Crystal Structure, Infrared Spectrum and Elastic Anomalies in Tuperssuatsiaite
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
32371887
PubMed Central
PMC7200798
DOI
10.1038/s41598-020-64481-8
PII: 10.1038/s41598-020-64481-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The full crystal structure of the phyllosilicate mineral tuperssuatsiaite, including the positions of the hydrogen atoms in its unit cell, is determined for the first time by using first-principles solid-state methods. From the optimized structure, its infrared spectrum and elastic properties are determined. The computed infrared spectrum is in excellent agreement with the experimental spectrum recorded from a natural sample from Ilímaussaq alkaline complex (Greenland, Denmark). The elastic behavior of tuperssuatsiaite is found to be extremely anomalous and significant negative compressibilities are found. Tuperssuatsiaite exhibits the important negative linear compressibility phenomenon under small anisotropic pressures applied in a wide range of orientations of the applied strain and the very infrequent negative area compressibility phenomenon under external isotropic pressures in the range from 1.9 to 2.4 GPa. The anisotropic negative linear compressibility effect in tuperssuatsiaite is related to the increase of the unit cell along the direction perpendicular to the layers charactering its crystal structure. The isotropic negative area compressibility effect, however, is related to the increase of the unit cell dimensions along the directions parallel to the layers.
Institute of Physics ASCR v v i Na Slovance 2 182 21 Praha 8 Czech Republic
Instituto de Estructura de la Materia C Serrano 123 28006 Madrid Spain
Mineralogicko petrologické oddělení Národní museum Cirkusová 1740 193 00 Praha 9 Czech Republic
Zobrazit více v PubMed
Baughman RH, Stafström S, Cui C, Dantas SO. Materials with Negative Compressibilities in One or More Dimensions. Science. 1998;279:1522–1524. doi: 10.1126/science.279.5356.1522. PubMed DOI
Evans, K. E. & Alderson, A. Auxetic Materials: Functional Materials and Structures from Lateral Thinking! Adv. Mater. 12, 617−628, 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3 (2000).
Spinks, G. M., et al. Pneumatic Carbon Nanotube Actuators. Adv. Mater. 14, 1728−1732, 10.1002/1521-4095(20021203)14:23<1728::AID-ADMA1728>3.0.CO;2-8 (2002).
Weng CN, Wang KT, Chen T. Design of Microstructures and Structures with Negative Linear Compressibility in Certain Directions. Adv Mater. Res. 2008;33–37:807–814. doi: 10.4028/www.scientific.net/AMR.33-37.807. DOI
Grima JN, Caruana-Gauci R. Mechanical metamaterials: Materials that push back. Nat. Mater. 2012;11:565–566. doi: 10.1038/nmat3364. PubMed DOI
Cairns AB, et al. Giant negative linear compressibility in zinc dicyanoaurate. Nat. Mater. 2013;12:220–216. doi: 10.1038/nmat3551. PubMed DOI
Cai W, Katrusiak A. Giant negative linear compression positively coupled to massive thermal expansion in a metal–organic framework. Nat. Commun. 2014;5:4337. doi: 10.1038/ncomms5337. PubMed DOI
Cairns AB, Goodwin AL. Negative Linear Compressibility. Phys. Chem. Chem. Phys. 2015;17:20449–20465. doi: 10.1039/C5CP00442J. PubMed DOI
Colmenero F. Anomalous mechanical behavior of the deltic, squaric and croconic cyclic oxocarbon acids. Mater. Res. Express. 2019;6:045610. doi: 10.1088/2053-1591/aaf9d7. PubMed DOI
Colmenero F. Mechanical Properties of Anhydrous Oxalic Acid and Oxalic Acid Dihydrate. Phys. Chem. Chem. Phys. 2019;21:2673–2690. doi: 10.1039/C8CP07188H. PubMed DOI
Colmenero F. Negative Area compressibility in oxalic acid dihydrate. Mater. Lett. 2019;245:25–28. doi: 10.1016/j.matlet.2019.02.077. DOI
