simulations: the POWHEG method. JHEP. 2007;11:70. doi: 10.1088/1126-6708/2007/11/070. DOI

Sjöstrand T, van Zijl M. A multiple interaction model for the event structure in hadron collisions. Phys. Rev. D. 1987;36:2019. doi: 10.1103/PhysRevD.36.2019. PubMed DOI

Sjöstrand T, Skands PZ. Multiple interactions and the structure of beam remnants. JHEP. 2004;03:53. doi: 10.1088/1126-6708/2004/03/053. DOI

A. Buckley, J. Butterworth, D. Grellscheid, H. Hoeth, L. Lönnblad, J. Monk, H. Schulze, F. Siegert, Rivet user manual. Comput. Phys. Commun. 184, 2803 (2013). 10.1016/j.cpc.2013.05.021. arXiv:1003.0694

Buckley A, et al. Systematic event generator tuning for the LHC. Eur. Phys. J. C. 2010;65:331. doi: 10.1140/epjc/s10052-009-1196-7. DOI

Schuler GA, Sjöstrand T. Hadronic diffractive cross sections and the rise of the total cross section. Phys. Rev. D. 1994;49:2257. doi: 10.1103/PhysRevD.49.2257. PubMed DOI

ALEPH Collaboration, Studies of QCD at e

Catani S, Webber BR, Marchesini G. QCD coherent branching and semiinclusive processes at large x. Nucl. Phys. B. 1991;349:635. doi: 10.1016/0550-3213(91)90390-J. DOI

CMS Collaboration, Measurement of the energy density as a function of pseudorapidity in proton–proton collisions at DOI

CMS Collaboration, The CMS Experiment at the CERN LHC. JINST 3, S08004 (2008). 10.1088/1748-0221/3/08/S08004. arXiv:1812.04095

CMS Collaboration, Measurement of the inclusive energy spectrum in the very forward direction in proton–proton collisions at

CMS Collaboration, Measurement of the inelastic proton–proton cross section at

Donnachie A, Landshoff PV. Elastic scattering and diffraction dissociation. Nucl. Phys. B. 1984;244:322. doi: 10.1016/0550-3213(84)90315-8. DOI

R. Ciesielski, K. Goulianos, MBR Monte Carlo simulation in PYTHIA 8, In Proceedings of the 36th International Conference on High Energy Physics (ICHEP2012), p. 301. Melbourne. 2013. arXiv:1205.1446. (PoS(DIS 2013)091). 10.22323/1.191.0091

Alioli S, et al. Jet pair production in POWHEG. JHEP. 2011;04:81. doi: 10.1007/JHEP04(2011)081. DOI

CMS Collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS. JINST 6, 11002 (2011). 10.1088/1748-0221/6/11/P11002. arXiv:1107.4277

CMS Collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV. JINST 12, P02014 (2017). 10.1088/1748-0221/12/02/P02014. arXiv:1607.03663

CMS Collaboration, Measurement of the double-differential inclusive jet cross section in proton–proton collisions at PubMed PMC

CMS Collaboration, Azimuthal correlations for inclusive 2-jet, 3-jet, and 4-jet events in pp collisions at

Cacciari M, Salam GP, Soyez G. The anti- DOI

Cacciari M, Salam GP, Soyez G. FastJet user manual. Eur. Phys. J. C. 2012;72:1896. doi: 10.1140/epjc/s10052-012-1896-2. DOI

D0 Collaboration, Measurement of dijet azimuthal decorrelations at central rapidities in PubMed

CMS Collaboration, Measurement of four-jet production in proton–proton collisions at

ATLAS Collaboration, Measurement of the inelastic proton–proton cross section at PubMed

CMS Collaboration, Studies of inclusive four-jet production with two b-tagged jets in proton–proton collisions at 7 TeV. Phys. Rev. D 94, 112005 (2016). 10.1103/PhysRevD.94.112005. arXiv:1609.03489

Humpert B, Odorico R. Multi-parton scattering and QCD radiation as sources of four-jet events. Phys. Lett. B. 1985;154:211. doi: 10.1016/0370-2693(85)90587-8. DOI

