Structural, mechanical, spectroscopic and thermodynamic characterization of the copper-uranyl tetrahydroxide mineral vandenbrandeite
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35542667
PubMed Central
PMC9076244
DOI
10.1039/c9ra09047a
PII: c9ra09047a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The full crystal structure of the copper-uranyl tetrahydroxide mineral (vandenbrandeite), including the positions of the hydrogen atoms, is established by the first time from X-ray diffraction data taken from a natural crystal sample from the Musonoi Mine, Katanga Province, Democratic Republic of Congo. The structure is verified using first-principles solid-state methods. From the optimized structure, the mechanical and dynamical stability of vandenbrandeite is studied and a rich set of mechanical properties are determined. The Raman spectrum is recorded from the natural sample and determined theoretically. Since both spectra have a high-degree of consistence, all spectral bands are rigorously assigned using a theoretical normal-coordinate analysis. Two bands in the Raman spectra, located at 2327 and 1604 cm-1, are recognized as overtones and a band at 1554 cm-1 is identified as a combination band. The fundamental thermodynamic functions of vandenbrandeite are computed as a function of temperature using phonon calculations. These properties, unknown so far, are key-parameters for the performance-assessment of geological repositories for storage of radioactive nuclear waste and for understanding the paragenetic sequence of minerals arising from the corrosion of uranium deposits. The thermodynamic functions are used here to determine the thermodynamic properties of formation of vandenbrandeite in terms of the elements and the Gibbs free-energies and reaction constants for a series of reactions involving vandenbrandeite and a representative subset of the most important secondary phases of spent nuclear fuel. Finally, from the thermodynamic data of these reactions, the relative stability of vandenbrandeite with respect to these phases as a function of temperature and in the presence of hydrogen peroxide is evaluated. Vandenbrandeite is shown to be highly stable under the simultaneous presence of water and hydrogen peroxide.
Institute of Physics ASCR v v i Na Slovance 2 182 21 Praha 8 Czech Republic
Instituto de Estructura de la Materia C Serrano 113 28006 Madrid Spain
Mineralogicko petrologické oddělení Národní Muzeum Cirkusová 1740 193 00 Praha 9 Czech Republic
Zobrazit více v PubMed
Swedish Corrosion Institute, Copper as canister material for unreprocessed nuclear waste - evaluation with respect to corrosion, Report KBS-TR-90, Swedish Nuclear Fuel Supply Company, Stockholm, 1978
Hultquist G. Corros. Sci. 1986;26:173. doi: 10.1016/0010-938X(86)90044-2. DOI
Eriksen T. E. Ndalgmba P. Grenthe I. Corros. Sci. 1989;29:1241. doi: 10.1016/0010-938X(89)90071-1. DOI
Wersin P., Spahiu K. and Bruno J., Kinetic modelling of bentonite-canister interaction. Long-term predictions of copper canister corrosion under oxic and anoxic conditions, Technical Report SKB-TR-94-25, Swedish Nuclear Fuel and Waste Management Company, Stockholm, 1994
Sjoblom R. Hermansson H. P. Amcoff O. Mater. Res. Soc. Symp. Proc. 1995;353:687. doi: 10.1557/PROC-353-687. DOI
Hermansson H. P. and Eriksson S., Corrosion of the Copper Canister in the Repository Environment, SKI Report 99:52, Swedish Nuclear Power Inspectorate (SKI), Stockholm, 1999
Mildowski A. E., Styles M. T. and Hards V. L., A natural analogue for copper waste canisters: the copper-uranium mineralised concretions in the Permian mudrocks of south Devon, United Kingdom, Technical Report SKB-TR-00-11, Swedish Nuclear Fuel and Waste Management Company, Stockholm, 2000
