Full crystal structure, hydrogen bonding and spectroscopic, mechanical and thermodynamic properties of mineral uranopilite

. 2020 Aug 26 ; 10 (53) : 31947-31960. [epub] 20200827

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35518170

The determination of the full crystal structure of the uranyl sulfate mineral uranopilite, (UO2)6(SO4)O2(OH)6·14H2O, including the positions of the hydrogen atoms within the corresponding unit cell, has not been feasible to date due to the poor quality of its X-ray diffraction pattern. In this paper, the complete crystal structure of uranopilite is established for the first time by means of first principles solid-state calculations based in density functional theory employing a large plane wave basis set and pseudopotential functions. The computed unit-cell parameters and structural data for the non-hydrogen atoms are in excellent agreement with the available experimental data. The computed X-ray diffraction pattern is also in satisfactory agreement with the experimental pattern. The infrared spectrum of uranopilite is collected from a natural crystal specimen originating in Jáchymov (Czech Republic) and computed employing density functional perturbation theory. The theoretical and experimental vibrational spectra are highly consistent. Therefore, a full assignment of the bands in the experimental infrared spectrum is performed using a normal mode analysis of the first principles vibrational results. One overtone and six combination bands are recognized in the infrared spectrum. The elasticity tensor and phonon spectra of uranopilite are computed from the optimized crystal structure and used to analyze its mechanical stability, to obtain a rich set of elastic properties and to derive its fundamental thermodynamic properties as a function of temperature. Uranopilite is shown to have a large mechanical anisotropy and to exhibit the negative Poisson's ratio and negative linear compressibility phenomena. The calculated specific heat and entropy at 298.15 K are 179.6 and 209.0 J K-1 mol-1, respectively. The computed fundamental thermodynamic functions of uranopilite are employed to obtain its thermodynamic functions of formation in terms of the elements and the thermodynamic properties of a set of chemical reactions relating uranopilite with a representative group of secondary phases of spent nuclear fuel. From the reaction thermodynamic data, the relative stability of uranopilite with respect to these secondary phases is evaluated as a function of temperature and under different hydrogen peroxide concentrations. From the results, it follows that uranopilite has a very large thermodynamic stability in the presence of hydrogen peroxide. The high stability of uranopilite under this condition justify its early crystallization in the paragenetic sequence of secondary phases occurring when uranium dioxide is exposed to sulfur-rich solutions.

Zobrazit více v PubMed

Frondel C. Am. Mineral. 1952;37:950–959.

Burns P. C. Can. Mineral. 2001;39:1139–1146. doi: 10.2113/gscanmin.39.4.1139. DOI

Plášil J. Sejkora J. Škácha P. Goliaš V. Hušák M. Bull. Mineral. Petrol. 2005;13:192–196.

Sejkora J. Litochleb J. Bureš B. Jindra J. Bull. Mineral. Petrol. 2004;12:171–174.

Meisser N. Beitr. Geol. Schweiz, Geotech. Ser. 2012;96:1–183.

Plášil J. Sejkora J. Škoda R. Škácha P. J. Geosci. 2014;59:223–253. doi: 10.3190/jgeosci.171. DOI

Finch R. J. Murakami T. Rev. Mineral. Geochem. 1999;38:91–179.

Krivovichev S. V. and Plášil J., in Uranium: From Cradle to Grave, ed. P. C. Burns and G. E. Sigmon, Mineralogical Association of Canada, Winnipeg, MB, Canada, 2013, Short Course 43, pp. 15–119

Plášil J. J. Geosci. 2014;59:99–114. doi: 10.3190/jgeosci.163. DOI

Baker R. J. Coord. Chem. Rev. 2014;266–267:123–136. doi: 10.1016/j.ccr.2013.10.004. DOI

Lussier A. J. Lopez R. A. K. Burns P. C. Can. Mineral. 2016;54:177–283. doi: 10.3749/canmin.1500078. DOI

Gurzhiy V. V. Plášil J. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2019;75:39–48. doi: 10.1107/S2052520618016098. PubMed DOI

Dauber H. Ann. Phys. 1854;92:237–251. doi: 10.1002/andp.18541680604. DOI

Weisbach A. Neu. Jb. Geol. Paläont. 1882;2:249–259.

