Mechanism-Based Strategy for Optimizing HaloTag Protein Labeling
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R01 CA217809
NCI NIH HHS - United States
PubMed
35783171
PubMed Central
PMC9241015
DOI
10.1021/jacsau.2c00002
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
HaloTag labeling technology has introduced unrivaled potential in protein chemistry and molecular and cellular biology. A wide variety of ligands have been developed to meet the specific needs of diverse applications, but only a single protein tag, DhaAHT, is routinely used for their incorporation. Following a systematic kinetic and computational analysis of different reporters, a tetramethylrhodamine- and three 4-stilbazolium-based fluorescent ligands, we showed that the mechanism of incorporating different ligands depends both on the binding step and the efficiency of the chemical reaction. By studying the different haloalkane dehalogenases DhaA, LinB, and DmmA, we found that the architecture of the access tunnels is critical for the kinetics of both steps and the ligand specificity. We showed that highly efficient labeling with specific ligands is achievable with natural dehalogenases. We propose a simple protocol for selecting the optimal protein tag for a specific ligand from the wide pool of available enzymes with diverse access tunnel architectures. The application of this protocol eliminates the need for expensive and laborious protein engineering.
Department of Chemistry Stanford University Stanford California 94305 United States
Enantis Ltd Biotechnology Incubator INBIT 625 00 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital 656 91 Brno Czech Republic
Zobrazit více v PubMed
Pieters R. J.; Fennema M.; Kellogg R. M.; Janssen D. B. Design and Synthesis of Reagents for Phage Display Screening of Dehalogenases. Bioorg. Med. Chem. Lett. 1999, 9, 161–166. 10.1016/s0960-894x(98)00697-0. PubMed DOI
Los G. V.; Darzins A.; Karassina N.; Zimprich C.; Learish R.; McDougall M. G.; Encell L. P.; Friedman-Ohana R.; Wood M.; Vidugiris G.; Zimmerman K.; Otto P.; Klaubert D. H.; Wood K. V. HaloTag Interchangeable Labeling Technology for Cell Imaging and Protein Capture. Cell Notes 2005, 11, 2–6.
Los G. V.; Wood K.. The HaloTagTM: A Novel Technology for Cell Imaging and Protein Analysis. In High Content Screening: A Powerful Approach to Systems Cell Biology and Drug Discovery; Taylor D. L.; Haskins J. R.; Giuliano K. A., Eds.; Humana Press: Totowa, NJ, 2006; pp 195–208.
Los G. V.; Encell L. P.; McDougall M. G.; Hartzell D. D.; Karassina N.; Zimprich C.; Wood M. G.; Learish R.; Ohana R. F.; Urh M.; Simpson D.; Mendez J.; Zimmerman K.; Otto P.; Vidugiris G.; Zhu J.; Darzins A.; Klaubert D. H.; Bulleit R. F.; Wood K. V. HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis. ACS Chem. Biol. 2008, 3, 373–382. 10.1021/cb800025k. PubMed DOI
Mishra V. Affinity Tags for Protein Purification. Curr. Protein Pept. Sci. 2020, 21, 821–830. 10.2174/1389203721666200606220109. PubMed DOI
Döbber J.; Pohl M. HaloTag: Evaluation of a Covalent One-Step Immobilization for Biocatalysis. J. Biotechnol. 2017, 241, 170–174. 10.1016/j.jbiotec.2016.12.004. PubMed DOI