Mildowski A. E., Styles M. T., Horstwood M. S. A. and Kemp S. J., Alteration of uraniferous and native copper concretions in the Permian mudrocks of south Devon, United Kingdom, Technical Report SKB-TR-02-09, Swedish Nuclear Fuel and Waste Management Company, Stockholm, 2002
King F., Ahonen L., Taxén C., Vuorinen U. and Werme L., Copper corrosion under expected conditions in a deep geologic repository, Technical Report SKB-TR-01-23, Swedish Nuclear Fuel and Waste Management Company, Stockholm, 2001
Gubner R. and Andersson U., Corrosion resistance of copper canister weld material, Technical Report SKB-TR-07-07, Swedish Nuclear Fuel and Waste Management Company, Stockholm, 2007
Szakálos P. Hultquist G. Wikmark G. Electrochem. Solid-State Lett. 2007;10:C63. doi: 10.1149/1.2772085. DOI
Hultquist G. Szakálos P. Graham M. J. Belonoshko A. B. Sproule G. I. Gråsjö L. Dorogokupets P. Danilov B. Aastrup T. Wikmark G. Chuah G. K. Eriksson J. C. Rosengren A. Catal. Lett. 2009;132:311. doi: 10.1007/s10562-009-0113-x. DOI
Hultquist G. Graham M. J. Szakálos P. Sproule G. I. Rosengren A. Gråsjö L. Corros. Sci. 2011;53:310. doi: 10.1016/j.corsci.2010.09.037. DOI
Rosborg B. Werme L. J. Nucl. Mater. 2008;379:142. doi: 10.1016/j.jnucmat.2008.06.025. DOI
Rosborg B., Recorded corrosion rates on copper electrodes in the Prototype Repository at the Äspö HRL, Report SKB-R-13-13, Swedish Nuclear Fuel and Waste Management Company, Stockholm, 2013
Wersin P., LOT A2 test parcel. Compilation of copper data in the LOT A2 test parcel, Report TR-13-17, Swedish Nuclear Fuel and Waste Management Company, Stockholm, 2013
Kärnbränslehantering S., Design, production and initial state of the canister, Technical Report SKB-TR-10-14, Swedish Nuclear Fuel and Waste Management Company, Stockholm, 2014
Björkbacka Å. Hosseinpour S. Johnson M. Leygraf C. Jonsson M. Radiat. Phys. Chem. 2013;92:80. doi: 10.1016/j.radphyschem.2013.06.033. DOI
Hultquist G. Corros. Sci. 2015;93:327. doi: 10.1016/j.corsci.2015.01.002. DOI
Ottossona M. Bomana M. Berasteguia P. Anderssona Y. Hahlina M. Korvelab M. Bergera R. Corros. Sci. 2017;122:53. doi: 10.1016/j.corsci.2017.03.014. DOI
Hedin A. Johansson A. J. Lilja C. Boman M. Berastegui P. Berger R. Ottosson M. Corros. Sci. 2018;137:1. doi: 10.1016/j.corsci.2018.02.008. DOI
Marcos N. Mater. Res. Soc. Symp. Proc. 1997;465:1153.
King F. and Wersin P., Review of Supercontainer Copper Shell-Bentonite Interactions and Possible Effects on Buffer Performance for the KBS-3H Design, Posiva Working Report 2013-03, Posiva, Olkiluoko, 2014
Wersin P. Epping P. A. Pekala M. Pitkänen P. Snellman M. Procedia Earth Planet. Sci. 2017;17:722. doi: 10.1016/j.proeps.2016.12.183. DOI
Alt-Epping P., Pekala M., Wersin P. and Pitkänen P., in Proceedings of the 7th International Conference on Clay in Natural and Engineered Barriers for Radioactive Waste Confinement, Davos, Switzerland, 2017, p. 50
Wersin P., Pękala M., Alt-Epping P., Pitkänen P. and Cloet V., in Proceedings of the 16th International High-Level Radioactive Waste Management (IHLRWM 2017), Charlotte, NC, 2017, p. 30
Pekala M., Alt-Epping P. and Wersin P., 3D and 1D Dual-Porosity Reactive Transport Simulations - Model Improvements, Sensitivity Analyses, and Results from the Integrated Sulfide Project Inter-Model Comparison Exercise, Posiva Working Report 2018-31, Posiva, Olkiluoko, 2019
King F. and Litke C. D., The corrosion of copper in synthetic groundwater at 150 °C. Part I. The results of short term electrochemical tests, Technical Record TR-428, Atomic Energy of Canada Ltd. Toronto, 1987
King F. Appl. Geochem. 1995;10:477. doi: 10.1016/0883-2927(95)00019-G. DOI
King F. Litke C. D. Quinn M. J. LeNeveu D. M. Corros. Sci. 1995;37:833. doi: 10.1016/0010-938X(95)80013-1. DOI
Worgan K. Apted M. Sjoblom R. Mater. Res. Soc. Symp. Proc. 1995;353:895.