Colmenero F. Cobos J. Timón V. Inorg. Chem. 2018;57:4470–4481. doi: 10.1021/acs.inorgchem.8b00150. PubMed DOI

Colmenero F. Fernández A. M. Cobos J. Timón V. ACS Earth Space Chem. 2019;3:17–28. doi: 10.1021/acsearthspacechem.8b00109. DOI

Colmenero F. Fernández A. M. Timón V. Cobos J. RSC Adv. 2018;8:24599–24616. doi: 10.1039/C8RA04678F. PubMed DOI PMC

Colmenero F. Plášil J. Cobos J. Sejkora J. Timón V. Čejka J. Bonales L. J. RSC Adv. 2019;9:15323–15334. doi: 10.1039/C9RA02931A. PubMed DOI PMC

Colmenero F. Plášil J. Sejkora J. Dalton Trans. 2019;48:16722–16736. doi: 10.1039/C9DT03256H. PubMed DOI

Colmenero F. Plášil J. Cobos J. Sejkora J. Timón V. Čejka J. Fernández A. M. Petříček V. RSC Adv. 2019;9:40708–40726. doi: 10.1039/C9RA09047A. PubMed DOI PMC

Colmenero F. Plášil J. Němec I. J. Phys. Chem. Solids. 2020;141:109400. doi: 10.1016/j.jpcs.2020.109400. DOI

Colmenero F. Plášil J. Škácha P. Spectrochim. Acta, Part A. 2020;234:118216. doi: 10.1016/j.saa.2020.118216. PubMed DOI

Nordstrom D. K. and Alpers C. N., in Reviews in Economic Geology, ed. G. S. Plumlee and M. J. Logsdon, Society of Economic Geologists, Littleton, CO, 1999, ch. 6, vol. 6A, pp. 133–160

Edwards K. J. Bond P. L. Druschel G. K. Mcguire M. M. Hamers R. J. Banfield J. F. Chem. Geol. 2000;169:383–397. doi: 10.1016/S0009-2541(00)00216-3. DOI

Bian Z. Miao X. Lei S. Chen S. Wang W. Struthers S. Science. 2002;37:702–703. PubMed

Jamieson H. E. Walke S. R. Parsons M. B. Appl. Geochem. 2015;57:85–105. doi: 10.1016/j.apgeochem.2014.12.014. DOI

Grenthe I., Fuger J., Konings R. J. M., Lemire R. J., Muller A. B., Nguyen-Trung C., Wanner H., Chemical Thermodynamics of Uranium, Nuclear Energy Agency Organisation for Economic Co-Operation and Development, OECD, Issy-les-Moulineaux, France, 2004

Guillaumont N. Y. R., Fanghänel T., Neck V., Fuger J., Palmer D. A., Grenthe I. and Rand M. H., Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technetium, ed. F. J. Mompean, M. Illemassene, C. Domenech-Orti and K. Ben Said, OECD Nuclear Energy Agency, Data Bank, Issy-les-Moulineaux, France, 2003

Cumberland S. A. Douglas G. Grice K. Moreau J. W. Earth-Sci. Rev. 2016;159:160–185. doi: 10.1016/j.earscirev.2016.05.010. DOI

Langmuir D. Geochim. Cosmochim. Acta. 1978;42:547–569. doi: 10.1016/0016-7037(78)90001-7. DOI

Langmuir D., Aqueous Environmental Geochemistry, Prentice-Hall, New York, 1997; pp. 486−557

Nguyen-Trung C. Begun G. M. Palmer D. A. Inorg. Chem. 1992;3:5280–5287. doi: 10.1021/ic00051a021. DOI

Gianguzza A. Milea D. Millero F. J. Sammartano S. Mar. Chem. 2004;85:103–124. doi: 10.1016/j.marchem.2003.10.002. DOI

Vallet V. I. Grenthe, C. R. Chimie. 2007;10:905–915. doi: 10.1016/j.crci.2007.03.004. DOI

Hennig C. Schmeide K. Brendler V. Moll H. Tsushima S. Scheinost A. C. Inorg. Chem. 2007;46:5882–5892. doi: 10.1021/ic0619759. PubMed DOI

Hennig C., Tsushima S., Brendler V., Ikeda A., Scheinost A. C. and Bernhard G., in Uranium, Mining and Hydrogeology, ed. B. J. Merkel and A. Hasche-Berger, Springer, Berlin, 2008; pp. 603–614

Vopálka D. Štamberg K. Motl A. Drtinová B. J. Radioanal. Nucl. Chem. 2010;286:681–686. doi: 10.1007/s10967-010-0764-5. DOI

