Crystal Structure, Infrared Spectrum and Elastic Anomalies in Tuperssuatsiaite

. 2020 May 05 ; 10 (1) : 7510. [epub] 20200505

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32371887
Odkazy

PubMed 32371887
PubMed Central PMC7200798
DOI 10.1038/s41598-020-64481-8
PII: 10.1038/s41598-020-64481-8
Knihovny.cz E-zdroje

The full crystal structure of the phyllosilicate mineral tuperssuatsiaite, including the positions of the hydrogen atoms in its unit cell, is determined for the first time by using first-principles solid-state methods. From the optimized structure, its infrared spectrum and elastic properties are determined. The computed infrared spectrum is in excellent agreement with the experimental spectrum recorded from a natural sample from Ilímaussaq alkaline complex (Greenland, Denmark). The elastic behavior of tuperssuatsiaite is found to be extremely anomalous and significant negative compressibilities are found. Tuperssuatsiaite exhibits the important negative linear compressibility phenomenon under small anisotropic pressures applied in a wide range of orientations of the applied strain and the very infrequent negative area compressibility phenomenon under external isotropic pressures in the range from 1.9 to 2.4 GPa. The anisotropic negative linear compressibility effect in tuperssuatsiaite is related to the increase of the unit cell along the direction perpendicular to the layers charactering its crystal structure. The isotropic negative area compressibility effect, however, is related to the increase of the unit cell dimensions along the directions parallel to the layers.

Zobrazit více v PubMed

Baughman RH, Stafström S, Cui C, Dantas SO. Materials with Negative Compressibilities in One or More Dimensions. Science. 1998;279:1522–1524. doi: 10.1126/science.279.5356.1522. PubMed DOI

Evans, K. E. & Alderson, A. Auxetic Materials: Functional Materials and Structures from Lateral Thinking! Adv. Mater. 12, 617−628, 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3 (2000).

Spinks, G. M., et al. Pneumatic Carbon Nanotube Actuators. Adv. Mater. 14, 1728−1732, 10.1002/1521-4095(20021203)14:23<1728::AID-ADMA1728>3.0.CO;2-8 (2002).

Weng CN, Wang KT, Chen T. Design of Microstructures and Structures with Negative Linear Compressibility in Certain Directions. Adv Mater. Res. 2008;33–37:807–814. doi: 10.4028/www.scientific.net/AMR.33-37.807. DOI

Grima JN, Caruana-Gauci R. Mechanical metamaterials: Materials that push back. Nat. Mater. 2012;11:565–566. doi: 10.1038/nmat3364. PubMed DOI

Cairns AB, et al. Giant negative linear compressibility in zinc dicyanoaurate. Nat. Mater. 2013;12:220–216. doi: 10.1038/nmat3551. PubMed DOI

Cai W, Katrusiak A. Giant negative linear compression positively coupled to massive thermal expansion in a metal–organic framework. Nat. Commun. 2014;5:4337. doi: 10.1038/ncomms5337. PubMed DOI

Cairns AB, Goodwin AL. Negative Linear Compressibility. Phys. Chem. Chem. Phys. 2015;17:20449–20465. doi: 10.1039/C5CP00442J. PubMed DOI

Colmenero F. Anomalous mechanical behavior of the deltic, squaric and croconic cyclic oxocarbon acids. Mater. Res. Express. 2019;6:045610. doi: 10.1088/2053-1591/aaf9d7. PubMed DOI

Colmenero F. Mechanical Properties of Anhydrous Oxalic Acid and Oxalic Acid Dihydrate. Phys. Chem. Chem. Phys. 2019;21:2673–2690. doi: 10.1039/C8CP07188H. PubMed DOI

Colmenero F. Negative Area compressibility in oxalic acid dihydrate. Mater. Lett. 2019;245:25–28. doi: 10.1016/j.matlet.2019.02.077. DOI

Colmenero F, Cobos J, Timón V. Negative Linear Compressibility in Uranyl Squarate Monohydrate. J. Phys.: Condens. Matter. 2019;31:175701. doi: 10.1016/j.matlet.2019.02.077. PubMed DOI

Colmenero F. Silver Oxalate: Mechanical Properties and Extreme Negative Mechanical Phenomena. Adv. Theor. Simul. 2019;2:1900040. doi: 10.1002/adts.201900040. DOI

Colmenero F, Timón V. Extreme negative mechanical phenomena in the zinc and cadmium anhydrous metal oxalates and lead oxalate dihydrate. J. Mater. Sci. 2020;55:218–236. doi: 10.1007/s10853-019-04041-2. DOI