King F. and Kolar M., Theory manual for the copper corrosion model for stress corrosion cracking of used fuel disposal containers CCM-SCC.0, Nuclear Waste Management Division Report 06819-REP-01300-10095-R00, Ontario Power Generation, Toronto, Ontario, 2004
King F. and Kolar M., Simulation of the consumption of oxygen in long-term in situ experiments and in the third case study repository using the copper corrosion model CCM-UC.1.1, Nuclear Waste Management Division Report 06819-REP-01300-10084-R00, Ontario Power Generation, Toronto, Ontario, 2006
King F., Review and gap analysis of the corrosion of copper containers under unsaturated conditions, Nuclear Waste Management Division Report 06819-REP-01300-10124-R00, Ontario Power Generation, Toronto, Ontario, 2006
Smith J. M., The corrosion and electrochemistry of copper in aqueous, anoxic sulphide solutions, PhD Thesis, The University of Western Ontario, Canada, 2007
Smith J. Qin Z. King F. Werme L. Shoesmith D. W. Corrosion. 2007;63:135. doi: 10.5006/1.3278338. DOI
Ikeda B. M. and Litke C. D., Stress corrosion cracking of copper in nitrite/chloride mixtures at elevated temperatures, Technical Report NWMO TR-2007-04, Nuclear Waste Management Organization, Toronto, Ontario, 2007
King F. Kolar M. Maak P. J. Nucl. Mater. 2008;379:133. doi: 10.1016/j.jnucmat.2008.06.017. DOI
King F. Corrosion. 2009;65:233. doi: 10.5006/1.3319131. DOI
Kwong G. M., Status of corrosion studies for copper used fuel containers under low salinity conditions, NWMO Technical Report NWMO-TR-2011-14, Nuclear Waste Management Organization, Toronto, Canada, 2011
Chen J. Qin Z. Shoesmith D. W. Long-term corrosion of copper in a dilute anaerobic sulfide solution. Electrochim. Acta. 2011;56:7854. doi: 10.1016/j.electacta.2011.04.086. DOI
King F. Lilja C. Vähänen M. J. Nucl. Mater. 2013;438:228. doi: 10.1016/j.jnucmat.2013.02.080. DOI
Keech P. G. Vo P. Ramamurthy S. Chen J. Jacklin R. Shoesmith D. W. Corros. Eng., Sci. Technol. 2014;49:425. doi: 10.1179/1743278214Y.0000000206. DOI
Boyle C. H. Meguid S. A. Nucl. Eng. Des. 2015;293:403. doi: 10.1016/j.nucengdes.2015.08.011. DOI
Standish T. Chen J. Jacklin R. Jakupi P. Ramamurthy S. Zagidulin D. Keech P. Shoesmith D. W. Electrochim. Acta. 2016;211:331. doi: 10.1016/j.electacta.2016.05.135. DOI
Ibrahim B. Zagidulin D. Behazin M. Ramamurthy S. Wren J. C. Shoesmith D. W. Corros. Sci. 2018;141:53. doi: 10.1016/j.corsci.2018.05.024. DOI
Simpson J. P., Experiments on container materials for Swiss high-level waste disposal projects Part II, Nagra Technical Report 84-01, National Cooperative for the Disposal of Radioactive Waste, Wettingen, 1984
Johnson L. H. and King F., Canister options for the disposal of spent fuel, NAGRA Technical Report 02-11, National Cooperative for the Disposal of Radioactive Waste, Wettingen, 2003
JNC, Second Progress Report in Research and Development for the Geological Disposal of HLW in Japan, Supporting Report 2, Repository Design and Engineering Technology, Japan Nuclear Cycle Development Institute, 2000
Taniguchi N. Kawasaki M. J. Nucl. Mater. 2008;379:154. doi: 10.1016/j.jnucmat.2008.06.010. DOI
Choi H. J. Lee M. Lee J. Y. Nucl. Eng. Des. 2010;240:2714. doi: 10.1016/j.nucengdes.2010.06.038. DOI
Kursten B., Smailos E., Azkarate I., Werme L., Smart N. R. and Santarini G., State-of-the-art document on the COrrosion BEhaviour of COntainer MAterials, COBECOMA project Final Report, 5th Euratom Framework Programme, Contract No. FIKW-CT-20014-20138, European Commission, 2004
Landolt D. Muller R. H. Tobias C. W. J. Electrochem. Soc. 1969;116:1385. doi: 10.1149/1.2411528. DOI
Bacarella A. L. Griess J. C. J. Electrochem. Soc. 1973;120:459. doi: 10.1149/1.2403477. DOI
Adeloju S. B. Duan Y. Y. Br. Corros. J. 1994;29:309. doi: 10.1179/000705994798267485. DOI
Fateh A. Aliofkhazraei M. Rezvanian A. R. Arabian J. Chem. 2017 doi: 10.2016/j.arabjc.2017.05.021. DOI
Li S. Teague M. T. Doll G. L. Schindelholz E. J. Conga H. Corros. Sci. 2018;141:243. doi: 10.1016/j.corsci.2018.06.037. DOI
Ewing R. C. Nat. Mater. 2015;14:252. doi: 10.1038/nmat4226. PubMed DOI
Wang R. Katayama Y. B. Nucl. Chem. Waste Manage. 1982;3:83. doi: 10.1016/0191-815X(82)90054-7. DOI
Shoesmith D. W. Sunder S. J. Nucl. Mater. 1992;190:20. doi: 10.1016/0022-3115(92)90072-S. DOI
Sunder S. Shoesmith D. W. Christensen H. Miller N. H. J. Nucl. Mater. 1992;190:78. doi: 10.1016/0022-3115(92)90078-Y. DOI
Shoesmith D. W. J. Nucl. Mater. 2000;282:1. doi: 10.1016/S0022-3115(00)00392-5. DOI
Sattonnay G. Ardois C. Corbel C. Lucchini J. F. Barthe M. F. Garrido F. Gosset D. J. Nucl. Mater. 2001;288:11. doi: 10.1016/S0022-3115(00)00714-5. DOI
Roth O. Jonsson M. Cent. Eur. J. Chem. 2008;6:1.
