Revealing hydrogen atoms in a highly-absorbing material: an X-ray diffraction study and Torque method calculations for lead-uranyl-oxide mineral curite
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35520917
PubMed Central
PMC9062394
DOI
10.1039/c8ra09557d
PII: c8ra09557d
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The crystal structure of lead uranyl-oxide hydroxy-hydrate mineral curite, ideally Pb3(H2O)2[(UO2)4O4(OH)3]2, was studied by means of single-crystal X-ray diffraction and theoretical calculations in order to localize positions of hydrogen atoms in the structure. This study has demonstrated that hydrogen atoms can be localized successfully also in materials for which the conventional approach of structure analysis failed, here due to very high absorption of X-rays by the mineral matrix. The theoretical calculations, based on the Torque method, provide a robust, fast real-space method for determining H2O orientations from their rotational equilibrium condition. In line with previous results we found that curite is orthorhombic, with space group Pnma, unit-cell parameters a = 12.5510(10), b = 8.3760(4), c = 13.0107(9) Å, V = 1367.78(16) Å3, and two formula units per unit cell. The structure (R 1 = 3.58% for 1374 reflections with I > 3σI) contains uranyl-hydroxo-oxide sheets of the unique topology among uranyl oxide minerals and compounds and an interlayer space with Pb2+ cations and a single H2O molecule, which is coordinated to the Pb-site. Current results show that curite is slightly non-stoichiometric in Pb content (∼3.02 Pb per unit cell, Z = 2); the charge-balance mechanism is via (OH) ↔ O2 substitution within the sheets of uranyl polyhedra. Disproving earlier predictions, the current study shows that curite contains only one H2O group, with [4]-coordinated oxygen. The hydrogen bonding network maintains the bonding between the sheets in addition to Pb-O bonds; among them, a H-bond is crucial between the OH group on an apical OUranyl atom of an adjacent sheet that stabilizes the entire structure. The results show that the combination of experimental X-ray data and the Torque method can successfully reveal hydrogen bonding especially for complex crystal structures and materials where X-rays fail to provide unambiguous hydrogen positions.
Zobrazit více v PubMed
Krivovichev S. V. and Plášil J., in Uranium: from Cradle to Grave, ed. P. C. Burns and G. E. Sigmon, MAC Shourt Course, 2013, vol. 43, pp. 15–119
Plášil J. J. Geosci. 2014;59:99. doi: 10.3190/jgeosci.163. DOI
Finch R. J. Ewing R. C. J. Nucl. Mater. 1992;190:133. doi: 10.1016/0022-3115(92)90083-W. DOI
Finch R. J. Murakami T. Rev. Mineral. Geochem. 1999;38:91–180.
Plášil J. Eur. J. Mineral. 2018;30:237. doi: 10.1127/ejm/2017/0029-2690. DOI
Janeczek J. Ewing R. C. Oversby V. M. Werme L. O. J. Nucl. Mater. 1996;238:121. doi: 10.1016/S0022-3115(96)00345-5. DOI
Ewing R. C. Nat. Mater. 2015;14:252. doi: 10.1038/nmat4226. PubMed DOI
Maher K. Bargar J. R. Brown Jr. G. E. Inorg. Chem. 2013;52:3510. doi: 10.1021/ic301686d. PubMed DOI
Zhang Y. Čejka J. Lumpkin G. R. Tran T. T. Aharonovich I. Karatchevtseva I. Price J. R. Scales N. Lu K. New J. Chem. 2016;40:5357. doi: 10.1039/C5NJ03055B. DOI
Zhang Y. Aughterson R. Karatchevtseva I. Kong L. Tran T. T. Čejka J. Aharonovich I. Lumpkin G. R. New J. Chem. 2018;42:12386. doi: 10.1039/C8NJ01376D. DOI
Miller M. L. Finch R. J. Burns P. C. Ewing R. C. J. Mater. Res. 1996;11:3048. doi: 10.1557/JMR.1996.0387. DOI
Burns P. C. Can. Mineral. 2005;43:1839. doi: 10.2113/gscanmin.43.6.1839. DOI
Krivovichev S. V., Crystal Chemistry of Uranium Oxides and Minerals, in Comprehensive Inorganic Chemistry II, Elsevier, 2013, pp. 611–640
Colmenero F. Cobos J. Timón V. Inorg. Chem. 2018;57:4470. doi: 10.1021/acs.inorgchem.8b00150. PubMed DOI
Plášil J. J. Geosci. 2018;63:65. doi: 10.3190/jgeosci.252. DOI
Weller M. T. Light M. E. Gelbrich T. Acta Crystallogr., Sect. B: Struct. Sci. 2000;56:577. doi: 10.1107/S0108768199016559. DOI
Brugger J. Meisser N. Etschmann B. Ansermet S. Pring A. Am. Mineral. 2000;296:229.
