Structural, mechanical, spectroscopic and thermodynamic characterization of the copper-uranyl tetrahydroxide mineral vandenbrandeite

. 2019 Dec 03 ; 9 (69) : 40708-40726. [epub] 20191209

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35542667

The full crystal structure of the copper-uranyl tetrahydroxide mineral (vandenbrandeite), including the positions of the hydrogen atoms, is established by the first time from X-ray diffraction data taken from a natural crystal sample from the Musonoi Mine, Katanga Province, Democratic Republic of Congo. The structure is verified using first-principles solid-state methods. From the optimized structure, the mechanical and dynamical stability of vandenbrandeite is studied and a rich set of mechanical properties are determined. The Raman spectrum is recorded from the natural sample and determined theoretically. Since both spectra have a high-degree of consistence, all spectral bands are rigorously assigned using a theoretical normal-coordinate analysis. Two bands in the Raman spectra, located at 2327 and 1604 cm-1, are recognized as overtones and a band at 1554 cm-1 is identified as a combination band. The fundamental thermodynamic functions of vandenbrandeite are computed as a function of temperature using phonon calculations. These properties, unknown so far, are key-parameters for the performance-assessment of geological repositories for storage of radioactive nuclear waste and for understanding the paragenetic sequence of minerals arising from the corrosion of uranium deposits. The thermodynamic functions are used here to determine the thermodynamic properties of formation of vandenbrandeite in terms of the elements and the Gibbs free-energies and reaction constants for a series of reactions involving vandenbrandeite and a representative subset of the most important secondary phases of spent nuclear fuel. Finally, from the thermodynamic data of these reactions, the relative stability of vandenbrandeite with respect to these phases as a function of temperature and in the presence of hydrogen peroxide is evaluated. Vandenbrandeite is shown to be highly stable under the simultaneous presence of water and hydrogen peroxide.

Zobrazit více v PubMed

Swedish Corrosion Institute, Copper as canister material for unreprocessed nuclear waste - evaluation with respect to corrosion, Report KBS-TR-90, Swedish Nuclear Fuel Supply Company, Stockholm, 1978

Hultquist G. Corros. Sci. 1986;26:173. doi: 10.1016/0010-938X(86)90044-2. DOI

Eriksen T. E. Ndalgmba P. Grenthe I. Corros. Sci. 1989;29:1241. doi: 10.1016/0010-938X(89)90071-1. DOI

Wersin P., Spahiu K. and Bruno J., Kinetic modelling of bentonite-canister interaction. Long-term predictions of copper canister corrosion under oxic and anoxic conditions, Technical Report SKB-TR-94-25, Swedish Nuclear Fuel and Waste Management Company, Stockholm, 1994

Sjoblom R. Hermansson H. P. Amcoff O. Mater. Res. Soc. Symp. Proc. 1995;353:687. doi: 10.1557/PROC-353-687. DOI

Hermansson H. P. and Eriksson S., Corrosion of the Copper Canister in the Repository Environment, SKI Report 99:52, Swedish Nuclear Power Inspectorate (SKI), Stockholm, 1999

Mildowski A. E., Styles M. T. and Hards V. L., A natural analogue for copper waste canisters: the copper-uranium mineralised concretions in the Permian mudrocks of south Devon, United Kingdom, Technical Report SKB-TR-00-11, Swedish Nuclear Fuel and Waste Management Company, Stockholm, 2000

Mildowski A. E., Styles M. T., Horstwood M. S. A. and Kemp S. J., Alteration of uraniferous and native copper concretions in the Permian mudrocks of south Devon, United Kingdom, Technical Report SKB-TR-02-09, Swedish Nuclear Fuel and Waste Management Company, Stockholm, 2002

King F., Ahonen L., Taxén C., Vuorinen U. and Werme L., Copper corrosion under expected conditions in a deep geologic repository, Technical Report SKB-TR-01-23, Swedish Nuclear Fuel and Waste Management Company, Stockholm, 2001

Gubner R. and Andersson U., Corrosion resistance of copper canister weld material, Technical Report SKB-TR-07-07, Swedish Nuclear Fuel and Waste Management Company, Stockholm, 2007

Szakálos P. Hultquist G. Wikmark G. Electrochem. Solid-State Lett. 2007;10:C63. doi: 10.1149/1.2772085. DOI

Hultquist G. Szakálos P. Graham M. J. Belonoshko A. B. Sproule G. I. Gråsjö L. Dorogokupets P. Danilov B. Aastrup T. Wikmark G. Chuah G. K. Eriksson J. C. Rosengren A. Catal. Lett. 2009;132:311. doi: 10.1007/s10562-009-0113-x. DOI