Christensen H. Sunder S. J. Nucl. Mater. 1996;238:70. doi: 10.1016/S0022-3115(96)00342-X. DOI
Plášil J. J. Geosci. 2014;59:99. doi: 10.3190/jgeosci.163. DOI
Finch R. J. Murakami T. Rev. Mineral. Geochem. 1999;38:91.
Grenthe I., Drozdzynski J., Fujino T., Buck E. C., Albrecht-Schmitt T. E. and Wolf S. F., in The Chemistry of Actinide and Transactinide Elements, ed. L. R. Morss, N. M. Edelstein and J. Fuger, Springer Science and Business Media, Berlin, 2006, ch. V, vol. I; pp. 253–638
Krivovichev S. V. and Plášil J., in Uranium: From Cradle to Grave, ed. P. C. Burns and G. E. Sigmon, Mineralogical Association of Canada, Winnipeg, MB, Canada, 2013, short course 43, pp. 15–119
Burns P. C. Ewing R. C. Miller M. L. J. Nucl. Mater. 1997;245:1. doi: 10.1016/S0022-3115(97)00006-8. DOI
Rosenzweig A. Ryan R. R. Am. Mineral. 1975;60:448.
Plášil J. Minerals. 2018;8:551. doi: 10.3390/min8120551. DOI
Piret P. J. Appl. Crystallogr. 1979;12:616. doi: 10.1107/S0021889879013443. DOI
Olds T. A. Plášil J. Kampf A. R. Dal Bo F. Burns P. C. Minerals. 2018;8:511. doi: 10.3390/min8110511. DOI
Piret P. Declercq J. P. Wauters-Stoop D. Bull. Mineral. 1980;103:176.
Čejka J. Urbanec Z. Čejka Jr J. Mrázek Z. Neues Jahrb. Mineral., Abh. 1988;159:297.
Ondruš P. Veselovský F. Skála R. Císařová I. Hloušek J. Frýda J. Vavřín Čejka J. Gabašová A. J. Czech Geol. Soc. 1997;42:7.
Ondruš P. Veselovský F. Gabašová A. Hloušek J. Šrein V. J. Czech Geol. Soc. 2003;48:149.
Plášil J. Fejfarová K. Wallwork K. S. Dušek M. Škoda R. Sejkora J. Čejka J. Veselovský F. Hloušek J. Meisser N. Brugger J. Am. Mineral. 2012;97:1796. doi: 10.2138/am.2012.4127. DOI
Locock A. J. Burns P. C. Can. Mineral. 2003;41:489. doi: 10.2113/gscanmin.41.2.489. DOI
Birch W. D. Mumme W. D. Segnit E. R. Aust. Mineral. 1988;3:125.
Kolitsch U. Giester G. Mineral. Mag. 2001;65:717. doi: 10.1180/0026461016560003. DOI
Burns P. C. Ewing R. C. Hawthorne F. C. Can. Mineral. 1997;35:1551.
Burns P. C. Rev. Mineral. Geochem. 1999;38:23.
Burns P. C. Can. Mineral. 2005;43:1839. doi: 10.2113/gscanmin.43.6.1839. DOI
Burns P. C. J. Nucl. Mater. 1999;265:218. doi: 10.1016/S0022-3115(98)00646-1. DOI
Burns P. C. Deely K. M. Skanthakumar S. Radiochim. Acta. 2004;92:151.
Klingensmith A. L. Burns P. C. Am. Mineral. 2007;92:1946. doi: 10.2138/am.2007.2542. DOI
Frondel C. Am. Mineral. 1956;41:539.
