Full crystal structure, hydrogen bonding and spectroscopic, mechanical and thermodynamic properties of mineral uranopilite
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35518170
PubMed Central
PMC9056531
DOI
10.1039/d0ra04596a
PII: d0ra04596a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The determination of the full crystal structure of the uranyl sulfate mineral uranopilite, (UO2)6(SO4)O2(OH)6·14H2O, including the positions of the hydrogen atoms within the corresponding unit cell, has not been feasible to date due to the poor quality of its X-ray diffraction pattern. In this paper, the complete crystal structure of uranopilite is established for the first time by means of first principles solid-state calculations based in density functional theory employing a large plane wave basis set and pseudopotential functions. The computed unit-cell parameters and structural data for the non-hydrogen atoms are in excellent agreement with the available experimental data. The computed X-ray diffraction pattern is also in satisfactory agreement with the experimental pattern. The infrared spectrum of uranopilite is collected from a natural crystal specimen originating in Jáchymov (Czech Republic) and computed employing density functional perturbation theory. The theoretical and experimental vibrational spectra are highly consistent. Therefore, a full assignment of the bands in the experimental infrared spectrum is performed using a normal mode analysis of the first principles vibrational results. One overtone and six combination bands are recognized in the infrared spectrum. The elasticity tensor and phonon spectra of uranopilite are computed from the optimized crystal structure and used to analyze its mechanical stability, to obtain a rich set of elastic properties and to derive its fundamental thermodynamic properties as a function of temperature. Uranopilite is shown to have a large mechanical anisotropy and to exhibit the negative Poisson's ratio and negative linear compressibility phenomena. The calculated specific heat and entropy at 298.15 K are 179.6 and 209.0 J K-1 mol-1, respectively. The computed fundamental thermodynamic functions of uranopilite are employed to obtain its thermodynamic functions of formation in terms of the elements and the thermodynamic properties of a set of chemical reactions relating uranopilite with a representative group of secondary phases of spent nuclear fuel. From the reaction thermodynamic data, the relative stability of uranopilite with respect to these secondary phases is evaluated as a function of temperature and under different hydrogen peroxide concentrations. From the results, it follows that uranopilite has a very large thermodynamic stability in the presence of hydrogen peroxide. The high stability of uranopilite under this condition justify its early crystallization in the paragenetic sequence of secondary phases occurring when uranium dioxide is exposed to sulfur-rich solutions.
Institute of Physics ASCR v v i Na Slovance 2 182 21 Praha 8 Czech Republic
Instituto de Estructura de la Materia C Serrano 113 28006 Madrid Spain
Mineralogicko petrologické oddělení Národní muzeum Cirkusová 1740 193 00 Praha 9 Czech Republic
Zobrazit více v PubMed
Frondel C. Am. Mineral. 1952;37:950–959.
Burns P. C. Can. Mineral. 2001;39:1139–1146. doi: 10.2113/gscanmin.39.4.1139. DOI
Plášil J. Sejkora J. Škácha P. Goliaš V. Hušák M. Bull. Mineral. Petrol. 2005;13:192–196.
Sejkora J. Litochleb J. Bureš B. Jindra J. Bull. Mineral. Petrol. 2004;12:171–174.
Meisser N. Beitr. Geol. Schweiz, Geotech. Ser. 2012;96:1–183.
Plášil J. Sejkora J. Škoda R. Škácha P. J. Geosci. 2014;59:223–253. doi: 10.3190/jgeosci.171. DOI
Finch R. J. Murakami T. Rev. Mineral. Geochem. 1999;38:91–179.
Krivovichev S. V. and Plášil J., in Uranium: From Cradle to Grave, ed. P. C. Burns and G. E. Sigmon, Mineralogical Association of Canada, Winnipeg, MB, Canada, 2013, Short Course 43, pp. 15–119
Plášil J. J. Geosci. 2014;59:99–114. doi: 10.3190/jgeosci.163. DOI
Baker R. J. Coord. Chem. Rev. 2014;266–267:123–136. doi: 10.1016/j.ccr.2013.10.004. DOI
Lussier A. J. Lopez R. A. K. Burns P. C. Can. Mineral. 2016;54:177–283. doi: 10.3749/canmin.1500078. DOI
Gurzhiy V. V. Plášil J. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2019;75:39–48. doi: 10.1107/S2052520618016098. PubMed DOI
Dauber H. Ann. Phys. 1854;92:237–251. doi: 10.1002/andp.18541680604. DOI
Weisbach A. Neu. Jb. Geol. Paläont. 1882;2:249–259.