Hultquist G. Graham M. J. Szakálos P. Sproule G. I. Rosengren A. Gråsjö L. Corros. Sci. 2011;53:310. doi: 10.1016/j.corsci.2010.09.037. DOI

Rosborg B. Werme L. J. Nucl. Mater. 2008;379:142. doi: 10.1016/j.jnucmat.2008.06.025. DOI

Rosborg B., Recorded corrosion rates on copper electrodes in the Prototype Repository at the Äspö HRL, Report SKB-R-13-13, Swedish Nuclear Fuel and Waste Management Company, Stockholm, 2013

Wersin P., LOT A2 test parcel. Compilation of copper data in the LOT A2 test parcel, Report TR-13-17, Swedish Nuclear Fuel and Waste Management Company, Stockholm, 2013

Kärnbränslehantering S., Design, production and initial state of the canister, Technical Report SKB-TR-10-14, Swedish Nuclear Fuel and Waste Management Company, Stockholm, 2014

Björkbacka Å. Hosseinpour S. Johnson M. Leygraf C. Jonsson M. Radiat. Phys. Chem. 2013;92:80. doi: 10.1016/j.radphyschem.2013.06.033. DOI

Hultquist G. Corros. Sci. 2015;93:327. doi: 10.1016/j.corsci.2015.01.002. DOI

Ottossona M. Bomana M. Berasteguia P. Anderssona Y. Hahlina M. Korvelab M. Bergera R. Corros. Sci. 2017;122:53. doi: 10.1016/j.corsci.2017.03.014. DOI

Hedin A. Johansson A. J. Lilja C. Boman M. Berastegui P. Berger R. Ottosson M. Corros. Sci. 2018;137:1. doi: 10.1016/j.corsci.2018.02.008. DOI

Marcos N. Mater. Res. Soc. Symp. Proc. 1997;465:1153.

King F. and Wersin P., Review of Supercontainer Copper Shell-Bentonite Interactions and Possible Effects on Buffer Performance for the KBS-3H Design, Posiva Working Report 2013-03, Posiva, Olkiluoko, 2014

Wersin P. Epping P. A. Pekala M. Pitkänen P. Snellman M. Procedia Earth Planet. Sci. 2017;17:722. doi: 10.1016/j.proeps.2016.12.183. DOI

Alt-Epping P., Pekala M., Wersin P. and Pitkänen P., in Proceedings of the 7th International Conference on Clay in Natural and Engineered Barriers for Radioactive Waste Confinement, Davos, Switzerland, 2017, p. 50

Wersin P., Pękala M., Alt-Epping P., Pitkänen P. and Cloet V., in Proceedings of the 16th International High-Level Radioactive Waste Management (IHLRWM 2017), Charlotte, NC, 2017, p. 30

Pekala M., Alt-Epping P. and Wersin P., 3D and 1D Dual-Porosity Reactive Transport Simulations - Model Improvements, Sensitivity Analyses, and Results from the Integrated Sulfide Project Inter-Model Comparison Exercise, Posiva Working Report 2018-31, Posiva, Olkiluoko, 2019

King F. and Litke C. D., The corrosion of copper in synthetic groundwater at 150 °C. Part I. The results of short term electrochemical tests, Technical Record TR-428, Atomic Energy of Canada Ltd. Toronto, 1987

King F. Appl. Geochem. 1995;10:477. doi: 10.1016/0883-2927(95)00019-G. DOI

King F. Litke C. D. Quinn M. J. LeNeveu D. M. Corros. Sci. 1995;37:833. doi: 10.1016/0010-938X(95)80013-1. DOI

Worgan K. Apted M. Sjoblom R. Mater. Res. Soc. Symp. Proc. 1995;353:895.

King F. and Kolar M., Theory manual for the copper corrosion model for stress corrosion cracking of used fuel disposal containers CCM-SCC.0, Nuclear Waste Management Division Report 06819-REP-01300-10095-R00, Ontario Power Generation, Toronto, Ontario, 2004

King F. and Kolar M., Simulation of the consumption of oxygen in long-term in situ experiments and in the third case study repository using the copper corrosion model CCM-UC.1.1, Nuclear Waste Management Division Report 06819-REP-01300-10084-R00, Ontario Power Generation, Toronto, Ontario, 2006

King F., Review and gap analysis of the corrosion of copper containers under unsaturated conditions, Nuclear Waste Management Division Report 06819-REP-01300-10124-R00, Ontario Power Generation, Toronto, Ontario, 2006

