Hydrogen bonding in the crystal structure of phurcalite, Ca2[(UO2)3O2(PO4)2]·7H2O: single-crystal X-ray study and TORQUE calculations
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
20-11949S
This research was supported by the Czech Science Foundation (GACR 20-11949S)
PubMed
32831267
PubMed Central
PMC7278090
DOI
10.1107/s2052520620005739
PII: S2052520620005739
Knihovny.cz E-zdroje
- Klíčová slova
- TORQUE method, crystal structure, hydrogen bonding, phurcalite, uranyl phosphate,
- Publikační typ
- časopisecké články MeSH
The crystal structure of phurcalite, Ca2[(UO2)3O2(PO4)2]·7H2O, orthorhombic, a = 17.3785 (9) Å, b = 15.9864 (8) Å, c = 13.5477 (10) Å, V = 3763.8 (4) Å3, space group Pbca, Z = 8 has been refined from single-crystal XRD data to R = 0.042 for 3182 unique [I > 3σ(I)] reflections and the hydrogen-bonding scheme has been refined by theoretical calculations based on the TORQUE method. The phurcalite structure is layered, with uranyl phosphate sheets of the phosphuranylite topology which are linked by extensive hydrogen bonds across the interlayer occupied by Ca2+ cations and H2O groups. In contrast to previous studies the approach here reveals five transformer H2O groups (compared to three expected by a previous study) and two non-transformer H2O groups. One of the transformer H2O groups is, nevertheless, not linked to any metal cation, which is a less frequent type of H2O bonding in solid state compounds and minerals. The structural formula of phurcalite has been therefore redefined as {Ca2(H2[3]O)5(H2[4]O)2}[(UO2)3O2(PO4)2], Z = 8.
Department of Physics New Mexico State University Las Cruces New Mexico NM 88003 USA
Institute of Physics ASCR v v i Na Slovance 2 Praha 8 18221 Czech Republic
Section Minéralogie Musée d'Histoire Naturelle Rue Münster 25 Luxembourg 2160 Luxembourg
Zobrazit více v PubMed
Astilleros, J. M., Pinto, A. J., Gonçalves, M. A., Sánchez-Pastor, N. & Fernández-Díaz, L. (2013). Environ. Sci. Technol. 47, 2636–2644. PubMed
Atencio, D., Neumann, R., Silva, A. J. G. C. & Mascarenhas, Y. P. (1991). Am. Mineral. 29, 95–105.
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, p. 278. Oxford University Press.
Brown, I. D. (2009). Chem. Rev. 109, 6858–6919. PubMed PMC
Buck, E. C., Brown, N. R. & Dietz, N. L. (1996). Environ. Sci. Technol. 30, 81–88.
Burns, P. C. (2005). Can. Mineral. 43, 1839–1894.
Cantrell, K. J., Deutsch, W. J. & Lindberg, M. J. (2011). Environ. Sci. Technol. 45, 1473–1480. PubMed
Catalano, J. G., McKinley, J. P., Zachara, J. M., Heald, S. M., Smith, S. C. & Brown, G. E. Jr (2006). Environ. Sci. Technol. 40, 2517–2524. PubMed
Colmenero, F., Bonales, L., Cobos, J. & Timón, V. (2017). J. Phys. Chem. C, 121, 5994–6001.
Colmenero, F., Bonales, L. J., Cobos, J. & Timón, V. (2018a). J. Solid State Chem. 253, 249–257.
Colmenero, F., Cobos, J. & Timón, V. (2018b). Inorg. Chem. 57, 4470–4481. PubMed
Colmenero, F., Fernández, A. M., Timón, V. & Cobos, J. (2018c). RSC Adv. 8, 24599–24616. PubMed PMC
Colmenero, F., Plášil, J., Cobos, J., Sejkora, J., Timón, V., Čejka, J. & Bonales, L. J. (2019a). RSC Adv. 9, 15323–15334. PubMed PMC
Colmenero, F., Plášil, J., Cobos, J., Sejkora, J., Timón, V., Čejka, J., Fernández, A. M. & Petříček, V. (2019c). RSC Adv. 9, 40708–40726. PubMed PMC
Colmenero, F., Plášil, J. & Sejkora, J. (2019b). Dalton Trans. 48, 16722–16736. PubMed
Dal Bo, F., Hatert, F. & Philippo, S. (2017). J. Geosci. pp. 87–95.