Colmenero F. Cobos J. Timón V. Inorg. Chem. 2018;57:4470–4481. doi: 10.1021/acs.inorgchem.8b00150. PubMed DOI
Colmenero F. Fernández A. M. Cobos J. Timón V. ACS Earth Space Chem. 2019;3:17–28. doi: 10.1021/acsearthspacechem.8b00109. DOI
Colmenero F. Fernández A. M. Timón V. Cobos J. RSC Adv. 2018;8:24599–24616. doi: 10.1039/C8RA04678F. PubMed DOI PMC
Colmenero F. Plášil J. Cobos J. Sejkora J. Timón V. Čejka J. Bonales L. J. RSC Adv. 2019;9:15323–15334. doi: 10.1039/C9RA02931A. PubMed DOI PMC
Colmenero F. Plášil J. Sejkora J. Dalton Trans. 2019;48:16722–16736. doi: 10.1039/C9DT03256H. PubMed DOI
Colmenero F. Plášil J. Cobos J. Sejkora J. Timón V. Čejka J. Fernández A. M. Petříček V. RSC Adv. 2019;9:40708–40726. doi: 10.1039/C9RA09047A. PubMed DOI PMC
Colmenero F. Plášil J. Němec I. J. Phys. Chem. Solids. 2020;141:109400. doi: 10.1016/j.jpcs.2020.109400. DOI
Colmenero F. Plášil J. Škácha P. Spectrochim. Acta, Part A. 2020;234:118216. doi: 10.1016/j.saa.2020.118216. PubMed DOI
Nordstrom D. K. and Alpers C. N., in Reviews in Economic Geology, ed. G. S. Plumlee and M. J. Logsdon, Society of Economic Geologists, Littleton, CO, 1999, ch. 6, vol. 6A, pp. 133–160
Edwards K. J. Bond P. L. Druschel G. K. Mcguire M. M. Hamers R. J. Banfield J. F. Chem. Geol. 2000;169:383–397. doi: 10.1016/S0009-2541(00)00216-3. DOI
Bian Z. Miao X. Lei S. Chen S. Wang W. Struthers S. Science. 2002;37:702–703. PubMed
Jamieson H. E. Walke S. R. Parsons M. B. Appl. Geochem. 2015;57:85–105. doi: 10.1016/j.apgeochem.2014.12.014. DOI
Grenthe I., Fuger J., Konings R. J. M., Lemire R. J., Muller A. B., Nguyen-Trung C., Wanner H., Chemical Thermodynamics of Uranium, Nuclear Energy Agency Organisation for Economic Co-Operation and Development, OECD, Issy-les-Moulineaux, France, 2004
Guillaumont N. Y. R., Fanghänel T., Neck V., Fuger J., Palmer D. A., Grenthe I. and Rand M. H., Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technetium, ed. F. J. Mompean, M. Illemassene, C. Domenech-Orti and K. Ben Said, OECD Nuclear Energy Agency, Data Bank, Issy-les-Moulineaux, France, 2003
Cumberland S. A. Douglas G. Grice K. Moreau J. W. Earth-Sci. Rev. 2016;159:160–185. doi: 10.1016/j.earscirev.2016.05.010. DOI
Langmuir D. Geochim. Cosmochim. Acta. 1978;42:547–569. doi: 10.1016/0016-7037(78)90001-7. DOI
Langmuir D., Aqueous Environmental Geochemistry, Prentice-Hall, New York, 1997; pp. 486−557
Nguyen-Trung C. Begun G. M. Palmer D. A. Inorg. Chem. 1992;3:5280–5287. doi: 10.1021/ic00051a021. DOI
Gianguzza A. Milea D. Millero F. J. Sammartano S. Mar. Chem. 2004;85:103–124. doi: 10.1016/j.marchem.2003.10.002. DOI
Vallet V. I. Grenthe, C. R. Chimie. 2007;10:905–915. doi: 10.1016/j.crci.2007.03.004. DOI
Hennig C. Schmeide K. Brendler V. Moll H. Tsushima S. Scheinost A. C. Inorg. Chem. 2007;46:5882–5892. doi: 10.1021/ic0619759. PubMed DOI
Hennig C., Tsushima S., Brendler V., Ikeda A., Scheinost A. C. and Bernhard G., in Uranium, Mining and Hydrogeology, ed. B. J. Merkel and A. Hasche-Berger, Springer, Berlin, 2008; pp. 603–614