Smith J. M., The corrosion and electrochemistry of copper in aqueous, anoxic sulphide solutions, PhD Thesis, The University of Western Ontario, Canada, 2007

Smith J. Qin Z. King F. Werme L. Shoesmith D. W. Corrosion. 2007;63:135. doi: 10.5006/1.3278338. DOI

Ikeda B. M. and Litke C. D., Stress corrosion cracking of copper in nitrite/chloride mixtures at elevated temperatures, Technical Report NWMO TR-2007-04, Nuclear Waste Management Organization, Toronto, Ontario, 2007

King F. Kolar M. Maak P. J. Nucl. Mater. 2008;379:133. doi: 10.1016/j.jnucmat.2008.06.017. DOI

King F. Corrosion. 2009;65:233. doi: 10.5006/1.3319131. DOI

Kwong G. M., Status of corrosion studies for copper used fuel containers under low salinity conditions, NWMO Technical Report NWMO-TR-2011-14, Nuclear Waste Management Organization, Toronto, Canada, 2011

Chen J. Qin Z. Shoesmith D. W. Long-term corrosion of copper in a dilute anaerobic sulfide solution. Electrochim. Acta. 2011;56:7854. doi: 10.1016/j.electacta.2011.04.086. DOI

King F. Lilja C. Vähänen M. J. Nucl. Mater. 2013;438:228. doi: 10.1016/j.jnucmat.2013.02.080. DOI

Keech P. G. Vo P. Ramamurthy S. Chen J. Jacklin R. Shoesmith D. W. Corros. Eng., Sci. Technol. 2014;49:425. doi: 10.1179/1743278214Y.0000000206. DOI

Boyle C. H. Meguid S. A. Nucl. Eng. Des. 2015;293:403. doi: 10.1016/j.nucengdes.2015.08.011. DOI

Standish T. Chen J. Jacklin R. Jakupi P. Ramamurthy S. Zagidulin D. Keech P. Shoesmith D. W. Electrochim. Acta. 2016;211:331. doi: 10.1016/j.electacta.2016.05.135. DOI

Ibrahim B. Zagidulin D. Behazin M. Ramamurthy S. Wren J. C. Shoesmith D. W. Corros. Sci. 2018;141:53. doi: 10.1016/j.corsci.2018.05.024. DOI

Simpson J. P., Experiments on container materials for Swiss high-level waste disposal projects Part II, Nagra Technical Report 84-01, National Cooperative for the Disposal of Radioactive Waste, Wettingen, 1984

Johnson L. H. and King F., Canister options for the disposal of spent fuel, NAGRA Technical Report 02-11, National Cooperative for the Disposal of Radioactive Waste, Wettingen, 2003

JNC, Second Progress Report in Research and Development for the Geological Disposal of HLW in Japan, Supporting Report 2, Repository Design and Engineering Technology, Japan Nuclear Cycle Development Institute, 2000

Taniguchi N. Kawasaki M. J. Nucl. Mater. 2008;379:154. doi: 10.1016/j.jnucmat.2008.06.010. DOI

Choi H. J. Lee M. Lee J. Y. Nucl. Eng. Des. 2010;240:2714. doi: 10.1016/j.nucengdes.2010.06.038. DOI

Kursten B., Smailos E., Azkarate I., Werme L., Smart N. R. and Santarini G., State-of-the-art document on the COrrosion BEhaviour of COntainer MAterials, COBECOMA project Final Report, 5th Euratom Framework Programme, Contract No. FIKW-CT-20014-20138, European Commission, 2004

Landolt D. Muller R. H. Tobias C. W. J. Electrochem. Soc. 1969;116:1385. doi: 10.1149/1.2411528. DOI

Bacarella A. L. Griess J. C. J. Electrochem. Soc. 1973;120:459. doi: 10.1149/1.2403477. DOI

Adeloju S. B. Duan Y. Y. Br. Corros. J. 1994;29:309. doi: 10.1179/000705994798267485. DOI

Fateh A. Aliofkhazraei M. Rezvanian A. R. Arabian J. Chem. 2017 doi: 10.2016/j.arabjc.2017.05.021. DOI

Li S. Teague M. T. Doll G. L. Schindelholz E. J. Conga H. Corros. Sci. 2018;141:243. doi: 10.1016/j.corsci.2018.06.037. DOI

Ewing R. C. Nat. Mater. 2015;14:252. doi: 10.1038/nmat4226. PubMed DOI

Wang R. Katayama Y. B. Nucl. Chem. Waste Manage. 1982;3:83. doi: 10.1016/0191-815X(82)90054-7. DOI

