Crystal structure, hydrogen bonding, mechanical properties and Raman spectrum of the lead uranyl silicate monohydrate mineral kasolite

. 2019 May 14 ; 9 (27) : 15323-15334. [epub] 20190516

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35514839

The crystal structure, hydrogen bonding, mechanical properties and Raman spectrum of the lead uranyl silicate monohydrate mineral kasolite, Pb(UO2)(SiO4)·H2O, are investigated by means of first-principles solid-state methods based on density functional theory using plane waves and pseudopotentials. The computed unit cell parameters, bond lengths and angles and X-ray powder pattern of kasolite are found to be in very good agreement with their experimental counterparts. The calculated hydrogen atom positions and associated hydrogen bond structure in the unit cell of kasolite confirmed the hydrogen bond scheme previously determined from X-ray diffraction data. The kasolite crystal structure is formed from uranyl silicate layers having the uranophane sheet anion-topology. The lead ions and water molecules are located in the interlayer space. Water molecules belong to the coordination structure of lead interlayer ions and reinforce the structure by hydrogen bonding between the uranyl silicate sheets. The hydrogen bonding in kasolite is strong and dual, that is, the water molecules are distributed in pairs, held together by two symmetrically related hydrogen bonds, one being directed from the first water molecule to the second one and the other from the second water molecule to the first one. As a result of the full structure determination of kasolite, the determination of its mechanical properties and Raman spectrum becomes possible using theoretical methods. The mechanical properties and mechanical stability of the structure of kasolite are studied using the finite deformation technique. The bulk modulus and its pressure derivatives, the Young and shear moduli, the Poisson ratio and the ductility, hardness and anisotropy indices are reported. Kasolite is a hard and brittle mineral possessing a large bulk modulus of the order of B ∼ 71 GPa. The structure is mechanically stable and very isotropic. The large mechanical isotropy of the structure is unexpected since layered structures are commonly very anisotropic and results from the strong dual hydrogen bonding among the uranyl silicate sheets. The experimental Raman spectrum of kasolite is recorded from a natural mineral sample from the Jánská vein, Příbram base metal ore district, Czech Republic, and determined by using density functional perturbation theory. The agreement is excellent and, therefore, the theoretical calculations are employed to assign the experimental spectrum. Besides, the theoretical results are used to guide the resolution into single components of the bands from the experimental spectrum. A large number of kasolite Raman bands are reassigned. Three bands of the experimental spectrum located at the wavenumbers 1015, 977 and 813 cm-1, are identified as combination bands.

Zobrazit více v PubMed

Schoep A. C. R. Acad. Sci. 1922;173:1476–1477.

Krivovichev S. V., PlášIl J., in Uranium: From Cradle to Grave, ed. P. C. Burns, G. E. Sigmon, Mineralogical Association of Canada Short Courses, 2013, vol. 43, pp. 15–119

Finch R. J. Murakami T. Rev. Mineral. Geochem. 1999;38:91–180.

Frondel C. Am. Mineral. 1956;41:539–568.

Garrels R. M. Christ C. L. U.S. Geol. Surv. Prof. Pap. 1959;320:81–89.

Finch R. J. Ewing R. C. J. Nucl. Mater. 1992;190:133–156. doi: 10.1016/0022-3115(92)90083-W. DOI

Grenthe I., Drozdzynski J., Fujino T., Buck E. C., Albrecht-Schmitt T. E. and Wolf S. F., in The Chemistry of Actinide and Transactinide Elements, ed. L. R. Morss, N. M. Edelstein and J. Fuger, Springer Science and Business Media, Berlin, 2006, ch V, vol. I, pp. 253–638

Plášil J. J. Geosci. 2014;59:99–114. doi: 10.3190/jgeosci.163. DOI

Finch R. J. and Ewing R. C., SKB Technical Report 91-15, SKB, Stockholm, 1991

Forsyth R. S. Werme L. O. J. Nucl. Mater. 1992;190:3–19. doi: 10.1016/0022-3115(92)90071-R. DOI