Vopálka D. Štamberg K. Motl A. Drtinová B. J. Radioanal. Nucl. Chem. 2010;286:681–686. doi: 10.1007/s10967-010-0764-5. DOI
Rao L., Tian G., Xia Y., Friese J. I., Zanonato P. and Di Bernardo P., in Nuclear Energy and the Environment, American Chemical Society, Washington DC, 2010
Berto S. Crea F. Daniele P. G. Gianguzza A. Pettignano A. Sammartano S. Coord. Chem. Rev. 2012;256:63–81. doi: 10.1016/j.ccr.2011.08.015. DOI
Kalintsev A. Migdisov A. Xu H. Roback R. Brugger J. Geochim. Cosmochim. Acta. 2019;267:75–91. doi: 10.1016/j.gca.2019.08.027. DOI
Fernandes H. M. Veiga L. H. S. Franklin M. R. Prado V. C. S. Taddei J. F. J. Geochem. Explor. 1996;52:161–173. doi: 10.1016/0375-6742(94)00043-B. DOI
Brugger J. Burns P. C. N. Meisser, Am. Mineral. 2003;88:676–685. doi: 10.2138/am-2003-0421. DOI
Maher K. Bargar J. R. Brown G. E. Inorg. Chem. 2013;52:3510–3532. doi: 10.1021/ic301686d. PubMed DOI
Novotnik B. Chen W. Evans R. D. Appl. Geochem. 2018;91:36–44. doi: 10.1016/j.apgeochem.2018.01.009. DOI
Runnells D. D. Sheperd T. A. Angino E. E. Environ. Sci. Technol. 1992;26:2316–2323. doi: 10.1021/es00036a001. DOI
Kelley K. D. Taylor C. D. Appl. Geochem. 1997;12:397–409. doi: 10.1016/S0883-2927(97)00009-7. DOI
Zielinski R. A. Orem W. H. Simmons K. R. Bohlen P. J. Water, Air, Soil Pollut. 2006;176:163–183. doi: 10.1007/s11270-006-9156-4. DOI
Warren C. G. Econ. Geol. 1972;67:759–767. doi: 10.2113/gsecongeo.67.6.759. DOI
Reynolds R. L. Goldhaber M. B. Econ. Geol. 1983;78:105–120. doi: 10.2113/gsecongeo.78.1.105. DOI
Bhattacharyya A. Campbell K. M. Kelly S. D. Roebbert Y. Weyer S. Bernier-Latmani R. Borch T. Nat. Commun. 2007;8:15538. doi: 10.1038/ncomms15538. PubMed DOI PMC
Plant J. A. Simpson P. R. Smith B. Windley B. F. Rev. Mineral. Geochem. 1999;38:255–319.
Finch R. J. and Ewing R. C., Uraninite Alteration in an Oxidizing Environment and its Relevance to the Disposal of Spent Nuclear Fuel, SKB Technical Report 91–15, Swedish Nuclear Fuel and Waste Management Co, Stockholm, Sweden, 1994
Forsyth R. S. Werme L. O. J. Nucl. Mater. 1992;90:3–19. doi: 10.1016/0022-3115(92)90071-R. DOI
Pearcy E. C. Prikryl J. D. Murphy W. M. Leslie B. W. Appl. Geochem. 1994;9:713–732. doi: 10.1016/0883-2927(94)90030-2. DOI
Wronkiewicz D. J. Bates J. K. Gerding T. J. Veleckis E. Tani B. S. J. Nucl. Mater. 1992;190:107–127. doi: 10.1016/0022-3115(92)90081-U. DOI
Wronkiewicz D. J. Bates J. K. Wolf S. F. Buck E. C. J. Nucl. Mater. 1996;238:78–95. doi: 10.1016/S0022-3115(96)00383-2. DOI
Bruno J. Casas I. Cera E. Ewing R. C. Finch R. J. Werme L. O. Mater. Res. Soc. Symp. Proc. 1994;353:633–639. doi: 10.1557/PROC-353-633. DOI
Bruno J. Ewing R. C. Elements. 2006;2:343–349. doi: 10.2113/gselements.2.6.343. DOI
Ewing R. C. Nat. Mater. 2015;14:252–255. doi: 10.1038/nmat4226. PubMed DOI
Modelling in Aquatic Chemistry, ed. I. Grenthe and I. Puigdomenech, OECD Nuclear Energy Agency Data Bank, OECD/NEA, Stockholm. 1997
Chisholm-Brause C. J. Berg J. M. Little K. M. Matzner R. A. Morr D. E. J. Colloid Interface Sci. 2004;277:366–382. doi: 10.1016/j.jcis.2004.04.047. PubMed DOI