Shoesmith D. W. Sunder S. J. Nucl. Mater. 1992;190:20. doi: 10.1016/0022-3115(92)90072-S. DOI

Sunder S. Shoesmith D. W. Christensen H. Miller N. H. J. Nucl. Mater. 1992;190:78. doi: 10.1016/0022-3115(92)90078-Y. DOI

Shoesmith D. W. J. Nucl. Mater. 2000;282:1. doi: 10.1016/S0022-3115(00)00392-5. DOI

Sattonnay G. Ardois C. Corbel C. Lucchini J. F. Barthe M. F. Garrido F. Gosset D. J. Nucl. Mater. 2001;288:11. doi: 10.1016/S0022-3115(00)00714-5. DOI

Roth O. Jonsson M. Cent. Eur. J. Chem. 2008;6:1.

Christensen H. Sunder S. J. Nucl. Mater. 1996;238:70. doi: 10.1016/S0022-3115(96)00342-X. DOI

Plášil J. J. Geosci. 2014;59:99. doi: 10.3190/jgeosci.163. DOI

Finch R. J. Murakami T. Rev. Mineral. Geochem. 1999;38:91.

Grenthe I., Drozdzynski J., Fujino T., Buck E. C., Albrecht-Schmitt T. E. and Wolf S. F., in The Chemistry of Actinide and Transactinide Elements, ed. L. R. Morss, N. M. Edelstein and J. Fuger, Springer Science and Business Media, Berlin, 2006, ch. V, vol. I; pp. 253–638

Krivovichev S. V. and Plášil J., in Uranium: From Cradle to Grave, ed. P. C. Burns and G. E. Sigmon, Mineralogical Association of Canada, Winnipeg, MB, Canada, 2013, short course 43, pp. 15–119

Burns P. C. Ewing R. C. Miller M. L. J. Nucl. Mater. 1997;245:1. doi: 10.1016/S0022-3115(97)00006-8. DOI

Rosenzweig A. Ryan R. R. Am. Mineral. 1975;60:448.

Plášil J. Minerals. 2018;8:551. doi: 10.3390/min8120551. DOI

Piret P. J. Appl. Crystallogr. 1979;12:616. doi: 10.1107/S0021889879013443. DOI

Olds T. A. Plášil J. Kampf A. R. Dal Bo F. Burns P. C. Minerals. 2018;8:511. doi: 10.3390/min8110511. DOI

Piret P. Declercq J. P. Wauters-Stoop D. Bull. Mineral. 1980;103:176.

Čejka J. Urbanec Z. Čejka Jr J. Mrázek Z. Neues Jahrb. Mineral., Abh. 1988;159:297.

Ondruš P. Veselovský F. Skála R. Císařová I. Hloušek J. Frýda J. Vavřín Čejka J. Gabašová A. J. Czech Geol. Soc. 1997;42:7.

Ondruš P. Veselovský F. Gabašová A. Hloušek J. Šrein V. J. Czech Geol. Soc. 2003;48:149.

Plášil J. Fejfarová K. Wallwork K. S. Dušek M. Škoda R. Sejkora J. Čejka J. Veselovský F. Hloušek J. Meisser N. Brugger J. Am. Mineral. 2012;97:1796. doi: 10.2138/am.2012.4127. DOI

Locock A. J. Burns P. C. Can. Mineral. 2003;41:489. doi: 10.2113/gscanmin.41.2.489. DOI

Birch W. D. Mumme W. D. Segnit E. R. Aust. Mineral. 1988;3:125.

Kolitsch U. Giester G. Mineral. Mag. 2001;65:717. doi: 10.1180/0026461016560003. DOI

Burns P. C. Ewing R. C. Hawthorne F. C. Can. Mineral. 1997;35:1551.

Burns P. C. Rev. Mineral. Geochem. 1999;38:23.

Burns P. C. Can. Mineral. 2005;43:1839. doi: 10.2113/gscanmin.43.6.1839. DOI

Burns P. C. J. Nucl. Mater. 1999;265:218. doi: 10.1016/S0022-3115(98)00646-1. DOI

Burns P. C. Deely K. M. Skanthakumar S. Radiochim. Acta. 2004;92:151.

Klingensmith A. L. Burns P. C. Am. Mineral. 2007;92:1946. doi: 10.2138/am.2007.2542. DOI

Frondel C. Am. Mineral. 1956;41:539.

Garrels R. M. Christ C. L. US Geol. Surv. Prof. Pap. 1959;320:81.