Sun C.; Li Y.; Taylor S. E.; Mao X.; Wilkinson M. C.; Fernig D. G. HaloTag Is an Effective Expression and Solubilisation Fusion Partner for a Range of Fibroblast Growth Factors. PeerJ 2015, 3, e106010.7717/peerj.1060. PubMed DOI PMC
Singh V.; Wang S.; Kool E. T. Genetically Encoded Multispectral Labeling of Proteins with Polyfluorophores on a DNA Backbone. J. Am. Chem. Soc. 2013, 135, 6184–6191. 10.1021/ja4004393. PubMed DOI PMC
Hoelzel C. A.; Zhang X. Visualizing and Manipulating Biological Processes by Using HaloTag and SNAP-Tag Technologies. ChemBioChem 2020, 21, 1935–1946. 10.1002/cbic.202000037. PubMed DOI PMC
Kosaka N.; Ogawa M.; Choyke P. L.; Karassina N.; Corona C.; McDougall M.; Lynch D. T.; Hoyt C. C.; Levenson R. M.; Los G. V.; Kobayashi H. In Vivo Stable Tumor-Specific Painting in Various Colors Using Dehalogenase-Based Protein-Tag Fluorescent Ligands. Bioconjugate Chem. 2009, 20, 1367–1374. 10.1021/bc9001344. PubMed DOI PMC
Chen J.; Zhang Z.; Li L.; Chen B.-C.; Revyakin A.; Hajj B.; Legant W.; Dahan M.; Lionnet T.; Betzig E.; Tjian R.; Liu Z. Single-Molecule Dynamics of Enhanceosome Assembly in Embryonic Stem Cells. Cell 2014, 156, 1274–1285. 10.1016/j.cell.2014.01.062. PubMed DOI PMC
Grimm J. B.; English B. P.; Chen J.; Slaughter J. P.; Zhang Z.; Revyakin A.; Patel R.; Macklin J. J.; Normanno D.; Singer R. H.; Lionnet T.; Lavis L. D. A General Method to Improve Fluorophores for Live-Cell and Single-Molecule Microscopy. Nat. Methods 2015, 12, 244–250. 10.1038/nmeth.3256. PubMed DOI PMC
Rivas-Pardo J. A.; Li Y.; Mártonfalvi Z.; Tapia-Rojo R.; Unger A.; Fernández-Trasancos Á.; Herrero-Galán E.; Velázquez-Carreras D.; Fernández J. M.; Linke W. A.; Alegre-Cebollada J. A HaloTag-TEV Genetic Cassette for Mechanical Phenotyping of Proteins from Tissues. Nat. Commun. 2020, 11, 206010.1038/s41467-020-15465-9. PubMed DOI PMC
Urh M.; Hartzell D.; Mendez J.; Klaubert D. H.; Wood K. Methods for Detection of Protein-Protein and Protein-DNA Interactions Using HaloTag. Methods Mol. Biol. 2008, 3, 191–209. 10.1007/978-1-59745-582-4_13. PubMed DOI
Minner-Meinen R.; Weber J.-N.; Albrecht A.; Matis R.; Behnecke M.; Tietge C.; Frank S.; Schulze J.; Buschmann H.; Walla P. J.; Mendel R.-R.; Hänsch R.; Kaufholdt D. Split-HaloTag Imaging Assay for Sophisticated Microscopy of Protein-Protein Interactions in Planta. Plant Commun. 2021, 2, 10021210.1016/j.xplc.2021.100212. PubMed DOI PMC
Liu Y.; Fares M.; Dunham N. P.; Gao Z.; Miao K.; Jiang X.; Bollinger S. S.; Boal A. K.; Zhang X. AgHalo: A Facile Fluorogenic Sensor to Detect Drug-Induced Proteome Stress. Angew. Chem., Int. Ed. 2017, 56, 8672–8676. 10.1002/anie.201702417. PubMed DOI
Fares M.; Li Y.; Liu Y.; Miao K.; Gao Z.; Zhai Y.; Zhang X. A Molecular Rotor-Based Halo-Tag Ligand Enables a Fluorogenic Proteome Stress Sensor to Detect Protein Misfolding in Mildly Stressed Proteome. Bioconjugate Chem. 2018, 29, 215–224. 10.1021/acs.bioconjchem.7b00763. PubMed DOI
Wolstenholme C. H.; Hu H.; Ye S.; Funk B. E.; Jain D.; Hsiung C.-H.; Ning G.; Liu Y.; Li X.; Zhang X. AggFluor: Fluorogenic Toolbox Enables Direct Visualization of the Multi-Step Protein Aggregation Process in Live Cells. J. Am. Chem. Soc. 2020, 142, 17515–17523. 10.1021/jacs.0c07245. PubMed DOI PMC
