Every coin has a back side: invasion by Limnohabitans planktonicus promotes the maintenance of species diversity in bacterial communities
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23251582
PubMed Central
PMC3520937
DOI
10.1371/journal.pone.0051576
PII: PONE-D-12-19966
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- Comamonadaceae růst a vývoj MeSH
- druhová specificita MeSH
- metagenom * MeSH
- zavlečené druhy * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
One of the earliest challenges for ecologists has been to study the impact of invasive species on microbial communities. Although bacteria are fundamental in biological processes, current knowledge on invasion effects by aquatic non-pathogenic bacteria is still limited. Using pure cultures of diverse planktonic bacteria as model organisms at two different carbon concentration levels, we tested the response of an assembled community to the invasion by Limnohabitans planktonicus, an opportunistic bacterium, successful in freshwaters. The invader, introduced at the early stationary growth phase of the resident community, caused a strong decrement of the abundance of the dominant species. This was due to competition for nutrients and a potential allelopathic interaction. Simultaneously, resident species formerly unable to successfully compete within the community, thus potentially exposed to competitive exclusion, increased their abundances. The overall result of the invasion was preservation of species diversity, the higher the lower was the substrate content available. Our study provides new insights into bacterial invasions, offering an alternative interpretation of invasions for community ecology.
Zobrazit více v PubMed
Litchman E (2010) Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecol Lett 13: 1560–1572. PubMed
van der Putten WH, Klironomos JN, Wardle DA (2007) Microbial ecology of biological invasions. ISME J 1: 28–37. PubMed
Randolph SE, Rogers DJ (2010) The arrival, establishment and spread of exotic diseases: patterns and predictions. Nat Rev Microbiol 8: 361–371. PubMed
Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, et al. (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1: 3–19.
Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, et al. (2006) Biotic interactions and plant invasions. Ecol Lett 9: 726–740. PubMed
Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69: 373–386.
Wonham MJ, O’Connor M, Harley CDG (2005) Positive effects of a dominant invader on introduced and native mudflat species. Mar Ecol Prog Ser 289: 109–116.
Gutierrez JL, Jones CG, Strayer DL, Iribarne OO (2003) Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101: 79–90.
Venail PA, MacLean RC, Bouvier T, Brockhurst MA, Hochberg ME, et al. (2008) Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities. Nature 452: 210–214. PubMed
Lindström ES, Östman Ö (2011) The Importance of Dispersal for Bacterial Community Composition and Functioning. PLoS ONE 6: e25883. PubMed PMC
Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18: 119–125.
Crooks JA (2002) Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97: 153–166.
Castilla JC, Lagos NA, Cerda M (2004) Marine ecosystem engineering by the alien ascidian Pyura praeputialis on a mid-intertidal rocky shore. Mar Ecol Prog Ser 268: 119–130.
Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A Guide to the Natural History of Freshwater Lake Bacteria. Microbiol Mol Biol Rev 75: 14–49. PubMed PMC
Kasalický V, Jezbera J, Šimek K, Hahn MW (2010) Limnohabitans planktonicus sp. nov. and Limnohabitans parvus sp. nov., planktonic betaproteobacteria isolated from a freshwater reservoir, and emended description of the genus Limnohabitans . Int J Syst Evol Microbiol 60: 2710–2714. PubMed PMC
Green JL, Bohannan BJM, Whitaker RJ (2008) Microbial biogeography: From taxonomy to traits. Science 320: 1039–1043. PubMed
Šimek K, Kasalický V, Jezbera J, Jezberová J, Hejzlar J, et al. (2010) Broad Habitat Range of the Phylogenetically Narrow R-BT065 Cluster, Representing a Core Group of the Betaproteobacterial Genus Limnohabitans . Appl Environ Microbiol 76: 631–639. PubMed PMC
Horňák K, Jezbera J, Nedoma J, Gasol JM, Šimek K (2006) Effects of resource availability and bacterivory on leucine incorporation in different groups of freshwater bacterioplankton, assessed using microautoradiography. Aquat Microb Ecol 45: 277–289.