Finch R. J. Ewing R. C. J. Nucl. Mater. 1992;190:133. doi: 10.1016/0022-3115(92)90083-W. DOI

Finch R. J. and Ewing R. C., Uraninite alteration in an oxidizing environment and its relevance to the disposal of spent nuclear fuel, SKB Technical Report 91–15, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden, 1994

Forsyth R. S. Werme L. O. J. Nucl. Mater. 1992;190:3. doi: 10.1016/0022-3115(92)90071-R. DOI

Pearcy E. C. Prikryl J. D. Murphy W. M. Leslie B. W. Appl. Geochem. 1994;9:713. doi: 10.1016/0883-2927(94)90030-2. DOI

Wronkiewicz D. J. Bates J. K. Gerding T. J. Veleckis E. Tani B. S. J. Nucl. Mater. 1992;190:107. doi: 10.1016/0022-3115(92)90081-U. DOI

Wronkiewicz D. J. Bates J. K. Wolf S. F. Buck E. C. J. Nucl. Mater. 1996;238:78. doi: 10.1016/S0022-3115(96)00383-2. DOI

Bruno J. Casas I. Cera E. Ewing R. C. Finch R. J. Werme L. O. Mater. Res. Soc. Symp. Proc. 1994;353:633. doi: 10.1557/PROC-353-633. DOI

Finn P. A. Hoh J. C. Wolf S. F. Slater S. A. Bates J. K. Radiochim. Acta. 1996;74:65.

Schoep A. Ann. Mus. Congo Belge. 1932;1:22.

Thoreau J. Ann. Soc. Geol. Belge. 1931;55:C3.

Frondel C. U.S. Geol. Surv. Bull. 1958;1064:1.

Gauthier G. François A. Deliens M. Piret P. Mineral. Rec. 1989;20:265.

Bignand C. Bull. Soc. Fr. Mineral. Cristallogr. 1955;78:1.

Milne I. H. Nuffield E. W. Am. Mineral. 1951;36:394.

Rosenzweig A. Ryan R. R. Cryst. Struct. Commun. 1977;6:53.

Povarennykh A. S. Konstitut. Svoy. Mineral. 1979;13:78.

Čejka J. Urbanec Z. Trans. Czech. Acad. Sci., Math. Natur. Sci. Ser. 98:1–93.

Čejka J. Neues Jahrb. Mineral., Abh. 1994;H3:112.

Škácha P. Plášil J. Sejkora J. Čejka J. Škoda R. Meisser N. Bull. Mineral. Petrolog. Odd. Nár. Muz. 2014;22:240.

Plášil J. Eur. J. Mineral. 2018;30:253. doi: 10.1127/ejm/2017/0029-2691. DOI

Plášil J. Z. Kristallogr. 2019;234:733–738.

Ghazisaeed S. Kiefer B. Plášil J. RSC Adv. 2019;9:10058. doi: 10.1039/C8RA09557D. PubMed DOI PMC

Colmenero F. Cobos J. Timón V. Inorg. Chem. 2018;57:4470. doi: 10.1021/acs.inorgchem.8b00150. PubMed DOI

Colmenero F. Fernández A. M. Cobos J. Timón V. ACS Earth Space Chem. 2019;3:17. doi: 10.1021/acsearthspacechem.8b00109. DOI

Colmenero F. Fernández A. M. Cobos J. Timón V. RSC Adv. 2019;8:24599. doi: 10.1039/C8RA04678F. PubMed DOI PMC

Colmenero F. Cobos J. Timón V. J. Phys.: Condens. Matter. 2019;31:175701. doi: 10.1088/1361-648X/ab0312. PubMed DOI

Colmenero F. Plášil J. Cobos J. Sejkora J. Timón V. Čejka J. Bonales L. J. RSC Adv. 2019;9:15323. doi: 10.1039/C9RA02931A. PubMed DOI PMC

Colmenero F. Plášil J. Sejkora J. Dalton Trans. 2019;48:16722. doi: 10.1039/C9DT03256H. PubMed DOI

Bonales L. J. Colmenero F. Cobos J. Timón V. Phys. Chem. Chem. Phys. 2016;18:16575. doi: 10.1039/C6CP01510G. PubMed DOI

Colmenero F., in Minerals, ed. K. S. Essa, InTechOpen, London, 2018, ISBN: 978-953-51-6784-6

Colmenero F. Fernández A. M. Cobos J. Timón V. J. Phys. Chem. C. 2018;122:5254. doi: 10.1021/acs.jpcc.7b12341. DOI

Colmenero F. Bonales L. J. Cobos J. Timón V. J. Phys. Chem. C. 2017;121:5994. doi: 10.1021/acs.jpcc.7b00699. PubMed DOI