Colmenero F, Cobos J, Timón V. Negative Linear Compressibility in Uranyl Squarate Monohydrate. J. Phys.: Condens. Matter. 2019;31:175701. doi: 10.1016/j.matlet.2019.02.077. PubMed DOI
Colmenero F. Silver Oxalate: Mechanical Properties and Extreme Negative Mechanical Phenomena. Adv. Theor. Simul. 2019;2:1900040. doi: 10.1002/adts.201900040. DOI
Colmenero F, Timón V. Extreme negative mechanical phenomena in the zinc and cadmium anhydrous metal oxalates and lead oxalate dihydrate. J. Mater. Sci. 2020;55:218–236. doi: 10.1007/s10853-019-04041-2. DOI
Lakes RS. Negative-Poisson’s-ratio materials: auxetic solids. Annu. Rev. Mater. Res. 2017;47:63–81. doi: 10.1146/annurev-matsci-070616-124118. DOI
Lakes RS, Wojciechowski KW. Negative Compressibility, Negative Poisson’s Ratio and Stability. Phys. Stat. Sol. (b) 2008;245:545–551. doi: 10.1002/pssb.200777708. DOI
Loa I, Syassen K, Kremer R. Vibrational properties of NaV2O5 under high pressure studied by Raman spectroscopy. Solid State Commun. 1999;112:681–685. doi: 10.1016/S0038-1098(99)00409-3. DOI
Seyidov MY, Suleymanov RA. Negative thermal expansion due to negative area compressibility in TIGaSe2 semiconductor with layered crystalline structure. J. Appl. Phys. 2010;108:063540. doi: 10.1063/1.3486211. DOI
Hodgson SA, et al. Negative area compressibility in silver(I) tricyano-methanide. Chem. Commun. 2014;50:5264–5266. doi: 10.1039/C3CC47032F. PubMed DOI
Cai W, et al. Giant Negative Area Compressibility Tunable in a Soft Porous Framework Material. J. Am. Chem. Soc. 2015;137:9296–9301. doi: 10.1021/jacs.5b03280. PubMed DOI
Feng G, et al. Negative area compressibility of a hydrogen bonded two-dimensional material. Chem. Sci. 2019;10:1309–1315. doi: 10.1039/C8SC03291B. PubMed DOI PMC
Grima JN, Caruana-Gauci R, Wojciechowski KW, Evans KE. Smart hexagonal truss systems exhibiting negative compressibility through constrained angle stretching. Smart Mater. Struct. 2013;22:084015. doi: 10.1088/0964-1726/22/8/084015. DOI
Grima JN, Caruana-Gauchi R, Dudek MR, Wojciechowski KW, Gatt R. Smart metamaterials with tunable auxetic and other properties. Smart Mater. Struct. 2013;22:084016. doi: 10.1088/0964-1726/22/8/084016. DOI
Abramovitch H, et al. Smart tetrachiral and hexachiral honeycomb: sensing and impact detection. Compos. Sci. Technol. 2010;70:1072–1079. doi: 10.1016/j.compscitech.2009.07.017. DOI
Thompson AB, Tucker MG, Haines J, Goodwin AL. Rational design of materials with extreme negative compressibility: selective soft-mode frustration in KMn[Ag(CN)2]3. J. Am. Chem. Soc. 2012;134:4454–4456. doi: 10.1021/ja204908m. PubMed DOI
Gatt R, et al. Hierarchical auxetic mechanical metamaterials. Sci. Rep. 2015;5:8395. doi: 10.1038/srep08395. PubMed DOI PMC
Ghaedizadeh A, Shen J, Ren X, Xie YM. Designing composites with negative linear compressibility. Mater. Des. 2017;131:343–357. doi: 10.1016/j.matdes.2017.06.026. DOI
Barnes, D. L. Negative Linear Compressibility: Beyond the Wine-Rack Model and Towards Engineering Applications. Ph. Thesis (University of Exeter, 2017).
De Jong M, et al. Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data. 2015;2:150009. doi: 10.1038/sdata.2015.9. PubMed DOI PMC
Chibani S, Coudert FX. Systematic Exploration of the Mechanical Properties of 13,621 Inorganic Compounds. Chem. Sci. 2019;10:8589–8599. doi: 10.1039/C9SC01682A. PubMed DOI PMC
Cámara F, Garvie LAJ, Devouard B, Groy T, Busec PR. The structure of Mn-rich tuperssuatsiaite: A palygorskite-related mineral. Am. Mineral. 2002;87:1458–1463. doi: 10.2138/am-2002-1023. DOI
Grima, J. N., Jackson R., Alderson, A. & Evans, K. E. Do Zeolites have negative Poisson’s ratios? Adv. Mater. 12 1912–1918, 10.1002/1521-4095(200012)12:24<1912::AID-ADMA1912>3.0.CO;2-7 (2000).