Behrends T. Krawczyk-Bärsch E. Arnold T. Appl. Geochem. 2013;27:453–462. doi: 10.1016/j.apgeochem.2011.09.014. DOI
Tournassat C. Steefel C. I. Rev. Mineral. Geochem. 2019;85:75–109. doi: 10.2138/rmg.2019.85.4. DOI
Lagneau V. Regnault O. Descostes M. Rev. Mineral. Geochem. 2019;85:499–528. doi: 10.2138/rmg.2019.85.16. DOI
Bildstein O. Claret F. Frugier P. Rev. Mineral. Geochem. 2019;85:419–457. doi: 10.2138/rmg.2019.85.14. DOI
Endrizzi F. Gaona X. Marques-Fernandes M. Baeyens B. Altmaier M. J. Chem. Thermodyn. 2018;120:45–53. doi: 10.1016/j.jct.2018.01.006. DOI
Colmenero F. Fernández A. M. Cobos J. Timón V. J. Phys. Chem. C. 2018;122:5254–5267. doi: 10.1021/acs.jpcc.7b12341. DOI
Colmenero F. Fernández A. M. Cobos J. Timón V. J. Phys. Chem. C. 2018;122:5268–5279. doi: 10.1021/acs.jpcc.7b12368. DOI
NEA Data Bank, Thermochemical Database (TDB), accessed 15 April, 2020, https://www.oecd-nea.org/dbtdb/
Thermo-Chimie database (Consortium Andra-Ondraf/Niras-RWM), accessed 15 April, 2020, http://www.thermochimie-tdb.com/
Sharifironizi M. Szymanowski J. E. S. Sigmon G. E. Navrotsky A. Fein J. B. Burns P. C. Chem. Geol. 2016;447:54–58. doi: 10.1016/j.chemgeo.2016.10.022. DOI
Sharifironizi M. Burns P. C. Can. Mineral. 2018;56:7–14. doi: 10.3749/canmin.1700056. DOI
Gorman-Lewis D. Burns P. C. Fein J. B. J. Chem. Thermodyn. 2008;40:335–352. doi: 10.1016/j.jct.2007.12.004. DOI
Wersin P. Hochella M. F. Persson P. Redden G. Leckie J. O. Harris D. W. Geochim. Cosmochim. Acta. 1998;58:2829–2843. doi: 10.1016/0016-7037(94)90117-1. DOI
Nováček R., Věstník Královské České Společnosti Nauk, 1935, vol. 7, pp. 1–36
Nováček R., Věstník Královské České Společnosti Nauk, Třída matematicko-přírodovědná, 1941, pp. 1–15
Ondruš P. Veselovský F. Hlousek J. Skála R. Vavřín J. Frýda J. Čejka J. Gabašová A. J. Czech Geol. Soc. 1959;42:3–76.
Čejka J. Sejkora J. Mrázek Z. Urbanec Z. Jarchovsky T. Neues Jahrbuch Mineral. Abhand. 1996;170:155–170.
Lu G. Haes A. Forbes T. Z. Coord. Chem. Rev. 2018;374:314–344. doi: 10.1016/j.ccr.2018.07.010. PubMed DOI PMC
Driscoll R. J. P. Wolverson D. Mitchels J. M. Skelton J. M. Parker S. C. Molinari M. Khan I. Geeson D. Allen G. C. RSC Adv. 2014;4:59137–59149. doi: 10.1039/C4RA09361E. DOI
Weck P. F. Kim E. Jové-Colón C. F. Sassani D. C. Dalton Trans. 2013;42:4570–4578. doi: 10.1039/C3DT32536A. PubMed DOI
Burns P. C. Ewing R. C. Hawthorne F. C. Can. Mineral. 1997;35:1551–1570.
MaterialsStudio, 15 April, 2020, http://3dsbiovia.com/products/collaborative-science/biovia-materials-studio/
Frost R. L. Čejka J. Weier M. L. Martens W. N. Ayoko G. A. J. Raman Spectrosc. 2007;38:398–409. doi: 10.1002/jrs.1660. DOI
Weck P. F. Kim E. Buck E. C. RSC Adv. 2015;5:79090–79097. doi: 10.1039/C5RA16111H. DOI
Mouhat F. Coudert F. X. Phys. Rev. B. 2014;90:224104. doi: 10.1103/PhysRevB.90.224104. DOI
Voigt W., Lehrbuch der Kristallphysik, Teubner, Leipzig, 1962
Reuss A. Z. Angew. Math. Mech. 1929;9:49–58. doi: 10.1002/zamm.19290090104. DOI
Hill R. Proc. Phys. Soc., London, Sect. A. 1952;65:349–354. doi: 10.1088/0370-1298/65/5/307. DOI
Pugh S. F. Philos. Mag. 1954;45:823–843.