Colmenero F. Bonales L. J. Cobos J. Timón V. J. Phys. Chem. C. 2017;121:14507. doi: 10.1021/acs.jpcc.7b04389. PubMed DOI

Colmenero F. Fernández A. M. Cobos J. Timón V. J. Phys. Chem. C. 2018;122:5268. doi: 10.1021/acs.jpcc.7b12368. DOI

Colmenero F., in Density Functional Theory, ed. D. Glossman-Mitnik, InTechOpen, London, 2018, ISBN: 978-953-51-7020-4

Langmuir D., Aqueous Environmental Geochemistry, Prentice-Hall, New York, 1997, pp. 486–557

Grenthe I., Fuger J., Konings R. J. M., Lemire R. J., Muller A. B., Nguyen-Trung C. and Wanner H., Chemical Thermodynamics of Uranium, Nuclear Energy Agency Organisation for Economic Co-Operation and Development, OECD, Issy-les-Moulineaux, France, 2004

NEA Data Bank, Thermochemical Database (TDB), https://www.oecd-nea.org/dbtdb/, accessed Nov. 22, 2019

Thermo-Chimie database (Consortium Andra-Ondraf/Niras-RWM), http://www.thermochimie-tdb.com/, accessed Nov. 22, 2019

Rigaku Oxford Diffraction, CrysAlisCCD, CrysAlisRED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK, 2019

Sheldrick G. M. Acta Crystallogr. 2015;71:3. doi: 10.1107/S2053273314026370. PubMed DOI PMC

Crystallographic Computing System for Standard and Modulated Structures, Jana2006, http://jana.fzu.cz/, accessed Sept. 15, 2019

Clark S. J. Segall M. D. Pickard C. J. Hasnip P. J. Probert M. I. J. Refson K. Payne M. C. Z. Kristallogr. 2005;220:567.

MaterialsStudio, http://3dsbiovia.com/products/collabora-tive-science/biovia-materials-studio/, accessed Sept. 15, 2019

Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1996;77:3865. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Grimme S. J. Comput. Chem. 2006;27:1787. doi: 10.1002/jcc.20495. PubMed DOI

Payne M. C. Teter M. P. Ailan D. C. Arias A. Joannopoulos J. D. Rev. Mod. Phys. 1992;64:1045. doi: 10.1103/RevModPhys.64.1045. DOI

Troullier N. Martins J. L. Phys. Rev. B: Condens. Matter Mater. Phys. 1991;43:1993. doi: 10.1103/PhysRevB.43.1993. PubMed DOI

Colmenero F., Characterization of Secondary Phases of Spent Nuclear Fuel under Final Geological Disposal Conditions: Experimental and Theoretical Studies, PhD Thesis, Universidad Autónoma de Madrid, 201710.13140/RG.2.2.10526.43843 DOI

Colmenero F. Bonales L. J. Cobos J. Timón V. Spectrochim. Acta, Part A. 2017;174:245. doi: 10.1016/j.saa.2016.11.040. PubMed DOI

Colmenero F. Bonales L. J. Cobos J. Timón V. J. Solid State Chem. 2017;253:249. doi: 10.1016/j.jssc.2017.06.002. DOI

Colmenero F. Bonales L. J. Cobos J. Timón V. Clay Miner. 2018;53:377. doi: 10.1180/clm.2018.27. DOI

Colmenero F. Cobos J. Timón V. Theor. Chem. Acc. 2019;138:43.

Colmenero F. Appl. Sci. 2018;8:2281.

Pfrommer B. G. Cote M. Louie M. S. G. Cohen M. L. J. Comput. Phys. 1997;131:233. doi: 10.1006/jcph.1996.5612. DOI

Monkhorst H. J. Pack J. D. Phys. Rev. B: Solid State. 1976;13:5188. doi: 10.1103/PhysRevB.13.5188. DOI

Downs R. T. Bartelmehs K. L. Gibbs G. V. Boisen M. B. Am. Mineral. 1993;78:1104.