Pearcy E. C. Prikryl J. D. Murphy W. M. Leslie B. W. Appl. Geochem. 1994;9:713–732. doi: 10.1016/0883-2927(94)90030-2. DOI

Wronkiewicz D. J. Bates J. K. Gerding T. J. Veleckis E. Tani B. S. J. Nucl. Mater. 1992;190:107–127. doi: 10.1016/0022-3115(92)90081-U. DOI

Wronkiewicz D. J. Bates J. K. Wolf S. F. Buck E. C. J. Nucl. Mater. 1996;238:78–95. doi: 10.1016/S0022-3115(96)00383-2. DOI

Burns P. C. Am. Mineral. 1997;82:1176–1186.

Ghazisaeed S. Kiefer B. Plášil J. RSC Adv. 2019;9:10058–10063. doi: 10.1039/C8RA09557D. PubMed DOI PMC

Rosenzweig A. Ryan R. R. Cryst. Struct. Commun. 1977;6:617–621.

Stohl F. V. Smith D. K. Am. Mineral. 1981;66:610–625.

Vochten R. Blaton N. Peeters O. Van Springel k. Van Haverbeke L. Can. Mineral. 1997;35:735–741.

Huynen A. M. Piret-Meunier J. Van Meerssche M. Acad. R. Belg., Bull. 1963;49:192–201.

Mokeeva V. I. Sov. Phys. Crystallogr. 1965;9:621–622.

Chernorukov N. G. Knyazev A. V. Nipruk O. V. Radiochem. 2007;49:340–345. doi: 10.1134/S1066362207040030. DOI

Fejfarová K. Dušek M. Plášil J. Čejka J. Sejkora J. Škoda R. J. Nucl. Mater. 2013;434:461–467. doi: 10.1016/j.jnucmat.2010.11.064. DOI

Berman R. M. Am. Mineral. 1957;42:705–731.

Janeczek J. Ewing R. C. Geochim. Cosmochim. Acta. 1995;59:1917–1931. doi: 10.1016/0016-7037(95)00117-4. DOI

Janeczek J. Ewing R. C. J. Nucl. Mater. 1992;190:128–132. doi: 10.1016/0022-3115(92)90082-V. DOI

Isobe H. Murakami T. Ewing R. C. J. Nucl. Mater. 1992;190:174–187. doi: 10.1016/0022-3115(92)90085-Y. DOI

Finch R. J. Ewing R. C. Am. Mineral. 1997;82:607–619.

Burns P. C. Can. Mineral. 1998;36:847–853.

Colmenero F. Cobos J. Timón V. Inorg. Chem. 2018;57:4470–4481. doi: 10.1021/acs.inorgchem.8b00150. PubMed DOI

Colmenero F. Fernández A. M. Cobos J. Timón V. ACS Earth Space Chem. 2019;3:17–28. doi: 10.1021/acsearthspacechem.8b00109. DOI

Colmenero F. Fernández A. M. Cobos J. Timón V. RSC Adv. 2019;8:24599–24616. doi: 10.1039/C8RA04678F. PubMed DOI PMC

Colmenero F. Cobos J. Timón V. J. Phys.: Condens. Matter. 2019;31:175701. doi: 10.1088/1361-648X/ab0312. PubMed DOI

Ghazisaeed S. Majzlan J. Plášil J. Kiefer B. J. Appl. Crystallogr. 2018;51:1116–1124. doi: 10.1107/S1600576718008567. DOI

Payne M. C. Teter M. P. Ailan D. C. Arias A. Joannopoulos J. D. Rev. Mod. Phys. 1992;64:1045–1097. doi: 10.1103/RevModPhys.64.1045. DOI