Rao L., Tian G., Xia Y., Friese J. I., Zanonato P. and Di Bernardo P., in Nuclear Energy and the Environment, American Chemical Society, Washington DC, 2010

Berto S. Crea F. Daniele P. G. Gianguzza A. Pettignano A. Sammartano S. Coord. Chem. Rev. 2012;256:63–81. doi: 10.1016/j.ccr.2011.08.015. DOI

Kalintsev A. Migdisov A. Xu H. Roback R. Brugger J. Geochim. Cosmochim. Acta. 2019;267:75–91. doi: 10.1016/j.gca.2019.08.027. DOI

Fernandes H. M. Veiga L. H. S. Franklin M. R. Prado V. C. S. Taddei J. F. J. Geochem. Explor. 1996;52:161–173. doi: 10.1016/0375-6742(94)00043-B. DOI

Brugger J. Burns P. C. N. Meisser, Am. Mineral. 2003;88:676–685. doi: 10.2138/am-2003-0421. DOI

Maher K. Bargar J. R. Brown G. E. Inorg. Chem. 2013;52:3510–3532. doi: 10.1021/ic301686d. PubMed DOI

Novotnik B. Chen W. Evans R. D. Appl. Geochem. 2018;91:36–44. doi: 10.1016/j.apgeochem.2018.01.009. DOI

Runnells D. D. Sheperd T. A. Angino E. E. Environ. Sci. Technol. 1992;26:2316–2323. doi: 10.1021/es00036a001. DOI

Kelley K. D. Taylor C. D. Appl. Geochem. 1997;12:397–409. doi: 10.1016/S0883-2927(97)00009-7. DOI

Zielinski R. A. Orem W. H. Simmons K. R. Bohlen P. J. Water, Air, Soil Pollut. 2006;176:163–183. doi: 10.1007/s11270-006-9156-4. DOI

Warren C. G. Econ. Geol. 1972;67:759–767. doi: 10.2113/gsecongeo.67.6.759. DOI

Reynolds R. L. Goldhaber M. B. Econ. Geol. 1983;78:105–120. doi: 10.2113/gsecongeo.78.1.105. DOI

Bhattacharyya A. Campbell K. M. Kelly S. D. Roebbert Y. Weyer S. Bernier-Latmani R. Borch T. Nat. Commun. 2007;8:15538. doi: 10.1038/ncomms15538. PubMed DOI PMC

Plant J. A. Simpson P. R. Smith B. Windley B. F. Rev. Mineral. Geochem. 1999;38:255–319.

Finch R. J. and Ewing R. C., Uraninite Alteration in an Oxidizing Environment and its Relevance to the Disposal of Spent Nuclear Fuel, SKB Technical Report 91–15, Swedish Nuclear Fuel and Waste Management Co, Stockholm, Sweden, 1994

Forsyth R. S. Werme L. O. J. Nucl. Mater. 1992;90:3–19. doi: 10.1016/0022-3115(92)90071-R. DOI

Pearcy E. C. Prikryl J. D. Murphy W. M. Leslie B. W. Appl. Geochem. 1994;9:713–732. doi: 10.1016/0883-2927(94)90030-2. DOI

Wronkiewicz D. J. Bates J. K. Gerding T. J. Veleckis E. Tani B. S. J. Nucl. Mater. 1992;190:107–127. doi: 10.1016/0022-3115(92)90081-U. DOI

Wronkiewicz D. J. Bates J. K. Wolf S. F. Buck E. C. J. Nucl. Mater. 1996;238:78–95. doi: 10.1016/S0022-3115(96)00383-2. DOI

Bruno J. Casas I. Cera E. Ewing R. C. Finch R. J. Werme L. O. Mater. Res. Soc. Symp. Proc. 1994;353:633–639. doi: 10.1557/PROC-353-633. DOI

Bruno J. Ewing R. C. Elements. 2006;2:343–349. doi: 10.2113/gselements.2.6.343. DOI

Ewing R. C. Nat. Mater. 2015;14:252–255. doi: 10.1038/nmat4226. PubMed DOI

Modelling in Aquatic Chemistry, ed. I. Grenthe and I. Puigdomenech, OECD Nuclear Energy Agency Data Bank, OECD/NEA, Stockholm. 1997

Chisholm-Brause C. J. Berg J. M. Little K. M. Matzner R. A. Morr D. E. J. Colloid Interface Sci. 2004;277:366–382. doi: 10.1016/j.jcis.2004.04.047. PubMed DOI