Grima JN, et al. Natrolite: a zeolite with negative Poisson’s ratios. J. Appl. Phys. 2007;101:086102. doi: 10.1063/1.2718879. DOI
Lee Y, Vogt T, Hriljac JA, Parise JB, Artioli G. Pressure-Induced volume expansion of zeolites in the natrolite family. J. Am. Chem. Soc. 2002;124:5466–5475. doi: 10.1021/ja0255960. PubMed DOI
Sanchez-Valle C, et al. Brillouin scattering study on the single crystal of natrolite and analcime zeolites. J. Appl. Phys. 2005;98:53508. doi: 10.1063/1.2014932. DOI
Sanchez-Valle C, et al. Negative Poisson’s Ratios in Siliceous Zeolite MFI-Silicalite. J. Chem. Phys. 2008;128:184503. doi: 10.1063/1.2912061. PubMed DOI
Gatta GD, Lee Y. Anisotropic elastic behaviour and structural evolution of zeolite phillipsite at high pressure: A synchrotron powder diffraction study. Micropor. Mesopor. Mater. 2007;105:239–250. doi: 10.1016/j.micromeso.2007.01.031. DOI
Gatta GD, Lee Y. Zeolites at high pressure: A review. Mineral. Mag. 2014;78:267–291. doi: 10.1180/minmag.2014.078.2.04. DOI
Coudert FX. Systematic investigation of the mechanical properties of pure silica zeolites: stiffness, anisotropy, and negative linear compressibility. Phys. Chem. Chem. Phys. 2013;15:16102–16018. doi: 10.1039/C3CP51817E. PubMed DOI
Coudert FX. Predicting the mechanical properties of zeolite frameworks by machine learning. Chem. Mater. 2017;29:7833–7839. doi: 10.1021/acs.chemmater.7b02532. DOI
Hall LJ, et al. Sign change of Poisson’s ratio for carbon nanotube sheets. Science. 2008;320:504–507. doi: 10.1126/science.1149815. PubMed DOI
Coluci VR, et al. Modeling the Auxetic Transition for Carbon Nanotube Sheets. Phys. Rev. B. 2008;78:115408. doi: 10.1103/PhysRevB.78.115408. DOI
De Volder MFL, Tawfick SH, Baughman RH. & Hart. J. Carbon Nanotubes: Present and Future Commercial Applications. Science. 2013;239:535–539. doi: 10.1126/science.1222453. PubMed DOI
Sajadi SM, et al. 3D Printed Tubulanes as Lightweight Hypervelocity Impact Resistant Structures. Small. 2019;15:1904747. doi: 10.1002/smll.201904747. PubMed DOI
Chen L, Liu W, Zhang W, Hu C, Fan S. Auxetic materials with large negative Poisson’s ratios based on highly oriented carbon nanotube structures. Appl. Phys. Lett. 2009;94:253111. doi: 10.1063/1.3159467. DOI
Aliev AE, et al. Giant-Stroke, Superelastic carbon nanotube aerogel muscles. Science. 2009;323:1575–1578. doi: 10.1126/science.1168312. PubMed DOI
Wang W, He C, Xie L, Peng Q. The Temperature-Sensitive Anisotropic Negative Poisson’s Ratio of Carbon Honeycomb. Nanomaterials. 2019;9:487. doi: 10.3390/nano9040487. PubMed DOI PMC
Overvelde JTB, Bertoldi K. Relating pore shape to the non-linear response of periodic elastomeric structures. J. Mech. Phys. Solids. 2014;64:351–366. doi: 10.1016/j.jmps.2013.11.014. DOI
Baughman RH, Fonseca AF. Straining to expand entanglements. Nat. Mater. 2015;15:7–8. doi: 10.1038/nmat4436. PubMed DOI
Qu J, Kadic M, Wegener M. Three-dimensional poroelastic metamaterials with extremely negative or positive effective static volume compressibility. Extreme Mech. Lett. 2018;22:165–171. doi: 10.1016/j.eml.2018.06.007. DOI