Jung K. H.; Kim S. F.; Liu Y.; Zhang X. A Fluorogenic AggTag Method Based on Halo- and SNAP-Tags to Simultaneously Detect Aggregation of Two Proteins in Live Cells. ChemBioChem 2019, 20, 1078–1087. 10.1002/cbic.201800782. PubMed DOI
Sykora J.; Brezovsky J.; Koudelakova T.; Lahoda M.; Fortova A.; Chernovets T.; Chaloupkova R.; Stepankova V.; Prokop Z.; Smatanova I. K.; Hof M.; Damborsky J. Dynamics and Hydration Explain Failed Functional Transformation in Dehalogenase Design. Nat. Chem. Biol. 2014, 10, 428–430. 10.1038/nchembio.1502. PubMed DOI
Amaro M.; Brezovský J.; Kováčová S.; Sýkora J.; Bednář D.; Němec V.; Lišková V.; Kurumbang N. P.; Beerens K.; Chaloupková R.; Paruch K.; Hof M.; Damborský J. Site-Specific Analysis of Protein Hydration Based on Unnatural Amino Acid Fluorescence. J. Am. Chem. Soc. 2015, 137, 4988–4992. 10.1021/jacs.5b01681. PubMed DOI
Popa I.; Rivas-Pardo J. A.; Eckels E. C.; Echelman D. J.; Badilla C. L.; Valle-Orero J.; Fernández J. M. A HaloTag Anchored Ruler for Week-Long Studies of Protein Dynamics. J. Am. Chem. Soc. 2016, 138, 10546–10553. 10.1021/jacs.6b05429. PubMed DOI PMC
Peier A.; Ge L.; Boyer N.; Frost J.; Duggal R.; Biswas K.; Edmondson S.; Hermes J. D.; Yan L.; Zimprich C.; Sadruddin A.; Kristal Kaan H. Y.; Chandramohan A.; Brown C. J.; Thean D.; Lee X. E.; Yuen T. Y.; Ferrer-Gago F. J.; Johannes C. W.; Lane D. P.; Sherborne B.; Corona C.; Robers M. B.; Sawyer T. K.; Partridge A. W. NanoClick: A High Throughput, Target-Agnostic Peptide Cell Permeability Assay. ACS Chem. Biol. 2021, 16, 293–309. 10.1021/acschembio.0c00804. PubMed DOI
Parvez S.; Fu Y.; Li J.; Long M. J. C.; Lin H.-Y.; Lee D. K.; Hu G. S.; Aye Y. Substoichiometric Hydroxynonenylation of a Single Protein Recapitulates Whole-Cell-Stimulated Antioxidant Response. J. Am. Chem. Soc. 2015, 137, 10–13. 10.1021/ja5084249. PubMed DOI PMC
Parvez S.; Long M. J. C.; Lin H.-Y.; Zhao Y.; Haegele J. A.; Pham V. N.; Lee D. K.; Aye Y. T-REX on-Demand Redox Targeting in Live Cells. Nat. Protoc. 2016, 11, 2328–2356. 10.1038/nprot.2016.114. PubMed DOI PMC
Fang X.; Fu Y.; Long M. J. C.; Haegele J. A.; Ge E. J.; Parvez S.; Aye Y. Temporally Controlled Targeting of 4-Hydroxynonenal to Specific Proteins in Living Cells. J. Am. Chem. Soc. 2013, 135, 14496–14499. 10.1021/ja405400k. PubMed DOI PMC
Neklesa T. K.; Tae H. S.; Schneekloth A. R.; Stulberg M. J.; Corson T. W.; Sundberg T. B.; Raina K.; Holley S. A.; Crews C. M. Small-Molecule Hydrophobic Tagging-Induced Degradation of HaloTag Fusion Proteins. Nat. Chem. Biol. 2011, 7, 538–543. 10.1038/nchembio.597. PubMed DOI PMC
Buckley D. L.; Raina K.; Darricarrere N.; Hines J.; Gustafson J. L.; Smith I. E.; Miah A. H.; Harling J. D.; Crews C. M. HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins. ACS Chem. Biol. 2015, 10, 1831–1837. 10.1021/acschembio.5b00442. PubMed DOI PMC
Erhart D.; Zimmermann M.; Jacques O.; Wittwer M. B.; Ernst B.; Constable E.; Zvelebil M.; Beaufils F.; Wymann M. P. Chemical Development of Intracellular Protein Heterodimerizers. Chem. Biol. 2013, 20, 549–557. 10.1016/j.chembiol.2013.03.010. PubMed DOI
Gu L.; Li C.; Aach J.; Hill D. E.; Vidal M.; Church G. M. Multiplex Single-Molecule Interaction Profiling of DNA-Barcoded Proteins. Nature 2014, 515, 554–557. 10.1038/nature13761. PubMed DOI PMC