Demartin, F., Diella, V., Donzelli, S., Gramaccioli, C. M. & Pilati, T. (1991). Acta Cryst. B47, 439–446.
Finch, R. J. & Murakami, T. (1999). Rev. Mineral. Geochem. 38, 91–179.
Fuller, C. C., Bargar, J. R., Davis, J. A. & Piana, M. J. (2002). Environ. Sci. Technol. 36, 158–165. PubMed
Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578. PubMed PMC
Ghazisaeed, S., Kiefer, B. & Plášil, J. (2019). RSC Adv. 9, 10058–10063. PubMed PMC
Ghazisaeed, S., Majzlan, J., Plášil, J. & Kiefer, B. (2018). J. Appl. Cryst. 51, 1116–1124.
Ghazisaeed, S., Minuddin, M., Nakotte, H. & Kiefer, B. (2020). J. Appl. Cryst. 53, 117–126.
Göb, S., Guhring, J. E., Bau, M. & Markl, G. (2013). Am. Mineral. 98, 530–548.
Hawthorne, F. C. (2012). Phys. Chem. Miner. 39, 841–874.
Hawthorne, F. C. (2015). Am. Mineral. 100, 696–713.
Ilton, E. S., Zachara, J. M., Moore, D. A., McKinley, J. P., Eckberg, A. D., Cahill, C. L. & Felmy, A. R. (2010). Environ. Sci. Technol. 44, 7521–7526. PubMed
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. (1983). J. Chem. Phys. 79, 926–935.
Krivovichev, S. V. & Burns, P. C. (2007). In Structural Chemistry of Inorganic Actinide Compounds, edited by S. V. Krivovichev, P. C. Burns and I. G. Tananaev, pp. 95–182. Amsterdam: Elsevier.
Krivovichev, S. V. & Plášil, J. (2013). Mineralogy and crystallography of uranium In Uranium, from cradle to grave. MAC Short Course series, Vol. 43, edited by P. C. Burns & G. E. Sigmon, pp. 15–199. Mineralogical Association of Canada.
Lussier, A. J., Lopez, R. A. K. & Burns, P. C. (2016). Can. Mineral. 54, 177–283.
Maher, K., Bargar, J. R. & Brown, G. E. Jr (2013). Inorg. Chem. 52, 3510–3532. PubMed
Mills, S. J., Birch, W. D., Kolitsch, U., Mumme, W. G. & Grey, I. E. (2008). Am. Mineral. 93, 691–697.
Murakami, T., Ohnuki, T., Isobe, H. & Sato, T. (1997). Am. Mineral. 82, 888–889.
Pekov, I. V., Levitskiy, V. V., Krivovichev, S. V., Zolotarev, A. A., Bryzgalov, I. A., Zadov, A. E. & Chukanov, N. V. (2012). Eur. J. Mineral. 24, 913–922.
Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.
Piret, P. & Declercq, J.-P. (1983). Bull. Minéral. 106, 383–389.
Piret, P., Deliens, M. & Piret-Meunier, J. (1988). Bull. Minéral. 111, 443–449.
Plášil, J., Sejkora, J., Čejka, J., Novák, M., Vinals, J., Ondruš, P., Veselovský, F., Kacha, P., Jehlička, J., Golia, V. & Hloušek, J. (2010). Can. Mineral. 48, 335–350.
Plášil, J. (2014). J. Geosci. 59, 99–114.
Plášil, J., Kampf, A. R., Sejkora, J., Čejka, J., Škoda, R. & Tvrdý, J. (2018). J. Geosci. 63, 265–276.
Plášil, J., Sejkora, J., Čejka, J., Škoda, R. & Goliáš, V. (2009). J. Geosci. 54, 15–56.
Plášil, J., Sejkora, J., Ondruš, P., Veselovský, F., Beran, P. & Goliáš, V. (2006). J. Czech. Geol. Soc. 51, 149–158.
Rigaku (2019). CrysAlis CCD and CrysAlis RED. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK.
Roh, Y., Lee, S. R., Choi, S. K., Elless, M. P. & Lee, S. Y. (2000). Soil Sediment. Contam. 9, 463–486.
Schindler, M. & Hawthorne, F. C. (2008). Can. Mineral. 46, 467–501.
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. PubMed
Steciuk, G., Ghazisaeed, S., Kiefer, B. & Plášil, J. (2019). RSC Adv. 9, 19657–19661. PubMed PMC