Crystal structure of vyacheslavite, U(PO4)(OH), solved from natural nanocrystal: a precession electron diffraction tomography (PEDT) study and DFT calculations

. 2019 Jun 19 ; 9 (34) : 19657-19661. [epub] 20190624

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35519355

The crystal structure of the U(iv)-phosphate mineral vyacheslavite has been solved from precession electron diffraction tomography (PEDT) data from the natural nano-crystal and further refined using density-functional theory (DFT) calculations. Vyacheslavite is orthorhombic, with the space group Cmca, with a ≈ 6.96 Å, b ≈ 9.07 Å and c ≈ 12.27 Å, V ≈ 775 Å3 (obtained from PEDT data at 100 K), Z = 8. Its structure is a complex heteropolyhedral framework consisting of sheets of UO7(OH) and PO4 polyhedra, running parallel to (001), interconnected by additional PO4 polyhedra. There is an (OH) group associated with the U(iv) polyhedron. The question of H2O presence within the small cavities of the framework has been addressed by the DFT calculations, which have proved that vyacheslavite does not contain any significant amount of H2O at room temperature.

Zobrazit více v PubMed

Melkov V. G. Belova L. N. Gorshkov A. I. Ivanova O. A. Sivtsov A. V. Voronikhin V. A. Mineral. Zh. 1983;5:82.

Belova L. N. Gorshkov A. I. Ivanova O. A. Sivtsov A. V. Lizorkina L. I. Voronikhin V. A. Zap. Ross. Mineral. O-va. 1984;113:360.

Krivovichev S. V. and Plášil J., in Uranium: from Cradle to Grave, ed. P. C. Burns and G. E. Sigmon, MAC Short Course, 2013, vol. 43, pp. 15–119

Doynikova O. A. Geol. Ore Deposits. 2007;49:80. doi: 10.1134/S1075701507010047. DOI

Palatinus L., PETS: program for analysis of electron diffraction data, Institute of Physics of the ASCR, Prague, Czechia, 2011

Petříček V. Dušek M. Palatinus L. Z. Kristallogr. 2014;229:345.

Albering J. H. Jeitschko W. Z. Kristallogr. 1995;210:878.

Benard P. Louer D. Dacheux N. Brandel V. Genet M. An. Quim. Int. Ed. 1996;92:79.

Dacheux N. Clavier N. Wallez G. Quarton M. Solid State Sci. 2007;9:619. doi: 10.1016/j.solidstatesciences.2007.04.015. DOI

Palatinus L. Chapuis G. J. Appl. Crystallogr. 2007;40:786. doi: 10.1107/S0021889807029238. DOI

Palatinus L. Brázda P. Boullay P. Perez O. Klementová M. Petit S. Eigner V. Zaarour M. Mintová S. Science. 2017;355:166. doi: 10.1126/science.aak9652. PubMed DOI

Palatinus L. Petříček V. Corrêa C. A. Acta Crystallogr., Sect. A: Found. Adv. 2015;71:235. doi: 10.1107/S2053273315001266. PubMed DOI

Palatinus L. Corrêa C. A. Steciuk G. Jacob D. Roussel P. Boullay P. Klementová M. Gemmi M. Kopeček J. Domeneghetti M. C. Cámara F. Petříček V. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2015;71:740. doi: 10.1107/S2052520615017023. PubMed DOI

Gruene T. Wennmacher J. T. C. Zaubitzer C. Holstein J. J. Heidler J. Fecteau-Lefebvre A. De Carlo S. Müller E. Goldie K. N. Regeni I. Li T. Santiso-Quinones G. Steinfeld G. Handschin S. van Genderen E. van Bokhoven J. A. Clever G. H. Pantelic R. Angew. Chem., Int. Ed. 2018;57:16313. doi: 10.1002/anie.201811318. PubMed DOI PMC

Hohenberg P. Kohn W. Phys. Rev. 1964;136:864. doi: 10.1103/PhysRev.136.B864. DOI

Kohn W. Sham L. J. Phys. Rev. 1965;137:1697. doi: 10.1103/PhysRev.137.A1697. DOI

Kresse G. Furthmüller J. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:11169. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Blöchl P. E. Phys. Rev. B: Condens. Matter Mater. Phys. 1994;50:17953. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Kresse G. Joubert D. Phys. Rev. B: Condens. Matter Mater. Phys. 1999;59:1758. doi: 10.1103/PhysRevB.59.1758. DOI

Crowhurst J. C. Jeffries J. R. Åberg D. Zaug J. M. Dai Z. R. Siekhaus W. J. Teslich N. E. Holliday K. S. Knight K. B. Nelson A. J. Hutcheon I. D. J. Phys.: Condens. Matter. 2015;27:265401. doi: 10.1088/0953-8984/27/26/265401. PubMed DOI

Dudarev S. L. Botton G. A. Savrasov S. Y. Humphreys C. J. Sutton A. P. Phys. Rev. B: Condens. Matter Mater. Phys. 1998;57:1505. doi: 10.1103/PhysRevB.57.1505. DOI

Klimeš J. Bowler D. R. Michaelides A. J. Phys.: Condens. Matter. 2010;22:022201. doi: 10.1088/0953-8984/22/2/022201. PubMed DOI

Ghazisaeed S. Majzlan J. Plášil J. Kiefer B. J. Appl. Crystallogr. 2018;51:1116. doi: 10.1107/S1600576718008567. DOI

Ghazisaeed S. Kiefer B. Plášil J. RSC Adv. 2019;9:10058. doi: 10.1039/C8RA09557D. PubMed DOI PMC

Plášil J. Majzlan J. Wierzbicka-Wieczorek M. Kiefer B. Mineral. Mag. 2015;79:1159. doi: 10.1180/minmag.2015.079.5.10. DOI

Brandel V. Dacheux N. J. Solid State Chem. 2004;177:4755. doi: 10.1016/j.jssc.2004.08.008. DOI

Plášil J. Fejfarová K. Novák M. Dušek M. Škoda R. Hloušek J. Čejka J. Majzlan J. Sejkora J. Machovič V. Talla D. Mineral. Mag. 2011;75:2739. doi: 10.1180/minmag.2011.075.6.2739. DOI

Melkov V. G. Belova L. N. Gorshkov A. I. Ivanova O. A. Sivtsov A. V. Boronikhin V. A. Mineral. Zh. 1983;5:82.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...