Noblin D. J.; Page C. M.; Tae H. S.; Gareiss P. C.; Schneekloth J. S.; Crews C. M. A HaloTag-Based Small Molecule Microarray Screening Methodology with Increased Sensitivity and Multiplex Capabilities. ACS Chem. Biol. 2012, 7, 2055–2063. 10.1021/cb300453k. PubMed DOI PMC
Yazaki J.; Galli M.; Kim A. Y.; Nito K.; Aleman F.; Chang K. N.; Carvunis A.-R.; Quan R.; Nguyen H.; Song L.; Alvarez J. M.; Huang S.-S. C.; Chen H.; Ramachandran N.; Altmann S.; Gutiérrez R. A.; Hill D. E.; Schroeder J. I.; Chory J.; LaBaer J.; Vidal M.; Braun P.; Ecker J. R. Mapping Transcription Factor Interactome Networks Using HaloTag Protein Arrays. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, E4238–E4247. 10.1073/pnas.1603229113. PubMed DOI PMC
Benink H.; McDougall M.; Klaubert D.; Los G. Direct PH Measurements by Using Subcellular Targeting of 5(and 6-) Carboxyseminaphthorhodafluor in Mammalian Cells. BioTechniques 2009, 47, 769–774. 10.2144/000113220. PubMed DOI
Taguchi R.; Terai T.; Ueno T.; Komatsu T.; Hanaoka K.; Urano Y. A Protein-Coupled Fluorescent Probe for Organelle-Specific Imaging of Na+. Sens. Actuators, B 2018, 265, 575–581. 10.1016/j.snb.2018.03.090. DOI
Li D.; Liu L.; Li W.-H. Genetic Targeting of a Small Fluorescent Zinc Indicator to Cell Surface for Monitoring Zinc Secretion. ACS Chem. Biol. 2015, 10, 1054–1063. 10.1021/cb5007536. PubMed DOI PMC
Popa I.; Berkovich R.; Alegre-Cebollada J.; Badilla C. L.; Rivas-Pardo J. A.; Taniguchi Y.; Kawakami M.; Fernandez J. M. Nanomechanics of HaloTag Tethers. J. Am. Chem. Soc. 2013, 135, 12762–12771. 10.1021/ja4056382. PubMed DOI PMC
Alonso-Caballero A.; Echelman D. J.; Tapia-Rojo R.; Haldar S.; Eckels E. C.; Fernandez J. M. Protein Folding Modulates the Chemical Reactivity of a Gram-Positive Adhesin. Nat. Chem. 2021, 13, 172–181. 10.1038/s41557-020-00586-x. PubMed DOI PMC
Garbujo S.; Galbiati E.; Salvioni L.; Mazzucchelli M.; Frascotti G.; Sun X.; Megahed S.; Feliu N.; Prosperi D.; Parak W. J.; Colombo M. Functionalization of Colloidal Nanoparticles with a Discrete Number of Ligands Based on a “HALO-Bioclick” Reaction. Chem. Commun. 2020, 56, 11398–11401. 10.1039/d0cc04355a. PubMed DOI
Liu D. S.; Phipps W. S.; Loh K. H.; Howarth M.; Ting A. Y. Quantum Dot Targeting with Lipoic Acid Ligase and HaloTag for Single-Molecule Imaging on Living Cells. ACS Nano 2012, 6, 11080–11087. 10.1021/nn304793z. PubMed DOI PMC
Hakariya H.; Takashima I.; Takemoto M.; Noda N.; Sato S.-I.; Uesugi M. Non-Genetic Cell-Surface Modification with a Self-Assembling Molecular Glue. Chem. Commun. 2021, 57, 1470–1473. 10.1039/d0cc07171d. PubMed DOI
Lukinavičius G.; Umezawa K.; Olivier N.; Honigmann A.; Yang G.; Plass T.; Mueller V.; Reymond L.; Corrêa I. R.; Luo Z.-G.; Schultz C.; Lemke E. A.; Heppenstall P.; Eggeling C.; Manley S.; Johnsson K. A Near-Infrared Fluorophore for Live-Cell Super-Resolution Microscopy of Cellular Proteins. Nat. Chem. 2013, 5, 132–139. 10.1038/nchem.1546. PubMed DOI
Clark S. A.; Singh V.; Vega Mendoza D.; Margolin W.; Kool E. T. Light-Up “Channel Dyes” for Haloalkane-Based Protein Labeling in Vitro and in Bacterial Cells. Bioconjugate Chem. 2016, 27, 2839–2843. 10.1021/acs.bioconjchem.6b00613. PubMed DOI PMC
