Crystal structure of vyacheslavite, U(PO4)(OH), solved from natural nanocrystal: a precession electron diffraction tomography (PEDT) study and DFT calculations
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35519355
PubMed Central
PMC9065332
DOI
10.1039/c9ra03694f
PII: c9ra03694f
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The crystal structure of the U(iv)-phosphate mineral vyacheslavite has been solved from precession electron diffraction tomography (PEDT) data from the natural nano-crystal and further refined using density-functional theory (DFT) calculations. Vyacheslavite is orthorhombic, with the space group Cmca, with a ≈ 6.96 Å, b ≈ 9.07 Å and c ≈ 12.27 Å, V ≈ 775 Å3 (obtained from PEDT data at 100 K), Z = 8. Its structure is a complex heteropolyhedral framework consisting of sheets of UO7(OH) and PO4 polyhedra, running parallel to (001), interconnected by additional PO4 polyhedra. There is an (OH) group associated with the U(iv) polyhedron. The question of H2O presence within the small cavities of the framework has been addressed by the DFT calculations, which have proved that vyacheslavite does not contain any significant amount of H2O at room temperature.
Zobrazit více v PubMed
Melkov V. G. Belova L. N. Gorshkov A. I. Ivanova O. A. Sivtsov A. V. Voronikhin V. A. Mineral. Zh. 1983;5:82.
Belova L. N. Gorshkov A. I. Ivanova O. A. Sivtsov A. V. Lizorkina L. I. Voronikhin V. A. Zap. Ross. Mineral. O-va. 1984;113:360.
Krivovichev S. V. and Plášil J., in Uranium: from Cradle to Grave, ed. P. C. Burns and G. E. Sigmon, MAC Short Course, 2013, vol. 43, pp. 15–119
Doynikova O. A. Geol. Ore Deposits. 2007;49:80. doi: 10.1134/S1075701507010047. DOI
Palatinus L., PETS: program for analysis of electron diffraction data, Institute of Physics of the ASCR, Prague, Czechia, 2011
Petříček V. Dušek M. Palatinus L. Z. Kristallogr. 2014;229:345.
Albering J. H. Jeitschko W. Z. Kristallogr. 1995;210:878.
Benard P. Louer D. Dacheux N. Brandel V. Genet M. An. Quim. Int. Ed. 1996;92:79.
Dacheux N. Clavier N. Wallez G. Quarton M. Solid State Sci. 2007;9:619. doi: 10.1016/j.solidstatesciences.2007.04.015. DOI
Palatinus L. Chapuis G. J. Appl. Crystallogr. 2007;40:786. doi: 10.1107/S0021889807029238. DOI
Palatinus L. Brázda P. Boullay P. Perez O. Klementová M. Petit S. Eigner V. Zaarour M. Mintová S. Science. 2017;355:166. doi: 10.1126/science.aak9652. PubMed DOI
Palatinus L. Petříček V. Corrêa C. A. Acta Crystallogr., Sect. A: Found. Adv. 2015;71:235. doi: 10.1107/S2053273315001266. PubMed DOI
Palatinus L. Corrêa C. A. Steciuk G. Jacob D. Roussel P. Boullay P. Klementová M. Gemmi M. Kopeček J. Domeneghetti M. C. Cámara F. Petříček V. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2015;71:740. doi: 10.1107/S2052520615017023. PubMed DOI
Gruene T. Wennmacher J. T. C. Zaubitzer C. Holstein J. J. Heidler J. Fecteau-Lefebvre A. De Carlo S. Müller E. Goldie K. N. Regeni I. Li T. Santiso-Quinones G. Steinfeld G. Handschin S. van Genderen E. van Bokhoven J. A. Clever G. H. Pantelic R. Angew. Chem., Int. Ed. 2018;57:16313. doi: 10.1002/anie.201811318. PubMed DOI PMC
Hohenberg P. Kohn W. Phys. Rev. 1964;136:864. doi: 10.1103/PhysRev.136.B864. DOI
Kohn W. Sham L. J. Phys. Rev. 1965;137:1697. doi: 10.1103/PhysRev.137.A1697. DOI
Kresse G. Furthmüller J. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:11169. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Blöchl P. E. Phys. Rev. B: Condens. Matter Mater. Phys. 1994;50:17953. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G. Joubert D. Phys. Rev. B: Condens. Matter Mater. Phys. 1999;59:1758. doi: 10.1103/PhysRevB.59.1758. DOI
Crowhurst J. C. Jeffries J. R. Åberg D. Zaug J. M. Dai Z. R. Siekhaus W. J. Teslich N. E. Holliday K. S. Knight K. B. Nelson A. J. Hutcheon I. D. J. Phys.: Condens. Matter. 2015;27:265401. doi: 10.1088/0953-8984/27/26/265401. PubMed DOI
Dudarev S. L. Botton G. A. Savrasov S. Y. Humphreys C. J. Sutton A. P. Phys. Rev. B: Condens. Matter Mater. Phys. 1998;57:1505. doi: 10.1103/PhysRevB.57.1505. DOI
Klimeš J. Bowler D. R. Michaelides A. J. Phys.: Condens. Matter. 2010;22:022201. doi: 10.1088/0953-8984/22/2/022201. PubMed DOI
Ghazisaeed S. Majzlan J. Plášil J. Kiefer B. J. Appl. Crystallogr. 2018;51:1116. doi: 10.1107/S1600576718008567. DOI
Ghazisaeed S. Kiefer B. Plášil J. RSC Adv. 2019;9:10058. doi: 10.1039/C8RA09557D. PubMed DOI PMC
Plášil J. Majzlan J. Wierzbicka-Wieczorek M. Kiefer B. Mineral. Mag. 2015;79:1159. doi: 10.1180/minmag.2015.079.5.10. DOI
Brandel V. Dacheux N. J. Solid State Chem. 2004;177:4755. doi: 10.1016/j.jssc.2004.08.008. DOI
Plášil J. Fejfarová K. Novák M. Dušek M. Škoda R. Hloušek J. Čejka J. Majzlan J. Sejkora J. Machovič V. Talla D. Mineral. Mag. 2011;75:2739. doi: 10.1180/minmag.2011.075.6.2739. DOI
Melkov V. G. Belova L. N. Gorshkov A. I. Ivanova O. A. Sivtsov A. V. Boronikhin V. A. Mineral. Zh. 1983;5:82.