Crystal structure, hydrogen bonding, mechanical properties and Raman spectrum of the lead uranyl silicate monohydrate mineral kasolite
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35514839
PubMed Central
PMC9064314
DOI
10.1039/c9ra02931a
PII: c9ra02931a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The crystal structure, hydrogen bonding, mechanical properties and Raman spectrum of the lead uranyl silicate monohydrate mineral kasolite, Pb(UO2)(SiO4)·H2O, are investigated by means of first-principles solid-state methods based on density functional theory using plane waves and pseudopotentials. The computed unit cell parameters, bond lengths and angles and X-ray powder pattern of kasolite are found to be in very good agreement with their experimental counterparts. The calculated hydrogen atom positions and associated hydrogen bond structure in the unit cell of kasolite confirmed the hydrogen bond scheme previously determined from X-ray diffraction data. The kasolite crystal structure is formed from uranyl silicate layers having the uranophane sheet anion-topology. The lead ions and water molecules are located in the interlayer space. Water molecules belong to the coordination structure of lead interlayer ions and reinforce the structure by hydrogen bonding between the uranyl silicate sheets. The hydrogen bonding in kasolite is strong and dual, that is, the water molecules are distributed in pairs, held together by two symmetrically related hydrogen bonds, one being directed from the first water molecule to the second one and the other from the second water molecule to the first one. As a result of the full structure determination of kasolite, the determination of its mechanical properties and Raman spectrum becomes possible using theoretical methods. The mechanical properties and mechanical stability of the structure of kasolite are studied using the finite deformation technique. The bulk modulus and its pressure derivatives, the Young and shear moduli, the Poisson ratio and the ductility, hardness and anisotropy indices are reported. Kasolite is a hard and brittle mineral possessing a large bulk modulus of the order of B ∼ 71 GPa. The structure is mechanically stable and very isotropic. The large mechanical isotropy of the structure is unexpected since layered structures are commonly very anisotropic and results from the strong dual hydrogen bonding among the uranyl silicate sheets. The experimental Raman spectrum of kasolite is recorded from a natural mineral sample from the Jánská vein, Příbram base metal ore district, Czech Republic, and determined by using density functional perturbation theory. The agreement is excellent and, therefore, the theoretical calculations are employed to assign the experimental spectrum. Besides, the theoretical results are used to guide the resolution into single components of the bands from the experimental spectrum. A large number of kasolite Raman bands are reassigned. Three bands of the experimental spectrum located at the wavenumbers 1015, 977 and 813 cm-1, are identified as combination bands.
Institute of Physics ASCR v v i Na Slovance 2 182 21 Praha 8 Czech Republic
Instituto de Estructura de la Materia C Serrano 113 28006 Madrid Spain
Mineralogicko Petrologické Oddělení Národní Muzeum Cirkusová 1740 193 00 Praha 9 Czech Republic
Zobrazit více v PubMed
Schoep A. C. R. Acad. Sci. 1922;173:1476–1477.
Krivovichev S. V., PlášIl J., in Uranium: From Cradle to Grave, ed. P. C. Burns, G. E. Sigmon, Mineralogical Association of Canada Short Courses, 2013, vol. 43, pp. 15–119
Finch R. J. Murakami T. Rev. Mineral. Geochem. 1999;38:91–180.
Frondel C. Am. Mineral. 1956;41:539–568.
Garrels R. M. Christ C. L. U.S. Geol. Surv. Prof. Pap. 1959;320:81–89.