Dockalova V.; Sanchez-Carnerero E. M.; Dunajova Z.; Palao E.; Slanska M.; Buryska T.; Damborsky J.; Klán P.; Prokop Z. Fluorescent Substrates for Haloalkane Dehalogenases: Novel Probes for Mechanistic Studies and Protein Labeling. Comput. Struct. Biotechnol. J. 2020, 18, 922–932. 10.1016/j.csbj.2020.03.029. PubMed DOI PMC
Encell L. P.; Friedman Ohana R.; Zimmerman K.; Otto P.; Vidugiris G.; Wood M. G.; Los G. V.; McDougall M. G.; Zimprich C.; Karassina N.; Learish R. D.; Hurst R.; Hartnett J.; Wheeler S.; Stecha P.; English J.; Zhao K.; Mendez J.; Benink H. A.; Murphy N.; Daniels D. L.; Slater M. R.; Urh M.; Darzins A.; Klaubert D. H.; Bulleit R. F.; Wood K. V. Development of a Dehalogenase-Based Protein Fusion Tag Capable of Rapid, Selective and Covalent Attachment to Customizable Ligands. Curr. Chem. Genomics 2013, 6, 55–71. 10.2174/1875397301206010055. PubMed DOI PMC
Kaushik S.; Prokop Z.; Damborsky J.; Chaloupkova R. Kinetics of Binding of Fluorescent Ligands to Enzymes with Engineered Access Tunnels. FEBS J. 2017, 284, 134–148. 10.1111/febs.13957. PubMed DOI
Kaushik S.; Marques S. M.; Khirsariya P.; Paruch K.; Libichova L.; Brezovsky J.; Prokop Z.; Chaloupkova R.; Damborsky J. Impact of the Access Tunnel Engineering on Catalysis Is Strictly Ligand-Specific. FEBS J. 2018, 285, 1456–1476. 10.1111/febs.14418. PubMed DOI
Vanacek P.; Sebestova E.; Babkova P.; Bidmanova S.; Daniel L.; Dvorak P.; Stepankova V.; Chaloupkova R.; Brezovsky J.; Prokop Z.; Damborsky J. Exploration of Enzyme Diversity by Integrating Bioinformatics with Expression Analysis and Biochemical Characterization. ACS Catal. 2018, 8, 2402–2412. 10.1021/acscatal.7b03523. DOI
Vasina M.; Vanacek P.; Hon J.; Kovar D.; Faldynova H.; Kunka A.; Badenhorst C.; Buryska T.; Mazurenko S.; Bednar D.; Stavros S.; Bornscheuer U.; deMello A.; Damborsky J.; Prokop Z.. Functional Annotation of an Enzyme Family by Integrated Strategy Combining Bioinformatics with Microanalytical and Microfluidic Technologies, 2021, ChemRxiv 10.26434/chemrxiv.13621517.v1. DOI
Nagata Y.; Ohtsubo Y.; Tsuda M. Properties and Biotechnological Applications of Natural and Engineered Haloalkane Dehalogenases. Appl. Microbiol. Biotechnol. 2015, 99, 9865–9881. 10.1007/s00253-015-6954-x. PubMed DOI
Jurcik A.; Bednar D.; Byska J.; Marques S. M.; Furmanova K.; Daniel L.; Kokkonen P.; Brezovsky J.; Strnad O.; Stourac J.; Pavelka A.; Manak M.; Damborsky J.; Kozlikova B. CAVER Analyst 2.0: Analysis and Visualization of Channels and Tunnels in Protein Structures and Molecular Dynamics Trajectories. Bioinformatics 2018, 34, 3586–3588. 10.1093/bioinformatics/bty386. PubMed DOI PMC
Musil M.; Khan R. T.; Beier A.; Stourac J.; Konegger H.; Damborsky J.; Bednar D. FireProtASR: A Web Server for Fully Automated Ancestral Sequence Reconstruction. Brief. Bioinform. 2020, 22, bbaa33710.1093/bib/bbaa337. PubMed DOI PMC
Letunic I.; Bork P. Interactive Tree Of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. 10.1093/nar/gkab301. PubMed DOI PMC
Chovancová E.; Pavelka A.; Benes P.; Strnad O.; Brezovsky J.; Kozlikova B.; Gora A.; Sustr V.; Klvana M.; Medek P.; Biedermannova L.; Sochor J.; Damborsky J. CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures. PLoS Comput. Biol. 2012, 8, e100270810.1371/journal.pcbi.1002708. PubMed DOI PMC
The PyMOL Molecular Graphics System, Version 2.3.2; Schrödinger, LLC, 2019.