Coccioni M., in Correlated Electrons: From Models to Materials Modeling and Simulation, ed. E. Pavarini, E. Koch, F. Anders and M. Jarrell, Forschungszentrum Jülich, Berlin, 2012, vol. 2, ch. 4

Dudarev S. L. Nguyen Manh D. Sutton A. P. Philos. Mag. B. 1997;75:613. doi: 10.1080/13642819708202343. DOI

Crocombette J. P. Jollet F. Nga L. T. Petit T. Phys. Rev. B: Condens. Matter Mater. Phys. 2001;64:104107. doi: 10.1103/PhysRevB.64.104107. DOI

Nerikar P. Watanabe T. Tulenko J. S. Phillpot S. R. Sinnott S. B. J. Nucl. Mater. 2009;384:61. doi: 10.1016/j.jnucmat.2008.10.003. DOI

Weck P. F. Kim E. Jové-Colón C. F. Sassani D. C. Dalton Trans. 2013;42:4570. doi: 10.1039/C3DT32536A. PubMed DOI

Andersson D. A. Baldinozzi G. Desgranges L. Conradson D. R. Conradson S. D. Inorg. Chem. 2013;52:2769. doi: 10.1021/ic400118p. PubMed DOI

Beridze G. Kowalski P. M. J. Phys. Chem. A. 2014;118:11797. doi: 10.1021/jp5101126. PubMed DOI

Weck P. F. Kim E. Dalton Trans. 2004;43:17191. doi: 10.1039/C4DT02455A. PubMed DOI

Weck P. F. Kim E. Buck E. C. RSC Adv. 2015;5:79090. doi: 10.1039/C5RA16111H. DOI

Weck P. F. Kim E. J. Phys. Chem. C. 2016;120:16553. doi: 10.1021/acs.jpcc.6b05967. DOI

Sassani D. C., Jové-Colón C. F., Weck P. F., Jerden J. L., Frey K. E., Cruse T., Ebert W. L., Buck E. C., Wittman R. S., Fuel Cycle Research and Development Report FCRD-UFD-2013–000404, Sandia National Laboratories, Albuquerque, 2013

Alam T. M. Liao Z. Nyman M. Yates J. J. Phys. Chem. C. 2016;120:10675. doi: 10.1021/acs.jpcc.6b02692. DOI

Kalashnyk N. Perry D. L. Massuyeau F. Faulques E. J. Phys. Chem. C. 2018;122:7410. doi: 10.1021/acs.jpcc.8b00871. DOI

Ostanin S. Zeller P. J. Phys.: Condens. Matter. 2007;19:246108. doi: 10.1088/0953-8984/19/24/246108. PubMed DOI

Ostanin S. Zeller P. Phys. Rev. B: Condens. Matter Mater. Phys. 2007;75:073101. doi: 10.1103/PhysRevB.75.073101. PubMed DOI

Yu R. Zhu J. Ye H. Comput. Phys. Commun. 2010;181:671. doi: 10.1016/j.cpc.2009.11.017. DOI

Nye J. F., Physical Properties of Crystals, Clarendon, Oxford, 1976

Colmenero F. Mater. Res. Express. 2019;6:045610. doi: 10.1088/2053-1591/aaf9d7. DOI

Colmenero F. Phys. Chem. Chem. Phys. 2019;21:2673. doi: 10.1039/C8CP07188H. PubMed DOI

Colmenero F. Mater. Lett. 2019;245:25. doi: 10.1016/j.matlet.2019.02.077. DOI

Colmenero F. Adv. Theory Simul. 2019;2:1900040. doi: 10.1002/adts.201900040. DOI

Colmenero F. Timón V. J. Mater. Sci. 2020;55:218. doi: 10.1007/s10853-019-04041-2. DOI

Birch F. Phys. Rev. 1947;71:809. doi: 10.1103/PhysRev.71.809. DOI

Angel R. J. Rev. Mineral. Geochem. 2000;41:35. doi: 10.2138/rmg.2000.41.2. DOI

EOSFIT 5.2 software; http://programming.ccp14.ac.uk/ccp/web-mirrors/ross-angel/crystal/software.html, accessed Sept. 15, 2019

Marmier A. Lethbridge Z. A. D. Walton R. I. Smith C. W. Parker S. C. Evans K. E. Comput. Phys. Commun. 2010;181:2102. doi: 10.1016/j.cpc.2010.08.033. DOI

Baroni S. de Gironcoli S. Dal Corso A. Rev. Mod. Phys. 2001;73:515. doi: 10.1103/RevModPhys.73.515. DOI

Gonze X. Lee C. Phys. Rev. B: Condens. Matter Mater. Phys. 1997;55:10355. doi: 10.1103/PhysRevB.55.10355. DOI

Refson K. Tulip P. R. Clark S. J. Phys. Rev. B: Condens. Matter Mater. Phys. 2006;73:155114. doi: 10.1103/PhysRevB.73.155114. DOI

Hehre W. J., Radom L., Schleyer P. V. R. and Pople J. A., Ab Initio Molecular Orbital Theory, Wiley, New York, 1986

Lee C. Gonze X. Phys. Rev. B: Condens. Matter Mater. Phys. 1995;51:8610. doi: 10.1103/PhysRevB.51.8610. PubMed DOI

Maradudin A. A., Montroll E. M., Weiss G. H. and Ivatova I. P., Solid State Physics, ed. E. H. Ehrenreich, F. Seitz and D. Turnbull, Academic, New York, 2nd edn, 1971

Chase M. W. Davies C. A. Downey J. R. Frurip D. J. McDonald R. A. Syverud A. N. J. Phys. Chem. Ref. Data. 1985;14(suppl. 1):1.