Finch R. J. Ewing R. C. J. Nucl. Mater. 1992;190:133–156. doi: 10.1016/0022-3115(92)90083-W. DOI
Grenthe I., Drozdzynski J., Fujino T., Buck E. C., Albrecht-Schmitt T. E. and Wolf S. F., in The Chemistry of Actinide and Transactinide Elements, ed. L. R. Morss, N. M. Edelstein and J. Fuger, Springer Science and Business Media, Berlin, 2006, ch V, vol. I, pp. 253–638
Plášil J. J. Geosci. 2014;59:99–114. doi: 10.3190/jgeosci.163. DOI
Finch R. J. and Ewing R. C., SKB Technical Report 91-15, SKB, Stockholm, 1991
Forsyth R. S. Werme L. O. J. Nucl. Mater. 1992;190:3–19. doi: 10.1016/0022-3115(92)90071-R. DOI
Pearcy E. C. Prikryl J. D. Murphy W. M. Leslie B. W. Appl. Geochem. 1994;9:713–732. doi: 10.1016/0883-2927(94)90030-2. DOI
Wronkiewicz D. J. Bates J. K. Gerding T. J. Veleckis E. Tani B. S. J. Nucl. Mater. 1992;190:107–127. doi: 10.1016/0022-3115(92)90081-U. DOI
Wronkiewicz D. J. Bates J. K. Wolf S. F. Buck E. C. J. Nucl. Mater. 1996;238:78–95. doi: 10.1016/S0022-3115(96)00383-2. DOI
Burns P. C. Am. Mineral. 1997;82:1176–1186.
Ghazisaeed S. Kiefer B. Plášil J. RSC Adv. 2019;9:10058–10063. doi: 10.1039/C8RA09557D. PubMed DOI PMC
Rosenzweig A. Ryan R. R. Cryst. Struct. Commun. 1977;6:617–621.
Stohl F. V. Smith D. K. Am. Mineral. 1981;66:610–625.
Vochten R. Blaton N. Peeters O. Van Springel k. Van Haverbeke L. Can. Mineral. 1997;35:735–741.
Huynen A. M. Piret-Meunier J. Van Meerssche M. Acad. R. Belg., Bull. 1963;49:192–201.
Mokeeva V. I. Sov. Phys. Crystallogr. 1965;9:621–622.
Chernorukov N. G. Knyazev A. V. Nipruk O. V. Radiochem. 2007;49:340–345. doi: 10.1134/S1066362207040030. DOI
Fejfarová K. Dušek M. Plášil J. Čejka J. Sejkora J. Škoda R. J. Nucl. Mater. 2013;434:461–467. doi: 10.1016/j.jnucmat.2010.11.064. DOI
Berman R. M. Am. Mineral. 1957;42:705–731.
Janeczek J. Ewing R. C. Geochim. Cosmochim. Acta. 1995;59:1917–1931. doi: 10.1016/0016-7037(95)00117-4. DOI
Janeczek J. Ewing R. C. J. Nucl. Mater. 1992;190:128–132. doi: 10.1016/0022-3115(92)90082-V. DOI
Isobe H. Murakami T. Ewing R. C. J. Nucl. Mater. 1992;190:174–187. doi: 10.1016/0022-3115(92)90085-Y. DOI
Finch R. J. Ewing R. C. Am. Mineral. 1997;82:607–619.
Burns P. C. Can. Mineral. 1998;36:847–853.