Colmenero F., PhD thesis, Universidad Autónoma de Madrid, Madrid, 2017, p. 443

Bonales L. J. Colmenero F. Cobos J. Timón V. Phys. Chem. Chem. Phys. 2016;18:16575–16584. doi: 10.1039/C6CP01510G. PubMed DOI

Colmenero F. Bonales L. J. Cobos J. Timón V. Spectrochim. Acta, Part A. 2017;174:245–253. doi: 10.1016/j.saa.2016.11.040. PubMed DOI

Colmenero F. Bonales L. J. Cobos J. Timón V. J. Solid State Chem. 2017;253:249–257. doi: 10.1016/j.jssc.2017.06.002. DOI

Colmenero F. Bonales L. J. Cobos J. Timón V. J. Phys. Chem. C. 2017;121:5994–6001. doi: 10.1021/acs.jpcc.7b00699. DOI

Colmenero F. Bonales L. J. Cobos J. Timón V. J. Phys. Chem. C. 2017;121:14507–14516. doi: 10.1021/acs.jpcc.7b04389. DOI

Colmenero F. Bonales L. J. Cobos J. Timón V. Clay Miner. 2018;53:377–392. doi: 10.1180/clm.2018.27. DOI

Colmenero F. Fernández A. M. Cobos J. Timón V. J. Phys. Chem. C. 2018;122:5254–5267. doi: 10.1021/acs.jpcc.7b12341. DOI

Colmenero F. Fernández A. M. Cobos J. Timón V. J. Phys. Chem. C. 2018;122:5268–5279. doi: 10.1021/acs.jpcc.7b12368. DOI

Colmenero F., in Minerals, ed. K. S. Essa, InTechOpen, London, 2018, ISBN: 978-953-51-6784-6

Colmenero F., in Density Functional Theory, ed. D. Glossman-Mitnik, InTechOpen, London, 2018, ISBN: 978-953-51-7020-4

Colmenero F. Appl. Sci. 2018;8:2281–2290. doi: 10.3390/app8112281. DOI

Colmenero F. Cobos J. Timón V. Theor. Chem. Acc. 2019;138:43.

Škácha P. Goliáš V. Sejkora J. Plášil J. Strnad L. Škoda R. Ježek J. J. Geosci. 2009;54:1–13.

Sejkora J. Litochleb J. Čejka J. Černý P. Bull. Mineral.-Petrolog. Odd. Nár. Muz. 2013;21:37–46.

Clark S. J. Segall M. D. Pickard C. J. Hasnip P. J. Probert M. I. J. Refson K. Payne M. C. Z. Kristallogr. 2005;220:567–570.

MaterialsStudio, http://3dsbiovia.com/products/collabora-tivescience/biovia-materials-studio/, accessed April 1, 2019

Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Perdew J. P. Ruzsinszky A. Csonka G. I. Vydrov O. A. Scuseria G. E. Constantin L. A. Zhou X. Burke K. Phys. Rev. Lett. 2008;100:136406. doi: 10.1103/PhysRevLett.100.136406. PubMed DOI

Troullier N. Martins J. L. Phys. Rev. B: Condens. Matter Mater. Phys. 1991;43:1993–2006. doi: 10.1103/PhysRevB.43.1993. PubMed DOI

Pfrommer B. G. Cote M. Louie S. G. Cohen M. L. J. Comput. Phys. 1997;131:233–240. doi: 10.1006/jcph.1996.5612. DOI

Monkhorst H. J. Pack J. D. Phys. Rev. B: Condens. Matter Mater. Phys. 1976;13:5188–5192. doi: 10.1103/PhysRevB.13.5188. DOI

Downs R. T. Bartelmehs K. L. Gibbs G. V. Boisen M. B. Am. Mineral. 1993;78:1104.