Garrels R. M. Christ C. L. US Geol. Surv. Prof. Pap. 1959;320:81.
Finch R. J. Ewing R. C. J. Nucl. Mater. 1992;190:133. doi: 10.1016/0022-3115(92)90083-W. DOI
Finch R. J. and Ewing R. C., Uraninite alteration in an oxidizing environment and its relevance to the disposal of spent nuclear fuel, SKB Technical Report 91–15, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden, 1994
Forsyth R. S. Werme L. O. J. Nucl. Mater. 1992;190:3. doi: 10.1016/0022-3115(92)90071-R. DOI
Pearcy E. C. Prikryl J. D. Murphy W. M. Leslie B. W. Appl. Geochem. 1994;9:713. doi: 10.1016/0883-2927(94)90030-2. DOI
Wronkiewicz D. J. Bates J. K. Gerding T. J. Veleckis E. Tani B. S. J. Nucl. Mater. 1992;190:107. doi: 10.1016/0022-3115(92)90081-U. DOI
Wronkiewicz D. J. Bates J. K. Wolf S. F. Buck E. C. J. Nucl. Mater. 1996;238:78. doi: 10.1016/S0022-3115(96)00383-2. DOI
Bruno J. Casas I. Cera E. Ewing R. C. Finch R. J. Werme L. O. Mater. Res. Soc. Symp. Proc. 1994;353:633. doi: 10.1557/PROC-353-633. DOI
Finn P. A. Hoh J. C. Wolf S. F. Slater S. A. Bates J. K. Radiochim. Acta. 1996;74:65.
Schoep A. Ann. Mus. Congo Belge. 1932;1:22.
Thoreau J. Ann. Soc. Geol. Belge. 1931;55:C3.
Frondel C. U.S. Geol. Surv. Bull. 1958;1064:1.
Gauthier G. François A. Deliens M. Piret P. Mineral. Rec. 1989;20:265.
Bignand C. Bull. Soc. Fr. Mineral. Cristallogr. 1955;78:1.
Milne I. H. Nuffield E. W. Am. Mineral. 1951;36:394.
Rosenzweig A. Ryan R. R. Cryst. Struct. Commun. 1977;6:53.
Povarennykh A. S. Konstitut. Svoy. Mineral. 1979;13:78.
Čejka J. Urbanec Z. Trans. Czech. Acad. Sci., Math. Natur. Sci. Ser. 98:1–93.
Čejka J. Neues Jahrb. Mineral., Abh. 1994;H3:112.
Škácha P. Plášil J. Sejkora J. Čejka J. Škoda R. Meisser N. Bull. Mineral. Petrolog. Odd. Nár. Muz. 2014;22:240.
Plášil J. Eur. J. Mineral. 2018;30:253. doi: 10.1127/ejm/2017/0029-2691. DOI
Plášil J. Z. Kristallogr. 2019;234:733–738.
Ghazisaeed S. Kiefer B. Plášil J. RSC Adv. 2019;9:10058. doi: 10.1039/C8RA09557D. PubMed DOI PMC
Colmenero F. Cobos J. Timón V. Inorg. Chem. 2018;57:4470. doi: 10.1021/acs.inorgchem.8b00150. PubMed DOI
Colmenero F. Fernández A. M. Cobos J. Timón V. ACS Earth Space Chem. 2019;3:17. doi: 10.1021/acsearthspacechem.8b00109. DOI
Colmenero F. Fernández A. M. Cobos J. Timón V. RSC Adv. 2019;8:24599. doi: 10.1039/C8RA04678F. PubMed DOI PMC
Colmenero F. Cobos J. Timón V. J. Phys.: Condens. Matter. 2019;31:175701. doi: 10.1088/1361-648X/ab0312. PubMed DOI
Colmenero F. Plášil J. Cobos J. Sejkora J. Timón V. Čejka J. Bonales L. J. RSC Adv. 2019;9:15323. doi: 10.1039/C9RA02931A. PubMed DOI PMC
Colmenero F. Plášil J. Sejkora J. Dalton Trans. 2019;48:16722. doi: 10.1039/C9DT03256H. PubMed DOI
Bonales L. J. Colmenero F. Cobos J. Timón V. Phys. Chem. Chem. Phys. 2016;18:16575. doi: 10.1039/C6CP01510G. PubMed DOI
Colmenero F., in Minerals, ed. K. S. Essa, InTechOpen, London, 2018, ISBN: 978-953-51-6784-6
Colmenero F. Fernández A. M. Cobos J. Timón V. J. Phys. Chem. C. 2018;122:5254. doi: 10.1021/acs.jpcc.7b12341. DOI