Colmenero F. Cobos J. Timón V. Inorg. Chem. 2018;57:4470–4481. doi: 10.1021/acs.inorgchem.8b00150. PubMed DOI
Colmenero F. Fernández A. M. Cobos J. Timón V. ACS Earth Space Chem. 2019;3:17–28. doi: 10.1021/acsearthspacechem.8b00109. DOI
Colmenero F. Fernández A. M. Cobos J. Timón V. RSC Adv. 2019;8:24599–24616. doi: 10.1039/C8RA04678F. PubMed DOI PMC
Colmenero F. Cobos J. Timón V. J. Phys.: Condens. Matter. 2019;31:175701. doi: 10.1088/1361-648X/ab0312. PubMed DOI
Ghazisaeed S. Majzlan J. Plášil J. Kiefer B. J. Appl. Crystallogr. 2018;51:1116–1124. doi: 10.1107/S1600576718008567. DOI
Payne M. C. Teter M. P. Ailan D. C. Arias A. Joannopoulos J. D. Rev. Mod. Phys. 1992;64:1045–1097. doi: 10.1103/RevModPhys.64.1045. DOI
Colmenero F., PhD thesis, Universidad Autónoma de Madrid, Madrid, 2017, p. 443
Bonales L. J. Colmenero F. Cobos J. Timón V. Phys. Chem. Chem. Phys. 2016;18:16575–16584. doi: 10.1039/C6CP01510G. PubMed DOI
Colmenero F. Bonales L. J. Cobos J. Timón V. Spectrochim. Acta, Part A. 2017;174:245–253. doi: 10.1016/j.saa.2016.11.040. PubMed DOI
Colmenero F. Bonales L. J. Cobos J. Timón V. J. Solid State Chem. 2017;253:249–257. doi: 10.1016/j.jssc.2017.06.002. DOI
Colmenero F. Bonales L. J. Cobos J. Timón V. J. Phys. Chem. C. 2017;121:5994–6001. doi: 10.1021/acs.jpcc.7b00699. DOI
Colmenero F. Bonales L. J. Cobos J. Timón V. J. Phys. Chem. C. 2017;121:14507–14516. doi: 10.1021/acs.jpcc.7b04389. DOI
Colmenero F. Bonales L. J. Cobos J. Timón V. Clay Miner. 2018;53:377–392. doi: 10.1180/clm.2018.27. DOI
Colmenero F. Fernández A. M. Cobos J. Timón V. J. Phys. Chem. C. 2018;122:5254–5267. doi: 10.1021/acs.jpcc.7b12341. DOI
Colmenero F. Fernández A. M. Cobos J. Timón V. J. Phys. Chem. C. 2018;122:5268–5279. doi: 10.1021/acs.jpcc.7b12368. DOI
Colmenero F., in Minerals, ed. K. S. Essa, InTechOpen, London, 2018, ISBN: 978-953-51-6784-6
Colmenero F., in Density Functional Theory, ed. D. Glossman-Mitnik, InTechOpen, London, 2018, ISBN: 978-953-51-7020-4
Colmenero F. Appl. Sci. 2018;8:2281–2290. doi: 10.3390/app8112281. DOI
Colmenero F. Cobos J. Timón V. Theor. Chem. Acc. 2019;138:43.
Škácha P. Goliáš V. Sejkora J. Plášil J. Strnad L. Škoda R. Ježek J. J. Geosci. 2009;54:1–13.
Sejkora J. Litochleb J. Čejka J. Černý P. Bull. Mineral.-Petrolog. Odd. Nár. Muz. 2013;21:37–46.
Clark S. J. Segall M. D. Pickard C. J. Hasnip P. J. Probert M. I. J. Refson K. Payne M. C. Z. Kristallogr. 2005;220:567–570.
MaterialsStudio, http://3dsbiovia.com/products/collabora-tivescience/biovia-materials-studio/, accessed April 1, 2019
Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Perdew J. P. Ruzsinszky A. Csonka G. I. Vydrov O. A. Scuseria G. E. Constantin L. A. Zhou X. Burke K. Phys. Rev. Lett. 2008;100:136406. doi: 10.1103/PhysRevLett.100.136406. PubMed DOI
Troullier N. Martins J. L. Phys. Rev. B: Condens. Matter Mater. Phys. 1991;43:1993–2006. doi: 10.1103/PhysRevB.43.1993. PubMed DOI
Pfrommer B. G. Cote M. Louie S. G. Cohen M. L. J. Comput. Phys. 1997;131:233–240. doi: 10.1006/jcph.1996.5612. DOI
Monkhorst H. J. Pack J. D. Phys. Rev. B: Condens. Matter Mater. Phys. 1976;13:5188–5192. doi: 10.1103/PhysRevB.13.5188. DOI
Downs R. T. Bartelmehs K. L. Gibbs G. V. Boisen M. B. Am. Mineral. 1993;78:1104.