Baroni S. de Gironcoli S. Dal Corso A. Rev. Mod. Phys. 2001;73:515–562. doi: 10.1103/RevModPhys.73.515. DOI

Lee C. Gonze X. Phys. Rev. B: Condens. Matter Mater. Phys. 1995;51:8610–8613. doi: 10.1103/PhysRevB.51.8610. PubMed DOI

Refson K. Tulip P. R. Clark S. J. Phys. Rev. B: Condens. Matter Mater. Phys. 2006;73:155114. doi: 10.1103/PhysRevB.73.155114. DOI

Colmenero F. Timon V. J. Solid State Chem. 2018;263:131–140. doi: 10.1016/j.jssc.2018.04.022. DOI

Colmenero F. J. Phys. Chem. Solids. 2019;125:31–42. doi: 10.1016/j.jpcs.2018.10.004. DOI

Hehre W. J., Radom L., Schleyer P. V. R. and Pople J. A., Ab Initio Molecular Orbital Theory, Wiley, New York, 1986

Yu R. Zhu J. Ye H. Q. Comput. Phys. Commun. 2010;181:671–675. doi: 10.1016/j.cpc.2009.11.017. DOI

Colmenero F. Mater. Res. Express. 2019;6:045610. doi: 10.1088/2053-1591/aaf9d7. DOI

Colmenero F. Phys. Chem. Chem. Phys. 2019;21:2673–2690. doi: 10.1039/C8CP07188H. PubMed DOI

Birch F. Phys. Rev. 1947;71:809–824. doi: 10.1103/PhysRev.71.809. DOI

Angel R. J. Rev. Mineral. Geochem. 2000;41:35–60. doi: 10.2138/rmg.2000.41.2. DOI

EOSFIT 5.2 software, http://www.ccp14.ac.uk/ccp/web-mirrors/ross-angel/rja/soft/, accessed April 1, 2019

Marmier A. Lethbridge Z. A. D. Walton R. Smith C. W. Parker S. C. Evans K. E. Comput. Phys. Commun. 2010;181:2102–2115. doi: 10.1016/j.cpc.2010.08.033. DOI

Evans H. T. Science. 1963;141:154–158. doi: 10.1126/science.141.3576.154. PubMed DOI

Burns P. C. Ewing R. C. Hawthorne F. C. Can. Mineral. 1997;35:1551–1570.

Downs R. T., Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan, 2006, O03-13; RRUFF database, http://rruff.info/kasolite, Record RRUFF-060479

Nye J. F., The Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, New York, 1985

Weck P. F. Kim E. Buck E. C. RSC Adv. 2015;5:79090–79097. doi: 10.1039/C5RA16111H. DOI

Mouhat F. Coudert F.-X. Phys. Rev. B: Condens. Matter Mater. Phys. 2014;90:224104. doi: 10.1103/PhysRevB.90.224104. DOI

Voigt W., Lehrbuch der Kristallphysik, Teubner, Leipzig, 1962

Reuss A. Z. Angew. Math. Mech. 1929;9:49–58. doi: 10.1002/zamm.19290090104. DOI

Hill R. Proc. Phys. Soc., London. 1952;65:349–354. doi: 10.1088/0370-1298/65/5/307. DOI

Pugh S. F. Philos. Mag. 1954;45:823–843.

Bouhadda Y. Djella S. Bououdina M. Fenineche N. Boudouma Y. J. Alloys Compd. 2012;534:20–24. doi: 10.1016/j.jallcom.2012.04.060. DOI

Niu H. Wei P. Sun Y. Chen C.-X. Franchini C. Li D. Li Y. Appl. Phys. Lett. 2011;99:031901. doi: 10.1063/1.3610996. DOI

Ranganathan S. I. Ostoja-Starzewski M. Phys. Rev. Lett. 2008;101:055504. doi: 10.1103/PhysRevLett.101.055504. PubMed DOI

Frost R. L. Čejka J. Weier M. L. Martens W. J. Raman Spectrosc. 2006;37:538–551. doi: 10.1002/jrs.1430. DOI

Nakamoto K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, J. Wiley and Sons, New York, 1986

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...