Verschueren K. H.; Seljée F.; Rozeboom H. J.; Kalk K. H.; Dijkstra B. W. Crystallographic Analysis of the Catalytic Mechanism of Haloalkane Dehalogenase. Nature 1993, 363, 693–698. 10.1038/363693a0. PubMed DOI
Johnson K. A.; Simpson Z. B.; Blom T. Global Kinetic Explorer: A New Computer Program for Dynamic Simulation and Fitting of Kinetic Data. Anal. Biochem. 2009, 387, 20–29. 10.1016/j.ab.2008.12.024. PubMed DOI
Johnson K. A.; Simpson Z. B.; Blom T. FitSpace Explorer: An Algorithm to Evaluate Multidimensional Parameter Space in Fitting Kinetic Data. Anal. Biochem. 2009, 387, 30–41. 10.1016/j.ab.2008.12.025. PubMed DOI
Kellogg E. H.; Leaver-Fay A.; Baker D. Role of Conformational Sampling in Computing Mutation-Induced Changes in Protein Structure and Stability. Proteins 2011, 79, 830–838. 10.1002/prot.22921. PubMed DOI PMC
Marques S. M.; Bednar D.; Damborsky J. Computational Study of Protein-Ligand Unbinding for Enzyme Engineering. Front. Chem. 2019, 6, 65010.3389/fchem.2018.00650. PubMed DOI PMC
Bruce N. J.; Ganotra G. K.; Kokh D. B.; Sadiq S. K.; Wade R. C. New Approaches for Computing Ligand-Receptor Binding Kinetics. Curr. Opin. Struct. Biol. 2018, 49, 1–10. 10.1016/j.sbi.2017.10.001. PubMed DOI
Stewart J. J. P. Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements. J. Mol. Model. 2007, 13, 1173–1213. 10.1007/s00894-007-0233-4. PubMed DOI PMC
Klvana M.; Pavlova M.; Koudelakova T.; Chaloupkova R.; Dvorak P.; Prokop Z.; Stsiapanava A.; Kuty M.; Kuta-Smatanova I.; Dohnalek J.; Kulhanek P.; Wade R. C.; Damborsky J. Pathways and Mechanisms for Product Release in the Engineered Haloalkane Dehalogenases Explored Using Classical and Random Acceleration Molecular Dynamics Simulations. J. Mol. Biol. 2009, 392, 1339–1356. 10.1016/j.jmb.2009.06.076. PubMed DOI
Brezovsky J.; Babkova P.; Degtjarik O.; Fortova A.; Gora A.; Iermak I.; Rezacova P.; Dvorak P.; Smatanova I. K.; Prokop Z.; Chaloupkova R.; Damborsky J. Engineering a de Novo Transport Tunnel. ACS Catal. 2016, 6, 7597–7610. 10.1021/acscatal.6b02081. DOI
Kokkonen P.; Sykora J.; Prokop Z.; Ghose A.; Bednar D.; Amaro M.; Beerens K.; Bidmanova S.; Slanska M.; Brezovsky J.; Damborsky J.; Hof M. Molecular Gating of an Engineered Enzyme Captured in Real Time. J. Am. Chem. Soc. 2018, 140, 17999–18008. 10.1021/jacs.8b09848. PubMed DOI
Marques S. M.; Dunajova Z.; Prokop Z.; Chaloupkova R.; Brezovsky J.; Damborsky J. Catalytic Cycle of Haloalkane Dehalogenases Toward Unnatural Substrates Explored by Computational Modeling. J. Chem. Inf. Model. 2017, 57, 1970–1989. 10.1021/acs.jcim.7b00070. PubMed DOI
Zhang H.; Yin C.; Jiang Y.; van der Spoel D. Force Field Benchmark of Amino Acids: I. Hydration and Diffusion in Different Water Models. J. Chem. Inf. Model. 2018, 58, 1037–1052. 10.1021/acs.jcim.8b00026. PubMed DOI
Rose P. W.; Bi C.; Bluhm W. F.; Christie C. H.; Dimitropoulos D.; Dutta S.; Green R. K.; Goodsell D. S.; Prlić A.; Quesada M.; Quinn G. B.; Ramos A. G.; Westbrook J. D.; Young J.; Zardecki C.; Berman H. M.; Bourne P. E. The RCSB Protein Data Bank: New Resources for Research and Education. Nucleic Acids Res. 2012, 41, D475–D482. 10.1093/nar/gks1200. PubMed DOI PMC