Colmenero F. Bonales L. J. Cobos J. Timón V. J. Phys. Chem. C. 2017;121:5994. doi: 10.1021/acs.jpcc.7b00699. PubMed DOI
Colmenero F. Bonales L. J. Cobos J. Timón V. J. Phys. Chem. C. 2017;121:14507. doi: 10.1021/acs.jpcc.7b04389. PubMed DOI
Colmenero F. Fernández A. M. Cobos J. Timón V. J. Phys. Chem. C. 2018;122:5268. doi: 10.1021/acs.jpcc.7b12368. DOI
Colmenero F., in Density Functional Theory, ed. D. Glossman-Mitnik, InTechOpen, London, 2018, ISBN: 978-953-51-7020-4
Langmuir D., Aqueous Environmental Geochemistry, Prentice-Hall, New York, 1997, pp. 486–557
Grenthe I., Fuger J., Konings R. J. M., Lemire R. J., Muller A. B., Nguyen-Trung C. and Wanner H., Chemical Thermodynamics of Uranium, Nuclear Energy Agency Organisation for Economic Co-Operation and Development, OECD, Issy-les-Moulineaux, France, 2004
NEA Data Bank, Thermochemical Database (TDB), https://www.oecd-nea.org/dbtdb/, accessed Nov. 22, 2019
Thermo-Chimie database (Consortium Andra-Ondraf/Niras-RWM), http://www.thermochimie-tdb.com/, accessed Nov. 22, 2019
Rigaku Oxford Diffraction, CrysAlisCCD, CrysAlisRED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK, 2019
Sheldrick G. M. Acta Crystallogr. 2015;71:3. doi: 10.1107/S2053273314026370. PubMed DOI PMC
Crystallographic Computing System for Standard and Modulated Structures, Jana2006, http://jana.fzu.cz/, accessed Sept. 15, 2019
Clark S. J. Segall M. D. Pickard C. J. Hasnip P. J. Probert M. I. J. Refson K. Payne M. C. Z. Kristallogr. 2005;220:567.
MaterialsStudio, http://3dsbiovia.com/products/collabora-tive-science/biovia-materials-studio/, accessed Sept. 15, 2019
Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1996;77:3865. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Grimme S. J. Comput. Chem. 2006;27:1787. doi: 10.1002/jcc.20495. PubMed DOI
Payne M. C. Teter M. P. Ailan D. C. Arias A. Joannopoulos J. D. Rev. Mod. Phys. 1992;64:1045. doi: 10.1103/RevModPhys.64.1045. DOI
Troullier N. Martins J. L. Phys. Rev. B: Condens. Matter Mater. Phys. 1991;43:1993. doi: 10.1103/PhysRevB.43.1993. PubMed DOI
Colmenero F., Characterization of Secondary Phases of Spent Nuclear Fuel under Final Geological Disposal Conditions: Experimental and Theoretical Studies, PhD Thesis, Universidad Autónoma de Madrid, 201710.13140/RG.2.2.10526.43843 DOI
Colmenero F. Bonales L. J. Cobos J. Timón V. Spectrochim. Acta, Part A. 2017;174:245. doi: 10.1016/j.saa.2016.11.040. PubMed DOI
Colmenero F. Bonales L. J. Cobos J. Timón V. J. Solid State Chem. 2017;253:249. doi: 10.1016/j.jssc.2017.06.002. DOI
Colmenero F. Bonales L. J. Cobos J. Timón V. Clay Miner. 2018;53:377. doi: 10.1180/clm.2018.27. DOI
Colmenero F. Cobos J. Timón V. Theor. Chem. Acc. 2019;138:43.
Colmenero F. Appl. Sci. 2018;8:2281.
Pfrommer B. G. Cote M. Louie M. S. G. Cohen M. L. J. Comput. Phys. 1997;131:233. doi: 10.1006/jcph.1996.5612. DOI
Monkhorst H. J. Pack J. D. Phys. Rev. B: Solid State. 1976;13:5188. doi: 10.1103/PhysRevB.13.5188. DOI
Downs R. T. Bartelmehs K. L. Gibbs G. V. Boisen M. B. Am. Mineral. 1993;78:1104.
