Hydrogen disorder in kaatialaite Fe[AsO2(OH)2]5H2O from Jáchymov, Czech Republic: determination from low-temperature 3D electron diffraction
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33520247
PubMed Central
PMC7793002
DOI
10.1107/s2052252520015626
PII: S2052252520015626
Knihovny.cz E-zdroje
- Klíčová slova
- 3D electron diffraction, disorder, ferric arsenate, hydrogen bonds, kaatialaite,
- Publikační typ
- časopisecké články MeSH
Kaatialaite mineral Fe[AsO2(OH)2]5H2O from Jáchymov, Czech Republic forms white aggregates of needle-shaped crystals with micrometric size. Its structure at ambient temperature has already been reported but hydrogen atoms could not be identified from single-crystal X-ray diffraction. An analysis using 3D electron diffraction at low temperature brings to light the hydrogen positions and the existence of hydrogen disorder. At 100 K, kaatialaite is described in a monoclinic unit cell of a = 15.46, b = 19.996, c = 4.808 Å, β = 91.64° and V = 1485.64 Å3 with space group P21/n. The hydrogen sites were revealed after refinements both considering the dynamical effects and ignoring them. The possibility to access most of the hydrogen positions, including partially occupied ones among heavy atoms, from the kinematical refinement is due to the recent developments in the analysis of 3D electron data. The hydrogen bonding observed in kaatialaite provides examples of H2O configurations that have not been observed before in the structures of oxysalts with the presence of unusual inverse transformer H2O groups.
Zobrazit více v PubMed
Boudjada, A. & Guitel, J. C. (1981). Acta Cryst. B37, 1402–1405.
Brázda, P., Palatinus, L. & Babor, M. (2019). Science, 364, 667–669. PubMed
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Hamilton: Oxford University Press.
Brown, I. D. (2009). Chem. Rev. 109, 6858–6919. PubMed PMC
Cichocka, M. O., Ångström, J., Wang, B., Zou, X. & Smeets, S. (2018). J. Appl. Cryst. 51, 1652–1661. PubMed PMC
Clabbers, M. T. B., Gruene, T., Parkhurst, J. M., Abrahams, J. P. & Waterman, D. G. (2018). Acta Cryst. D74, 506–518. PubMed PMC
Clabbers, M. T. B., Gruene, T., van Genderen, E. & Abrahams, J. P. (2019). Acta Cryst. A75, 82–93. PubMed PMC
Conroy, M., Soltis, J. A., Wittman, R. S., Smith, F. N., Chatterjee, S., Zhang, X., Ilton, E. S. & Buck, E. C. (2017). Sci. Rep. 7, 1–10. PubMed PMC
Dorset, D. L. (1995). Structural Electron Crystallography. Boston, Massachusetts: Springer US.
Egerton, R. F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. Boston, Massachusetts: Springer US.
Filippi, M. (2004). Sci. Total Environ. 322, 271–282. PubMed
Gemmi, M. & Lanza, A. E. (2019). Acta Cryst. B75, 495–504. PubMed
Gemmi, M., La Placa, M. G. I., Galanis, A. S., Rauch, E. F. & Nicolopoulos, S. (2015). J. Appl. Cryst. 48, 718–727.
Gemmi, M., Mugnaioli, E., Gorelik, T., Kolb, U., Palatinus, L., Boullay, P., Hovmöller, S. & Abrahams, J. (2019). ACS Cent. Sci. 5, 1315–1329. PubMed PMC
Hawthorne, F. C. (1992). Z. Krist. 201, 183–206.
Hawthorne, F. C. & Schindler, M. (2008). Z. Krist. 223, 41–68.
Hawthorne, F. C. & Sokolova, E. (2012). Z. Krist. 227, 594–603.
Jansen, J., Tang, D., Zandbergen, H. W. & Schenk, H. (1998). Acta Cryst. A54, 91–101.
Kolb, U., Gorelik, T., Kübel, C., Otten, M. T. & Hubert, D. (2007). Ultramicroscopy, 107, 507–513. PubMed
Latychevskaia, T. & Abrahams, J. P. (2019). Acta Cryst. B75, 523–531. PubMed PMC
Majzlan, J., Drahota, P. & Filippi, M. (2014). Rev. Mineral. Geochem. 79, 17–184.
Majzlan, J., Plášil, J., Škoda, R., Gescher, J., Kögler, F., Rusznyak, A., Küsel, K., Neu, T. R., Mangold, S. & Rothe, J. (2014). Environ. Sci. Technol. 48, 13685–13693. PubMed
Mugnaioli, E., Gorelik, T. & Kolb, U. (2009). Ultramicroscopy, 109, 758–765. PubMed
Nannenga, B. L., Shi, D., Leslie, A. G. W. & Gonen, T. (2014). Nat. Methods, 11, 927–930. PubMed PMC
Palatinus, L. (2013). Acta Cryst. B69, 1–16. PubMed
Palatinus, L., Brázda, P., Boullay, P., Perez, O., Klementová, M., Petit, S., Eigner, V., Zaarour, M. & Mintova, S. (2017). Science, 355, 166–169. PubMed
Palatinus, L., Brázda, P., Jelínek, M., Hrdá, J., Steciuk, G. & Klementová, M. (2019). Acta Cryst. B75, 512–522. PubMed
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
Palatinus, L., Corrêa, C. A., Steciuk, G., Jacob, D., Roussel, P., Boullay, P., Klementová, M., Gemmi, M., Kopeček, J., Domeneghetti, M. C., Cámara, F. & Petříček, V. (2015). Acta Cryst. B71, 740–751. PubMed
Palatinus, L., Petříček, V. & Corrêa, C. A. (2015). Acta Cryst. A71, 235–244. PubMed
Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Krist. 229, 345–352.
Raade, G., Mladeck, M. H., Kristiansen, R. & Din, V. K. (1984). Am. Mineral. 69, 383–387.
Schindler, M. & Hawthorne, F. C. (2008). Can. Mineral. 46, 467–501.
Shi, D., Nannenga, B. L., Iadanza, M. G. & Gonen, T. (2013). eLife, 2, e01345. PubMed PMC
Steciuk, G., Ghazisaeed, S., Kiefer, B. & Plášil, J. (2019). RSC Adv. 9, 19657–19661. PubMed PMC
Vainshtein, B. K. (1964). Structure Analysis by Electron Diffraction, edited by E. Feigl & J. A. Spink, 1st ed. Oxford: Pergamon.
Vincent, R. & Midgley, P. A. (1994). Ultramicroscopy, 53, 271–282.
Winkler, B. (1996). Phys. Chem. Miner. 23, 310–318.