Behrends T. Krawczyk-Bärsch E. Arnold T. Appl. Geochem. 2013;27:453–462. doi: 10.1016/j.apgeochem.2011.09.014. DOI

Tournassat C. Steefel C. I. Rev. Mineral. Geochem. 2019;85:75–109. doi: 10.2138/rmg.2019.85.4. DOI

Lagneau V. Regnault O. Descostes M. Rev. Mineral. Geochem. 2019;85:499–528. doi: 10.2138/rmg.2019.85.16. DOI

Bildstein O. Claret F. Frugier P. Rev. Mineral. Geochem. 2019;85:419–457. doi: 10.2138/rmg.2019.85.14. DOI

Endrizzi F. Gaona X. Marques-Fernandes M. Baeyens B. Altmaier M. J. Chem. Thermodyn. 2018;120:45–53. doi: 10.1016/j.jct.2018.01.006. DOI

Colmenero F. Fernández A. M. Cobos J. Timón V. J. Phys. Chem. C. 2018;122:5254–5267. doi: 10.1021/acs.jpcc.7b12341. DOI

Colmenero F. Fernández A. M. Cobos J. Timón V. J. Phys. Chem. C. 2018;122:5268–5279. doi: 10.1021/acs.jpcc.7b12368. DOI

NEA Data Bank, Thermochemical Database (TDB), accessed 15 April, 2020, https://www.oecd-nea.org/dbtdb/

Thermo-Chimie database (Consortium Andra-Ondraf/Niras-RWM), accessed 15 April, 2020, http://www.thermochimie-tdb.com/

Sharifironizi M. Szymanowski J. E. S. Sigmon G. E. Navrotsky A. Fein J. B. Burns P. C. Chem. Geol. 2016;447:54–58. doi: 10.1016/j.chemgeo.2016.10.022. DOI

Sharifironizi M. Burns P. C. Can. Mineral. 2018;56:7–14. doi: 10.3749/canmin.1700056. DOI

Gorman-Lewis D. Burns P. C. Fein J. B. J. Chem. Thermodyn. 2008;40:335–352. doi: 10.1016/j.jct.2007.12.004. DOI

Wersin P. Hochella M. F. Persson P. Redden G. Leckie J. O. Harris D. W. Geochim. Cosmochim. Acta. 1998;58:2829–2843. doi: 10.1016/0016-7037(94)90117-1. DOI

Nováček R., Věstník Královské České Společnosti Nauk, 1935, vol. 7, pp. 1–36

Nováček R., Věstník Královské České Společnosti Nauk, Třída matematicko-přírodovědná, 1941, pp. 1–15

Ondruš P. Veselovský F. Hlousek J. Skála R. Vavřín J. Frýda J. Čejka J. Gabašová A. J. Czech Geol. Soc. 1959;42:3–76.

Čejka J. Sejkora J. Mrázek Z. Urbanec Z. Jarchovsky T. Neues Jahrbuch Mineral. Abhand. 1996;170:155–170.

Lu G. Haes A. Forbes T. Z. Coord. Chem. Rev. 2018;374:314–344. doi: 10.1016/j.ccr.2018.07.010. PubMed DOI PMC

Driscoll R. J. P. Wolverson D. Mitchels J. M. Skelton J. M. Parker S. C. Molinari M. Khan I. Geeson D. Allen G. C. RSC Adv. 2014;4:59137–59149. doi: 10.1039/C4RA09361E. DOI

Weck P. F. Kim E. Jové-Colón C. F. Sassani D. C. Dalton Trans. 2013;42:4570–4578. doi: 10.1039/C3DT32536A. PubMed DOI

Burns P. C. Ewing R. C. Hawthorne F. C. Can. Mineral. 1997;35:1551–1570.

MaterialsStudio, 15 April, 2020, http://3dsbiovia.com/products/collaborative-science/biovia-materials-studio/

Frost R. L. Čejka J. Weier M. L. Martens W. N. Ayoko G. A. J. Raman Spectrosc. 2007;38:398–409. doi: 10.1002/jrs.1660. DOI

Weck P. F. Kim E. Buck E. C. RSC Adv. 2015;5:79090–79097. doi: 10.1039/C5RA16111H. DOI

Mouhat F. Coudert F. X. Phys. Rev. B. 2014;90:224104. doi: 10.1103/PhysRevB.90.224104. DOI

Voigt W., Lehrbuch der Kristallphysik, Teubner, Leipzig, 1962

Reuss A. Z. Angew. Math. Mech. 1929;9:49–58. doi: 10.1002/zamm.19290090104. DOI

Hill R. Proc. Phys. Soc., London, Sect. A. 1952;65:349–354. doi: 10.1088/0370-1298/65/5/307. DOI

Pugh S. F. Philos. Mag. 1954;45:823–843.