Coccioni M., in Correlated Electrons: From Models to Materials Modeling and Simulation, ed. E. Pavarini, E. Koch, F. Anders and M. Jarrell, Forschungszentrum Jülich, Berlin, 2012, vol. 2, ch. 4
Dudarev S. L. Nguyen Manh D. Sutton A. P. Philos. Mag. B. 1997;75:613. doi: 10.1080/13642819708202343. DOI
Crocombette J. P. Jollet F. Nga L. T. Petit T. Phys. Rev. B: Condens. Matter Mater. Phys. 2001;64:104107. doi: 10.1103/PhysRevB.64.104107. DOI
Nerikar P. Watanabe T. Tulenko J. S. Phillpot S. R. Sinnott S. B. J. Nucl. Mater. 2009;384:61. doi: 10.1016/j.jnucmat.2008.10.003. DOI
Weck P. F. Kim E. Jové-Colón C. F. Sassani D. C. Dalton Trans. 2013;42:4570. doi: 10.1039/C3DT32536A. PubMed DOI
Andersson D. A. Baldinozzi G. Desgranges L. Conradson D. R. Conradson S. D. Inorg. Chem. 2013;52:2769. doi: 10.1021/ic400118p. PubMed DOI
Beridze G. Kowalski P. M. J. Phys. Chem. A. 2014;118:11797. doi: 10.1021/jp5101126. PubMed DOI
Weck P. F. Kim E. Dalton Trans. 2004;43:17191. doi: 10.1039/C4DT02455A. PubMed DOI
Weck P. F. Kim E. Buck E. C. RSC Adv. 2015;5:79090. doi: 10.1039/C5RA16111H. DOI
Weck P. F. Kim E. J. Phys. Chem. C. 2016;120:16553. doi: 10.1021/acs.jpcc.6b05967. DOI
Sassani D. C., Jové-Colón C. F., Weck P. F., Jerden J. L., Frey K. E., Cruse T., Ebert W. L., Buck E. C., Wittman R. S., Fuel Cycle Research and Development Report FCRD-UFD-2013–000404, Sandia National Laboratories, Albuquerque, 2013
Alam T. M. Liao Z. Nyman M. Yates J. J. Phys. Chem. C. 2016;120:10675. doi: 10.1021/acs.jpcc.6b02692. DOI
Kalashnyk N. Perry D. L. Massuyeau F. Faulques E. J. Phys. Chem. C. 2018;122:7410. doi: 10.1021/acs.jpcc.8b00871. DOI
Ostanin S. Zeller P. J. Phys.: Condens. Matter. 2007;19:246108. doi: 10.1088/0953-8984/19/24/246108. PubMed DOI
Ostanin S. Zeller P. Phys. Rev. B: Condens. Matter Mater. Phys. 2007;75:073101. doi: 10.1103/PhysRevB.75.073101. PubMed DOI
Yu R. Zhu J. Ye H. Comput. Phys. Commun. 2010;181:671. doi: 10.1016/j.cpc.2009.11.017. DOI
Nye J. F., Physical Properties of Crystals, Clarendon, Oxford, 1976
Colmenero F. Mater. Res. Express. 2019;6:045610. doi: 10.1088/2053-1591/aaf9d7. DOI
Colmenero F. Phys. Chem. Chem. Phys. 2019;21:2673. doi: 10.1039/C8CP07188H. PubMed DOI
Colmenero F. Mater. Lett. 2019;245:25. doi: 10.1016/j.matlet.2019.02.077. DOI
Colmenero F. Adv. Theory Simul. 2019;2:1900040. doi: 10.1002/adts.201900040. DOI
Colmenero F. Timón V. J. Mater. Sci. 2020;55:218. doi: 10.1007/s10853-019-04041-2. DOI
Birch F. Phys. Rev. 1947;71:809. doi: 10.1103/PhysRev.71.809. DOI
Angel R. J. Rev. Mineral. Geochem. 2000;41:35. doi: 10.2138/rmg.2000.41.2. DOI
EOSFIT 5.2 software; http://programming.ccp14.ac.uk/ccp/web-mirrors/ross-angel/crystal/software.html, accessed Sept. 15, 2019
Marmier A. Lethbridge Z. A. D. Walton R. I. Smith C. W. Parker S. C. Evans K. E. Comput. Phys. Commun. 2010;181:2102. doi: 10.1016/j.cpc.2010.08.033. DOI
Baroni S. de Gironcoli S. Dal Corso A. Rev. Mod. Phys. 2001;73:515. doi: 10.1103/RevModPhys.73.515. DOI
Gonze X. Lee C. Phys. Rev. B: Condens. Matter Mater. Phys. 1997;55:10355. doi: 10.1103/PhysRevB.55.10355. DOI
Refson K. Tulip P. R. Clark S. J. Phys. Rev. B: Condens. Matter Mater. Phys. 2006;73:155114. doi: 10.1103/PhysRevB.73.155114. DOI
Hehre W. J., Radom L., Schleyer P. V. R. and Pople J. A., Ab Initio Molecular Orbital Theory, Wiley, New York, 1986
Lee C. Gonze X. Phys. Rev. B: Condens. Matter Mater. Phys. 1995;51:8610. doi: 10.1103/PhysRevB.51.8610. PubMed DOI
Maradudin A. A., Montroll E. M., Weiss G. H. and Ivatova I. P., Solid State Physics, ed. E. H. Ehrenreich, F. Seitz and D. Turnbull, Academic, New York, 2nd edn, 1971
Chase M. W. Davies C. A. Downey J. R. Frurip D. J. McDonald R. A. Syverud A. N. J. Phys. Chem. Ref. Data. 1985;14(suppl. 1):1.