Barin I., Thermochemical Data of Pure Substances, VCH, Weinheim, 3rd edn, 1995

Bader R. F. W. Hernández-Trujillo J. Cortés-Guzman F. J. Comput. Chem. 2006;28:4. doi: 10.1002/jcc.20528. PubMed DOI

Lafuente B., Downs R. T., Yang H. and Stone N., in Highlights in Mineralogical Crystallography, ed. T. Armbruster, R. M. Danisi and W. De Gruyter, Berlin, Germany, 2015, pp. 1–30

RRUFF database, http://rruff.info/vandenbrandeite, Record R080114, accessed Sept. 15, 2019

Born M. Math. Proc. Cambridge Philos. Soc. 1940;36:160. doi: 10.1017/S0305004100017138. DOI

Mouhat F. Coudert F. X. Phys. Rev. B: Condens. Matter Mater. Phys. 2014;90:224104. doi: 10.1103/PhysRevB.90.224104. DOI

Voigt W., Lehrbuch der Kristallphysik, Teubner, Leipzig, 1962

Reuss A. Z. Angew. Math. Mech. 1929;9:49. doi: 10.1002/zamm.19290090104. DOI

Hill R. Proc. Phys. Soc., London, Sect. A. 1952;65:349. doi: 10.1088/0370-1298/65/5/307. DOI

Pugh S. F. Philos. Mag. 1954;45:823.

Bouhadda Y. Djella S. Bououdina M. Fenineche Y. Boudouma Y. J. Alloys Compd. 2012;534:20. doi: 10.1016/j.jallcom.2012.04.060. DOI

Niu H. Wei P. Sun Y. Chen C. X. Franchini C. Li D. Li Y Y. Appl. Phys. Lett. 2011;99:031901. doi: 10.1063/1.3610996. DOI

Ranganathan S. I. Ostoja-Starzewski M. Phys. Rev. Lett. 2008;101:055504. doi: 10.1103/PhysRevLett.101.055504. PubMed DOI

Colmenero F. Timon V. J. Solid State Chem. 2018;263:131. doi: 10.1016/j.jssc.2018.04.022. DOI

Colmenero F. J. Phys. Chem. Solids. 2019;125:31. doi: 10.1016/j.jpcs.2018.10.004. DOI

Colmenero F. Escribano R. J. Phys. Chem. A. 2019;123:424. doi: 10.1021/acs.jpca.9b01354. PubMed DOI

Tardy Y. Garrels R. M. Geochim. Cosmochim. Acta. 1976;41:1051. doi: 10.1016/0016-7037(76)90046-6. DOI

Finch R. J. Mater. Res. Soc. Symp. Proc. 1997;465:1185. doi: 10.1557/PROC-465-1185. DOI

Clark S. B. Ewing R. C. Schaumloffel J. C. J. Alloys Compd. 1998;271–273:189. doi: 10.1016/S0925-8388(98)00052-8. DOI

Chen F. Ewing R. C. Clark S. B. Am. Mineral. 1999;84:650. doi: 10.2138/am-1999-0418. DOI

George B. Brown L. P. Farmer C. H. Buthod P. Manning F. S. Ind. Eng. Chem. Process Des. Dev. 1976;15:332. doi: 10.1021/i260059a003. DOI

Smith W. R. and Missen R. W., Chemical Reaction Equilibrium Analysis: Theory and Algorithms, Wiley-Interscience, New York, 1982

Harvie C. E. Greenberg J. P. Weare J. H. Geochim. Cosmochim. Acta. 1987;51:1045. doi: 10.1016/0016-7037(87)90199-2. DOI

Piro M. H. A. Calphad. 2017;58:115. doi: 10.1016/j.calphad.2017.06.002. DOI

Kubatko K. A. Unruh D. Burns P. C. Mater. Res. Soc. Symp. Proc. 2006;893:423.

Forbes T. Z. Horan P. Devine T. McInnis D. Burns P. C. Am. Mineral. 2011;96:202. doi: 10.2138/am.2011.3517. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...