Niu H. Wei P. Sun Y. Chen C. X. Franchini C. Li D. Li Y. Appl. Phys. Lett. 2011;99:031901. doi: 10.1063/1.3610996. DOI

Ranganathan S. I. Ostoja-Starzewski M. Phys. Rev. Lett. 2008;101:055504. doi: 10.1103/PhysRevLett.101.055504. PubMed DOI

EOSFIT 5.2 software, http://programming.ccp14.ac.uk/ccp/web-mirrors/ross-angel/crystal/software.html, accessed 15 April, 2020

Birch F. Phys. Rev. 1947;71:809–824. doi: 10.1103/PhysRev.71.809. DOI

Lethbridge Z. A. D. Walton R. I. Marmier A. S. H. Smith C. W. Evans K. E. Acta Mater. 2010;58:6444–6451. doi: 10.1016/j.actamat.2010.08.006. DOI

Colmenero F. Cobos J. Timón V. J. Phys.: Condens. Matter. 2019;31:175701. doi: 10.1088/1361-648X/ab0312. PubMed DOI

Colmenero F. Mater. Res. Express. 2019;6:045610. doi: 10.1088/2053-1591/aaf9d7. DOI

Colmenero F. Phys. Chem. Chem. Phys. 2019;21:2673–2690. doi: 10.1039/C8CP07188H. PubMed DOI

Colmenero F. Adv. Theory Simul. 2019;2:1900040. doi: 10.1002/adts.201900040. DOI

Colmenero F. Timón V. J. Mater. Sci. 2020;55:218–236. doi: 10.1007/s10853-019-04041-2. DOI

Colmenero F. Sejkora J. Plášil J. Sci. Rep. 2020;10:7510. doi: 10.1038/s41598-020-64481-8. PubMed DOI PMC

Lakes R. S. Science. 1987;235:1038–1040. doi: 10.1126/science.235.4792.1038. PubMed DOI

Lakes R. S. Annu. Rev. Mater. Res. 2017;47:63–81. doi: 10.1146/annurev-matsci-070616-124118. DOI

Baughman R. H. Stafström S. Cui C. Dantas S. O. Science. 1998;279:1522–1524. doi: 10.1126/science.279.5356.1522. PubMed DOI

Cairns A. B. Goodwin A. L. Phys. Chem. Chem. Phys. 2000;17:20449–20465. doi: 10.1039/C5CP00442J. PubMed DOI

Tardy Y. Garrels R. M. Geochim. Cosmochim. Acta. 1976;41:1051–1056. doi: 10.1016/0016-7037(76)90046-6. DOI

Finch R. J. Mater. Res. Soc. Symp. Proc. 1997;465:1185–1192. doi: 10.1557/PROC-465-1185. DOI

Clark S. B. Ewing R. C. Schaumloffel J. C. J. Alloys Compd. 1998;271–273:189–193. doi: 10.1016/S0925-8388(98)00052-8. DOI

Chen F. Ewing R. C. Clark S. B. Am. Mineral. 1999;84:650–664. doi: 10.2138/am-1999-0418. DOI

Chase M. W. Davies C. A. Downey J. R. Frurip D. J. McDonald R. A. Syverud A. N. J. Phys. Chem. Ref. Data. 1985;14(Suppl. 1):1–1856.

Barin I., Thermochemical Data of Pure Substances, VCH, Weinheim, Third edn, 1995

Ekeroth E. Roth O. Jonsson M. J. Nucl. Mater. 2006;355:38–46. doi: 10.1016/j.jnucmat.2006.04.001. DOI

Barreiro-Fidalgo A. Kumagai Y. Jonsson M. J. Coord. Chem. 2018;71:1799–1807. doi: 10.1080/00958972.2018.1466287. DOI

Maier A. C. Kegler P. Klinkenberg M. Baena A. Finkeldei S. Brandt F. Jonsson M. Dalton Trans. 2020;49:1241–1248. doi: 10.1039/C9DT04395K. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...