Niu H. Wei P. Sun Y. Chen C. X. Franchini C. Li D. Li Y. Appl. Phys. Lett. 2011;99:031901. doi: 10.1063/1.3610996. DOI
Ranganathan S. I. Ostoja-Starzewski M. Phys. Rev. Lett. 2008;101:055504. doi: 10.1103/PhysRevLett.101.055504. PubMed DOI
EOSFIT 5.2 software, http://programming.ccp14.ac.uk/ccp/web-mirrors/ross-angel/crystal/software.html, accessed 15 April, 2020
Birch F. Phys. Rev. 1947;71:809–824. doi: 10.1103/PhysRev.71.809. DOI
Lethbridge Z. A. D. Walton R. I. Marmier A. S. H. Smith C. W. Evans K. E. Acta Mater. 2010;58:6444–6451. doi: 10.1016/j.actamat.2010.08.006. DOI
Colmenero F. Cobos J. Timón V. J. Phys.: Condens. Matter. 2019;31:175701. doi: 10.1088/1361-648X/ab0312. PubMed DOI
Colmenero F. Mater. Res. Express. 2019;6:045610. doi: 10.1088/2053-1591/aaf9d7. DOI
Colmenero F. Phys. Chem. Chem. Phys. 2019;21:2673–2690. doi: 10.1039/C8CP07188H. PubMed DOI
Colmenero F. Adv. Theory Simul. 2019;2:1900040. doi: 10.1002/adts.201900040. DOI
Colmenero F. Timón V. J. Mater. Sci. 2020;55:218–236. doi: 10.1007/s10853-019-04041-2. DOI
Colmenero F. Sejkora J. Plášil J. Sci. Rep. 2020;10:7510. doi: 10.1038/s41598-020-64481-8. PubMed DOI PMC
Lakes R. S. Science. 1987;235:1038–1040. doi: 10.1126/science.235.4792.1038. PubMed DOI
Lakes R. S. Annu. Rev. Mater. Res. 2017;47:63–81. doi: 10.1146/annurev-matsci-070616-124118. DOI
Baughman R. H. Stafström S. Cui C. Dantas S. O. Science. 1998;279:1522–1524. doi: 10.1126/science.279.5356.1522. PubMed DOI
Cairns A. B. Goodwin A. L. Phys. Chem. Chem. Phys. 2000;17:20449–20465. doi: 10.1039/C5CP00442J. PubMed DOI
Tardy Y. Garrels R. M. Geochim. Cosmochim. Acta. 1976;41:1051–1056. doi: 10.1016/0016-7037(76)90046-6. DOI
Finch R. J. Mater. Res. Soc. Symp. Proc. 1997;465:1185–1192. doi: 10.1557/PROC-465-1185. DOI
Clark S. B. Ewing R. C. Schaumloffel J. C. J. Alloys Compd. 1998;271–273:189–193. doi: 10.1016/S0925-8388(98)00052-8. DOI
Chen F. Ewing R. C. Clark S. B. Am. Mineral. 1999;84:650–664. doi: 10.2138/am-1999-0418. DOI
Chase M. W. Davies C. A. Downey J. R. Frurip D. J. McDonald R. A. Syverud A. N. J. Phys. Chem. Ref. Data. 1985;14(Suppl. 1):1–1856.
Barin I., Thermochemical Data of Pure Substances, VCH, Weinheim, Third edn, 1995
Ekeroth E. Roth O. Jonsson M. J. Nucl. Mater. 2006;355:38–46. doi: 10.1016/j.jnucmat.2006.04.001. DOI
Barreiro-Fidalgo A. Kumagai Y. Jonsson M. J. Coord. Chem. 2018;71:1799–1807. doi: 10.1080/00958972.2018.1466287. DOI
Maier A. C. Kegler P. Klinkenberg M. Baena A. Finkeldei S. Brandt F. Jonsson M. Dalton Trans. 2020;49:1241–1248. doi: 10.1039/C9DT04395K. PubMed DOI