Mizzi L, et al. Mechanical metamaterials with star-shaped pores exhibiting negative and zero Poisson’s ratio. Mater. Des. 2018;146:28–37. doi: 10.1016/j.matdes.2018.02.051. DOI
Degabriele EP, et al. On the Compressibility Properties of the Wine-Rack like Carbon Allotropes and Related Poly(phenylacetylene) Systems. Phys. Stat. Sol. (b) 2019;256:1800572. doi: 10.1002/pssb.201800572. DOI
Oliveira EF, Autreto PAS, Woellner CF, Galvao DS. On the mechanical properties of novamene: A fully atomistic molecular dynamics and DFT investigation. Carbon. 2018;139:782–788. doi: 10.1016/j.carbon.2018.07.038. DOI
Oliveira EF, Autreto PAS, Woellner CF, Galvao DS. On the mechanical properties of protomene: A theoretical investigation. Comput. Mater. Sci. 2019;161:190–198. doi: 10.1016/j.commatsci.2019.01.050. DOI
Francesconi L, Baldi A, Liang X, Aymerich F, Taylor M. Variable Poisson’s ratio materials for globally stable static and dynamic compression resistance. Extreme Mech. Lett. 2019;26:1–7. doi: 10.1016/j.eml.2018.11.001. DOI
Colmenero F, Cobos J, Timón V. Periodic DFT Study of the Structure, Raman Spectrum and Mechanical Properties of Schoepite Mineral. Inorg. Chem. 2018;57:4470–4481. doi: 10.1021/acs.inorgchem.8b00150. PubMed DOI
Colmenero F, Fernández AM, Timón V, Cobos J. Becquerelite Mineral Phase: Crystal Structure and Thermodynamic and Mechanic Stability by Using Periodic DFT. RSC Adv. 2018;8:24599–24616. doi: 10.1039/C8RA04678F. PubMed DOI PMC
Clark SJ, et al. First Principles Methods Using CASTEP. Z. Kristallogr. 2005;220:567–570. doi: 10.1524/zkri.220.5.567.65075. DOI
MaterialsStudio, http://3dsbiovia.com/products/collaborative-scien-ce/biovia-materials-studio/ (accessed Sept. 2019).
Payne MC, Teter MP, Ailan DC, Arias A, Joannopoulos JD. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992;64:1045–1097. doi: 10.1103/RevModPhys.64.1045. DOI
Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Grimme S. Semiempirical GGA-type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI
Troullier N, Martins JL. Efficient Pseudopotentials for Plane-Wave Calculations. Phys. Rev. B. 1991;43:1993–2006. doi: 10.1103/PhysRevB.43.1993. PubMed DOI
Pfrommer BG, Cote M, Louie SG, Cohen ML. Relaxation of Crystals with the Quasi-Newton Method. J. Comput. Phys. 1997;131:233–240. doi: 10.1006/jcph.1996.5612. DOI
Monkhorst HJ, Pack JD. Special Points for Brillouin-zone Integration. Phys. Rev. B. 1976;13:5188–5192. doi: 10.1103/PhysRevB.16.1746. DOI
Refson K, Tulip PR, Clark SJ. Variational Density-Functional Perturbation Theory for Dielectrics and Lattice Dynamics. Phys. Rev. B. 2006;73:155114. doi: 10.1103/PhysRevB.73.155114. DOI
Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P. Phonons and Related Crystal Properties from Density-Functional Perturbation Theory. Rev. Mod. Phys. 2001;73:515–562. doi: 10.1103/RevModPhys.73.515. DOI
Hehre, W. J., Radom, L., Schleyer, P. V. R. & Pople J. A. Ab Initio Molecular Orbital Theory (Wiley, 1986).
Nye, J. F. Physical Properties of Crystals (Clarendon, 1976).