Walenta K. Theye T. Neues Jahrbuch Mineral. Abhand. 2012;189:117. doi: 10.1127/0077-7757/2012/0213. DOI
Hawthorne F. C. Z. Kristallogr. 1992;201:183.
Hawthorne F. C. Phys. Chem. Miner. 2012;39:841. doi: 10.1007/s00269-012-0538-4. DOI
Hawthorne F. C. Schindler M. Z. Kristallogr. 2008;223:41.
Schindler M. Hawthorne F. C. Can. Mineral. 2008;46:467. doi: 10.3749/canmin.46.2.467. DOI
Schindler M. Hawthorne F. C. Can. Mineral. 2004;42:1601. doi: 10.2113/gscanmin.42.6.1601. DOI
Colmenero F. Fernández A. M. Cobos J. Timón V. J. Phys. Chem. C. 2018;122:5254. doi: 10.1021/acs.jpcc.7b12341. DOI
Colmenero F. Fernández A. M. Cobos J. Timón V. J. Phys. Chem. C. 2018;122:5268. doi: 10.1021/acs.jpcc.7b12368. DOI
Colmenero F. Fernandez A. M. Timón V. Cobos J. RSC Adv. 2018;8:24599. doi: 10.1039/C8RA04678F. DOI
Ghazisaeed S. Majzlan J. Plášil J. Kiefer B. J. Appl. Crystallogr. 2018;51:1116. doi: 10.1107/S1600576718008567. DOI
Schoep A. C. R. Acad. Sci. 1921;173:1186.
Li Y. Burns P. C. Can. Mineral. 2000;38:727. doi: 10.2113/gscanmin.38.3.727. DOI
Burns P. C. Lil Y. Can. Mineral. 2001;38:175. doi: 10.2113/gscanmin.38.1.175. DOI
Sheldrick G. M. Acta Crystallogr., Sect. A: Found. Adv. 2015;71:3. doi: 10.1107/S2053273314026370. PubMed DOI PMC
Petříček V. Dušek M. Palatinus L. Z. Kristallogr. 2014;229:345.
Brown I. D., The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, Oxford University Press, 2002, pp. 1–278
Gagné O. C. Hawthorne F. C. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2015;71:562. doi: 10.1107/S2052520615016297. PubMed DOI PMC
Jorgensen W. L. Chandrasekhar J. Madura J. D. Impey R. W. Klein M. L. J. Chem. Phys. 1983;79:926. doi: 10.1063/1.445869. DOI
Mereiter K. TMPM, Tschermaks Mineral. Petrogr. Mitt. 1979;26:279. doi: 10.1007/BF01089842. DOI
Hawthorne F. C. Am. Mineral. 2015;100:696. doi: 10.2138/am-2015-5114. DOI
Fejfarová K. Dušek M. Plášil J. Čejka J. Sejkora J. Škoda R. J. Nucl. Mater. 2013;434:461. doi: 10.1016/j.jnucmat.2010.11.064. DOI