Barin I., Thermochemical Data of Pure Substances, VCH, Weinheim, 3rd edn, 1995
Bader R. F. W. Hernández-Trujillo J. Cortés-Guzman F. J. Comput. Chem. 2006;28:4. doi: 10.1002/jcc.20528. PubMed DOI
Lafuente B., Downs R. T., Yang H. and Stone N., in Highlights in Mineralogical Crystallography, ed. T. Armbruster, R. M. Danisi and W. De Gruyter, Berlin, Germany, 2015, pp. 1–30
RRUFF database, http://rruff.info/vandenbrandeite, Record R080114, accessed Sept. 15, 2019
Born M. Math. Proc. Cambridge Philos. Soc. 1940;36:160. doi: 10.1017/S0305004100017138. DOI
Mouhat F. Coudert F. X. Phys. Rev. B: Condens. Matter Mater. Phys. 2014;90:224104. doi: 10.1103/PhysRevB.90.224104. DOI
Voigt W., Lehrbuch der Kristallphysik, Teubner, Leipzig, 1962
Reuss A. Z. Angew. Math. Mech. 1929;9:49. doi: 10.1002/zamm.19290090104. DOI
Hill R. Proc. Phys. Soc., London, Sect. A. 1952;65:349. doi: 10.1088/0370-1298/65/5/307. DOI
Pugh S. F. Philos. Mag. 1954;45:823.
Bouhadda Y. Djella S. Bououdina M. Fenineche Y. Boudouma Y. J. Alloys Compd. 2012;534:20. doi: 10.1016/j.jallcom.2012.04.060. DOI
Niu H. Wei P. Sun Y. Chen C. X. Franchini C. Li D. Li Y Y. Appl. Phys. Lett. 2011;99:031901. doi: 10.1063/1.3610996. DOI
Ranganathan S. I. Ostoja-Starzewski M. Phys. Rev. Lett. 2008;101:055504. doi: 10.1103/PhysRevLett.101.055504. PubMed DOI
Colmenero F. Timon V. J. Solid State Chem. 2018;263:131. doi: 10.1016/j.jssc.2018.04.022. DOI
Colmenero F. J. Phys. Chem. Solids. 2019;125:31. doi: 10.1016/j.jpcs.2018.10.004. DOI
Colmenero F. Escribano R. J. Phys. Chem. A. 2019;123:424. doi: 10.1021/acs.jpca.9b01354. PubMed DOI
Tardy Y. Garrels R. M. Geochim. Cosmochim. Acta. 1976;41:1051. doi: 10.1016/0016-7037(76)90046-6. DOI
Finch R. J. Mater. Res. Soc. Symp. Proc. 1997;465:1185. doi: 10.1557/PROC-465-1185. DOI
Clark S. B. Ewing R. C. Schaumloffel J. C. J. Alloys Compd. 1998;271–273:189. doi: 10.1016/S0925-8388(98)00052-8. DOI
Chen F. Ewing R. C. Clark S. B. Am. Mineral. 1999;84:650. doi: 10.2138/am-1999-0418. DOI
George B. Brown L. P. Farmer C. H. Buthod P. Manning F. S. Ind. Eng. Chem. Process Des. Dev. 1976;15:332. doi: 10.1021/i260059a003. DOI
Smith W. R. and Missen R. W., Chemical Reaction Equilibrium Analysis: Theory and Algorithms, Wiley-Interscience, New York, 1982
Harvie C. E. Greenberg J. P. Weare J. H. Geochim. Cosmochim. Acta. 1987;51:1045. doi: 10.1016/0016-7037(87)90199-2. DOI
Piro M. H. A. Calphad. 2017;58:115. doi: 10.1016/j.calphad.2017.06.002. DOI
Kubatko K. A. Unruh D. Burns P. C. Mater. Res. Soc. Symp. Proc. 2006;893:423.
Forbes T. Z. Horan P. Devine T. McInnis D. Burns P. C. Am. Mineral. 2011;96:202. doi: 10.2138/am.2011.3517. DOI