Mangano M. Four-jet production at the tevatron collider. Z. Phys. C. 1989;42:331. doi: 10.1007/BF01555875. DOI

CMS Collaboration, Probing color coherence effects in pp collisions at PubMed PMC

P. Gunnellini, Study of double parton scattering using four-jet scenarios in proton–proton collisions at

Nason P. A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP. 2004;11:40. doi: 10.1088/1126-6708/2004/11/040. DOI

CMS Collaboration, Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton–proton collisions at 13 TeV. Phys. Rev. D 95, 092001 (2017). 10.1103/PhysRevD.95.092001. arXiv:1610.04191

CMS Collaboration, Measurement of jet substructure observables in

CMS Collaboration, Measurement of differential cross sections for Z boson production in association with jets in proton–proton collisions at PubMed PMC

CMS Collaboration, Measurement of the differential cross sections for the associated production of a

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Search for CP violation in D 0 → K S 0 K S 0 decays in proton-proton collisions at s = 13 Te V

. 2024 ; 84 (12) : 1264. [epub] 20241206

Observation of the Λ b 0 → J / ψ Ξ - K + decay

. 2024 ; 84 (10) : 1062. [epub] 20241015

Portable Acceleration of CMS Computing Workflows with Coprocessors as a Service

. 2024 ; 8 (1) : 17. [epub] 20240904

Measurement of multijet azimuthal correlations and determination of the strong coupling in proton-proton collisions at s = 13 Te V

. 2024 ; 84 (8) : 842. [epub] 20240821

Constraints on anomalous Higgs boson couplings from its production and decay using the WW channel in proton-proton collisions at s = 13 TeV

. 2024 ; 84 (8) : 779. [epub] 20240805

Search for Z Z and Z H production in the b b ¯ b b ¯ final state using proton-proton collisions at s = 13 Te V

. 2024 ; 84 (7) : 712. [epub] 20240719

Search for exotic decays of the Higgs boson to a pair of pseudoscalars in the μμbb and ττbb final states

. 2024 ; 84 (5) : 493. [epub] 20240514

Luminosity determination using Z boson production at the CMS experiment

. 2024 ; 84 (1) : 26. [epub] 20240110

Measurement of the production cross section for a W boson in association with a charm quark in proton-proton collisions at s=13TeV

. 2024 ; 84 (1) : 27. [epub] 20240110

Measurement of the top quark mass using a profile likelihood approach with the lepton + jets final states in proton-proton collisions at s=13TeV

. 2023 ; 83 (10) : 963. [epub] 20231025

A search for decays of the Higgs boson to invisible particles in events with a top-antitop quark pair or a vector boson in proton-proton collisions at s=13TeV

. 2023 ; 83 (10) : 933. [epub] 20231016

Measurements of the Higgs boson production cross section and couplings in the W boson pair decay channel in proton-proton collisions at s=13TeV

. 2023 ; 83 (7) : 667. [epub] 20230726

Measurement of the mass dependence of the transverse momentum of lepton pairs in Drell-Yan production in proton-proton collisions at s=13TeV

. 2023 ; 83 (7) : 628. [epub] 20230717

CMS pythia 8 colour reconnection tunes based on underlying-event data

. 2023 ; 83 (7) : 587. [epub] 20230710

Search for light Higgs bosons from supersymmetric cascade decays in pp collisions at s=13TeV

. 2023 ; 83 (7) : 571. [epub] 20230706

Measurement of the differential tt¯ production cross section as a function of the jet mass and extraction of the top quark mass in hadronic decays of boosted top quarks

. 2023 ; 83 (7) : 560. [epub] 20230703

Observation of B 0 → ψ (2S)K S 0 π + π - and B s 0 → ψ (2S)K S 0 decays

. 2022 ; 82 (5) : 499. [epub] 20220531

Search for low-mass dilepton resonances in Higgs boson decays to four-lepton final states in proton-proton collisions at s = 13 TeV

. 2022 ; 82 (4) : 290. [epub] 20220404

Search for long-lived particles decaying to leptons with large impact parameter in proton-proton collisions at s = 13 Te

. 2022 ; 82 (2) : 153. [epub] 20220217

Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at s = 13 Te

. 2021 ; 81 (11) : 970. [epub] 20211103

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...