Šimek K, Horňák K, Jezbera J, Nedoma J, Vrba J, et al. (2006) Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environ Microbiol 8: 1613–1624. PubMed
Šimek K, Horňák K, Jezbera J, Mašín M, Nedoma J, et al. (2005) Influence of top-down and bottom-up manipulations on the R-BT065 subcluster of beta-proteobacteria, an abundant group in bacterioplankton of a freshwater reservoir. Appl Environ Microbiol 71: 2381–2390. PubMed PMC
Jezbera J, Horňák K, Šimek K (2006) Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients. Environ Microbiol 8: 1330–1339. PubMed
Hahn MW, Kasalický V, Jezbera J, Brandt U, Šimek K (2010) Limnohabitans australis sp. nov., isolated from a freshwater pond, and emended description of the genus Limnohabitans . Int J Syst Evol Microbiol 60: 2946–2950. PubMed PMC
Hervàs A, Camarero L, Reche I, Casamayor EO (2009) Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environ Microbiol 11: 1612–1623. PubMed
Rippey SR, Cabelli VJ (1980) Occurence of Aeromonas hydrophila in limnetic environments - Relationship of the organism to trophic state. Microb Ecol 6: 45–54. PubMed
Jagmann N, Brachvogel H-P, Philipp B (2010) Parasitic growth of Pseudomonas aeruginosa in co-culture with the chitinolytic bacterium Aeromonas hydrophila . Environ Microbiol 12: 1787–1802. PubMed
Zeder M, Peter S, Shabarova T, Pernthaler J (2009) A small population of planktonic Flavobacteria with disproportionally high growth during the spring phytoplankton bloom in a prealpine lake. Environ Microbiol 11: 2676–2686. PubMed
Eckert EM, Salcher MM, Posch T, Eugster B, Pernthaler J (2012) Rapid successions affect microbial N-acetyl-glucosamine uptake patterns during a lacustrine spring phytoplankton bloom. Environ Microbiol 14: 794–806. PubMed
Pedros-Alio C (2007) Dipping into the rare biosphere. Science 315: 192–193. PubMed
Zotina T, Koster O, Jüttner F (2003) Photoheterotrophy and light-dependent uptake of organic and organic nitrogenous compounds by Planktothrix rubescens under low irradiance. Freshwat Biol 48: 1859–1872.
Glöckner FO, Babenzien H-D, Amann R (1998) Phylogeny and identification in situ of Nevskia ramosa . Appl Environ Microbiol 64: 1895–1901. PubMed PMC
Manz W, Amann R, Ludwig W, Wagner M, Schleifer K-H (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: Problems and solutions. Syst Appl Microbiol 15: 593–600.
Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer K-H (1996) Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga-Flavobacter-Bacteroides in the natural environment. Microbiology 142: 1097–1106. PubMed
Roller C, Wagner M, Amann R, Ludwig W, Schleifer K-H (1994) In situ probing of Gram-positive bacteria with high DNA G+C content using 23S rRNA-targeted oligonucleotides. Microbiology 140: 2849–2858. PubMed
Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, et al. (2003) An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol 69: 2928–2935. PubMed PMC
Grosholz E (2002) Ecological and evolutionary consequences of coastal invasions. Trends Ecol Evol 17: 22–27.
Davies KF (2011) Community invasibility: spatial heterogeneity, spatial scale, and productivity. In: Harrison SP, Rajakaruna N, editors. Serpentine: The Evolution and Ecology of a Model System. Berkeley: University of California Press. 237–248.
Kratz TK, Frost TM, Magnuson JJ (1987) Inferences from spatial and temporal variability in ecosystems - Long-term zooplankton data from lakes. Am Nat 129: 830–846.
Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A, et al. (2004) Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol 19: 189–197. PubMed
Corno G, Jürgens K (2008) Structural and functional patterns of bacterial communities in response to protist predation along an experimental productivity gradient. Environ Microbiol 10: 2857–2871. PubMed
Corno G, Caravati E, Callieri C, Bertoni R (2008) Effects of predation pressure on bacterial abundance, diversity, and size-structure distribution in an oligotrophic system. J Limnol 67: 107–119.
Hamilton WD, May RM (1977) Dispersal in stable habitats. Nature 269: 578–581.
Šimek K, Kasalický V, Horňák K, Hahn MW, Weinbauer MG (2010) Assessing Niche Separation among Coexisting Limnohabitans Strains through Interactions with a Competitor, Viruses, and a Bacterivore. Appl Environ Microbiol 76: 1406–1416. PubMed PMC
Blom JF, Horňák K, Šimek K, Pernthaler J (2010) Aggregate formation in a freshwater bacterial strain induced by growth state and conspecific chemical cues. Environ Microbiol 12: 2486–2495. PubMed
Jousset A, Schulz W, Scheu S, Eisenhauer N (2011) Intraspecific genotypic richness and relatedness predict the invasibility of microbial communities. ISME J 5: 1108–1114. PubMed PMC
Levine JM, Vila M, Antonio CMD, Dukes JS, Grigulis K, et al. (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc Lond, Ser B: Biol Sci 270: 775–781. PubMed PMC
Hutchinson GE (1967) A treatise on limnology. New York: John Wiley & Sons.
Loreau M, Mouquet N (1999) Immigration and the maintenance of local species diversity. Am Nat 154: 427–440. PubMed
Hodgson DJ, Rainey PB, Buckling A (2002) Mechanisms linking diversity, productivity and invasibility in experimental bacterial communities. Proc R Soc Lond, Ser B: Biol Sci 269: 2277–2283. PubMed PMC
Kneitel JM, Miller TE (2003) Dispersal rates affect species composition in metacommunities of Sarracenia purpurea Inquilines. Am Nat 162: 165–171. PubMed