Yu R, Zhu J, Ye HQ. Calculations of Single-Crystal Elastic Constants Made Simple. Comput. Phys. Commun. 2010;181:671–675. doi: 10.1016/j.cpc.2009.11.017. DOI
Birch F. Finite Elastic Strain of Cubic Crystal. Phys. Rev. 1947;71:809–824. doi: 10.1103/PhysRev.71.809. DOI
Angel RJ. Equations of State. Rev. Mineral. Geochem. 2000;41:35–60. doi: 10.2138/rmg.2000.41.2. DOI
EOSFIT 5.2 software, http://programming.ccp14.ac.uk/ccp/webmirrors/ross-angel/crystal/software.html (accessed Sept. 2019).
Jones, B. F. & Galan, E. Sepiolite and Palygorskite. Rev. Mineral. Geochem. 19, 631–674, https://pubs.geoscienceworld.org/msa/rimg/article-abstract/19/1/631/87234/Sepiolite-and-palygorskite (1988).
Güven N, de la Caillerie JBE, Fripiat JJ. The coordination of aluminum ions in the palygorskite structure. Clays Clay. Miner. 1992;40:457–461. doi: 10.1346/CCMN.1992.0400410. DOI
Serna, C., van Scoyoc, G. E. & Ahlrichs, J. L. Hydroxyl groups and water in palygorskite, Am. Mineral. 62, 784–792, https:// pubs.geoscienceworld.org/ msa/ammin/article-abstract/62/7-8/784/40804/Hydroxyl-groups-and-water-in-palygorskite (1997).
Colmenero F, et al. Crystal Structure, Hydrogen Bonding, Mechanical Properties and Raman Spectrum of the Lead Uranyl Silicate Monohydrate Mineral Kasolite. RSC Adv. 2019;9:15323–15334. doi: 10.1039/C9RA02931A. PubMed DOI PMC
Weck PF, Kim E, Buck EC. On the Mechanical Stability of Uranyl Peroxide Hydrates: Implications for Nuclear Fuel Degradation. RSC Adv. 2015;5:79090–79097. doi: 10.1039/C5RA16111H. DOI
Born M. On the Stability of Crystal Lattices. I. Math. Proc. Camb. Phil. Soc. 1940;36:160–172. doi: 10.1017/S0305004100017138. DOI
Mouhat F, Coudert FX. Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems. Phys. Rev. B. 2014;90:224104. doi: 10.1103/PhysRevB.90.224104. DOI
Voigt, W, Lehrbuch der Kristallphysik (Teubner, 1962).
Reuss A. Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle. Z. Angew. Math. Mech. 1929;9:49–58. doi: 10.1002/zamm.19290090104. DOI
Hill R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. Lond. A. 1952;65:349–354. doi: 10.1088/0370-1298/65/5/307. DOI
Pugh SF. XCII. Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals. Phil. Mag. 1954;45:823–843. doi: 10.1080/14786440808520496. DOI
Bouhadda Y, Djella S, Bououdina M, Fenineche N, Boudouma Y. Structural and Elastic Properties of LiBH4 for Hydrogen Storage Applications. J. Alloys Compd. 2012;534:20–24. doi: 10.1016/j.jallcom.2012.04.060. DOI
Niu H, et al. Electronic, Optical, and Mechanical Properties of Superhard Cold-Compressed Phases of Carbon. Appl. Phys. Lett. 2011;99:031901. doi: 10.1063/1.3610996. DOI
Ranganathan SI, Ostoja-Starzewski M. Universal Elastic Anisotropy Index. Phys. Rev. Lett. 2008;101:055504. doi: 10.1103/PhysRevLett.101.055504. PubMed DOI
Lethbridge, Z. A. D., Walton, R. I., Marmier, A. S. H., Smith C. W., & Evans, K. E. Elastic Anisotropy and Extreme Poisson’s Ratios in Single Crystals. Acta Mater. 58, 6444–6451, 10.1016/j.actamat.2010.08.006 (2010).
Marmier A, et al. ElAM: A Computer Program for the Analysis and Representation of Anisotropic Elastic Properties. Comput. Phys. Commun. 2010;181:2102–2115. doi: 10.1016/j.cpc.2010.08.033. DOI
Gaines, R. V., Skinner, H. C., Foord, E. E., Mason, B. & Rosenzweig, A. Dana’s New Mineralogy, Eighth Edition (John Wiley & Sons, 1997).