Baroni S. de Gironcoli S. Dal Corso A. Rev. Mod. Phys. 2001;73:515–562. doi: 10.1103/RevModPhys.73.515. DOI
Lee C. Gonze X. Phys. Rev. B: Condens. Matter Mater. Phys. 1995;51:8610–8613. doi: 10.1103/PhysRevB.51.8610. PubMed DOI
Refson K. Tulip P. R. Clark S. J. Phys. Rev. B: Condens. Matter Mater. Phys. 2006;73:155114. doi: 10.1103/PhysRevB.73.155114. DOI
Colmenero F. Timon V. J. Solid State Chem. 2018;263:131–140. doi: 10.1016/j.jssc.2018.04.022. DOI
Colmenero F. J. Phys. Chem. Solids. 2019;125:31–42. doi: 10.1016/j.jpcs.2018.10.004. DOI
Hehre W. J., Radom L., Schleyer P. V. R. and Pople J. A., Ab Initio Molecular Orbital Theory, Wiley, New York, 1986
Yu R. Zhu J. Ye H. Q. Comput. Phys. Commun. 2010;181:671–675. doi: 10.1016/j.cpc.2009.11.017. DOI
Colmenero F. Mater. Res. Express. 2019;6:045610. doi: 10.1088/2053-1591/aaf9d7. DOI
Colmenero F. Phys. Chem. Chem. Phys. 2019;21:2673–2690. doi: 10.1039/C8CP07188H. PubMed DOI
Birch F. Phys. Rev. 1947;71:809–824. doi: 10.1103/PhysRev.71.809. DOI
Angel R. J. Rev. Mineral. Geochem. 2000;41:35–60. doi: 10.2138/rmg.2000.41.2. DOI
EOSFIT 5.2 software, http://www.ccp14.ac.uk/ccp/web-mirrors/ross-angel/rja/soft/, accessed April 1, 2019
Marmier A. Lethbridge Z. A. D. Walton R. Smith C. W. Parker S. C. Evans K. E. Comput. Phys. Commun. 2010;181:2102–2115. doi: 10.1016/j.cpc.2010.08.033. DOI
Evans H. T. Science. 1963;141:154–158. doi: 10.1126/science.141.3576.154. PubMed DOI
Burns P. C. Ewing R. C. Hawthorne F. C. Can. Mineral. 1997;35:1551–1570.
Downs R. T., Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan, 2006, O03-13; RRUFF database, http://rruff.info/kasolite, Record RRUFF-060479
Nye J. F., The Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, New York, 1985
Weck P. F. Kim E. Buck E. C. RSC Adv. 2015;5:79090–79097. doi: 10.1039/C5RA16111H. DOI
Mouhat F. Coudert F.-X. Phys. Rev. B: Condens. Matter Mater. Phys. 2014;90:224104. doi: 10.1103/PhysRevB.90.224104. DOI
Voigt W., Lehrbuch der Kristallphysik, Teubner, Leipzig, 1962
Reuss A. Z. Angew. Math. Mech. 1929;9:49–58. doi: 10.1002/zamm.19290090104. DOI
Hill R. Proc. Phys. Soc., London. 1952;65:349–354. doi: 10.1088/0370-1298/65/5/307. DOI
Pugh S. F. Philos. Mag. 1954;45:823–843.
Bouhadda Y. Djella S. Bououdina M. Fenineche N. Boudouma Y. J. Alloys Compd. 2012;534:20–24. doi: 10.1016/j.jallcom.2012.04.060. DOI
Niu H. Wei P. Sun Y. Chen C.-X. Franchini C. Li D. Li Y. Appl. Phys. Lett. 2011;99:031901. doi: 10.1063/1.3610996. DOI
Ranganathan S. I. Ostoja-Starzewski M. Phys. Rev. Lett. 2008;101:055504. doi: 10.1103/PhysRevLett.101.055504. PubMed DOI
Frost R. L. Čejka J. Weier M. L. Martens W. J. Raman Spectrosc. 2006;37:538–551. doi: 10.1002/jrs.1430. DOI
Nakamoto K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, J. Wiley and Sons, New York, 1986
Crystal Structure, Infrared Spectrum and Elastic Anomalies in Tuperssuatsiaite