Song Y.; Tyka M.; Leaver-Fay A.; Thompson J.; Baker D. Structure-Guided Forcefield Optimization. Proteins 2011, 79, 1898–1909. 10.1002/prot.23013. PubMed DOI PMC
O’Meara M. J.; Leaver-Fay A.; Tyka M. D.; Stein A.; Houlihan K.; DiMaio F.; Bradley P.; Kortemme T.; Baker D.; Snoeyink J.; Kuhlman B. Combined Covalent-Electrostatic Model of Hydrogen Bonding Improves Structure Prediction with Rosetta. J. Chem. Theory Comput. 2015, 11, 609–622. 10.1021/ct500864r. PubMed DOI PMC
Hanwell M. D.; Curtis D. E.; Lonie D. C.; Vandermeersch T.; Zurek E.; Hutchison G. R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 1710.1186/1758-2946-4-17. PubMed DOI PMC
Rappe A. K.; Casewit C. J.; Colwell K. S.; Goddard W. A.; Skiff W. M. UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035. 10.1021/ja00051a040. DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.; Nakatsuji H.; Caricato M.; Li X.; Hratchian H. P.; Izmaylov A. F.; Bloino J.; Zheng G.; Sonnenberg J. L.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Montgomery J. A. Jr; Peralta J. E.; Ogliaro F.; Bearpark M.; Heyd J. J.; Brothers E.; Kudin K. N.; Staroverov V. N.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Rega N.; Millam J. M.; Klene M.; Knox J. E.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Martin R. L.; Morokuma K.; Zakrzewski V. G.; Voth G. A.; Salvador P.; Dannenberg J. J.; Dapprich S.; Daniels A. D.; Farkas Ö.; Foresman J. B.; Ortiz J. V.; Cioslowski J.; Fox D. J.. Gaussian 09, revision E.01; Gaussian, Inc.: Wallingford, CT, 2009.
Gordon J. C.; Myers J. B.; Folta T.; Shoja V.; Heath L. S.; Onufriev A. H++: A Server for Estimating PKas and Adding Missing Hydrogens to Macromolecules. Nucleic Acids Res. 2005, 33, W368–W371. 10.1093/nar/gki464. PubMed DOI PMC
Doerr S.; Harvey M. J.; Noé F.; De Fabritiis G. HTMD: High-Throughput Molecular Dynamics for Molecular Discovery. J. Chem. Theory Comput. 2016, 12, 1845–1852. 10.1021/acs.jctc.6b00049. PubMed DOI
Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. 10.1063/1.445869. DOI
Maier J. A.; Martinez C.; Kasavajhala K.; Wickstrom L.; Hauser K. E.; Simmerling C. Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from Ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. 10.1021/acs.jctc.5b00255. PubMed DOI PMC
Hur S.; Kahn K.; Bruice T. C. Comparison of Formation of Reactive Conformers for the SN2 Displacements by CH3CO– in Water and by Asp124-CO– in a Haloalkane Dehalogenase. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 2215–2219. 10.1073/pnas.242721799. PubMed DOI PMC
Walker R. C.; Crowley M. F.; Case D. A. The Implementation of a Fast and Accurate QM/MM Potential Method in Amber. J. Comput. Chem. 2008, 29, 1019–1031. 10.1002/jcc.20857. PubMed DOI
Case D. A.; Betz R. M.; Cerutti D. S.; Cheatham T. E. III; Darden T. A.; Duke R. E.; Giese T. J.; Gohlke H.; Goetz A. W.; Homeyer N.; Izadi S.; Janowski P.; Kaus J.; Kovalenko A.; Lee T. S.; LeGrand S.; Li P.; Lin C.; Luchko T.; Luo R.; Madej B.; Mermelstein D.; Merz K. M.; Monard G.; Nguyen H.; Nguyen H. T.; Omelyan I.; Onufriev A.; Roe D. R.; Roitberg A.; Sagui C.; Simmerling C. L.; Botello-Smith W. M.; Swails J.; Walker R. C.; Wang J.; Wolf R. M.; Wu X.; Xiao L.; Kollman P. A.. AMBER 16; University of California: San Francisco, 2016.