Lakes RS. Negative-Poisson’s-ratio materials: auxetic solids. Annu. Rev. Mater. Res. 2017;47:63–81. doi: 10.1146/annurev-matsci-070616-124118. DOI

Lakes RS, Wojciechowski KW. Negative Compressibility, Negative Poisson’s Ratio and Stability. Phys. Stat. Sol. (b) 2008;245:545–551. doi: 10.1002/pssb.200777708. DOI

Loa I, Syassen K, Kremer R. Vibrational properties of NaV2O5 under high pressure studied by Raman spectroscopy. Solid State Commun. 1999;112:681–685. doi: 10.1016/S0038-1098(99)00409-3. DOI

Seyidov MY, Suleymanov RA. Negative thermal expansion due to negative area compressibility in TIGaSe2 semiconductor with layered crystalline structure. J. Appl. Phys. 2010;108:063540. doi: 10.1063/1.3486211. DOI

Hodgson SA, et al. Negative area compressibility in silver(I) tricyano-methanide. Chem. Commun. 2014;50:5264–5266. doi: 10.1039/C3CC47032F. PubMed DOI

Cai W, et al. Giant Negative Area Compressibility Tunable in a Soft Porous Framework Material. J. Am. Chem. Soc. 2015;137:9296–9301. doi: 10.1021/jacs.5b03280. PubMed DOI

Feng G, et al. Negative area compressibility of a hydrogen bonded two-dimensional material. Chem. Sci. 2019;10:1309–1315. doi: 10.1039/C8SC03291B. PubMed DOI PMC

Grima JN, Caruana-Gauci R, Wojciechowski KW, Evans KE. Smart hexagonal truss systems exhibiting negative compressibility through constrained angle stretching. Smart Mater. Struct. 2013;22:084015. doi: 10.1088/0964-1726/22/8/084015. DOI

Grima JN, Caruana-Gauchi R, Dudek MR, Wojciechowski KW, Gatt R. Smart metamaterials with tunable auxetic and other properties. Smart Mater. Struct. 2013;22:084016. doi: 10.1088/0964-1726/22/8/084016. DOI

Abramovitch H, et al. Smart tetrachiral and hexachiral honeycomb: sensing and impact detection. Compos. Sci. Technol. 2010;70:1072–1079. doi: 10.1016/j.compscitech.2009.07.017. DOI

Thompson AB, Tucker MG, Haines J, Goodwin AL. Rational design of materials with extreme negative compressibility: selective soft-mode frustration in KMn[Ag(CN)2]3. J. Am. Chem. Soc. 2012;134:4454–4456. doi: 10.1021/ja204908m. PubMed DOI

Gatt R, et al. Hierarchical auxetic mechanical metamaterials. Sci. Rep. 2015;5:8395. doi: 10.1038/srep08395. PubMed DOI PMC

Ghaedizadeh A, Shen J, Ren X, Xie YM. Designing composites with negative linear compressibility. Mater. Des. 2017;131:343–357. doi: 10.1016/j.matdes.2017.06.026. DOI

Barnes, D. L. Negative Linear Compressibility: Beyond the Wine-Rack Model and Towards Engineering Applications. Ph. Thesis (University of Exeter, 2017).

De Jong M, et al. Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data. 2015;2:150009. doi: 10.1038/sdata.2015.9. PubMed DOI PMC

Chibani S, Coudert FX. Systematic Exploration of the Mechanical Properties of 13,621 Inorganic Compounds. Chem. Sci. 2019;10:8589–8599. doi: 10.1039/C9SC01682A. PubMed DOI PMC

Cámara F, Garvie LAJ, Devouard B, Groy T, Busec PR. The structure of Mn-rich tuperssuatsiaite: A palygorskite-related mineral. Am. Mineral. 2002;87:1458–1463. doi: 10.2138/am-2002-1023. DOI

Grima, J. N., Jackson R., Alderson, A. & Evans, K. E. Do Zeolites have negative Poisson’s ratios? Adv. Mater. 12 1912–1918, 10.1002/1521-4095(200012)12:24<1912::AID-ADMA1912>3.0.CO;2-7 (2000).

Grima JN, et al. Natrolite: a zeolite with negative Poisson’s ratios. J. Appl. Phys. 2007;101:086102. doi: 10.1063/1.2718879. DOI

Lee Y, Vogt T, Hriljac JA, Parise JB, Artioli G. Pressure-Induced volume expansion of zeolites in the natrolite family. J. Am. Chem. Soc. 2002;124:5466–5475. doi: 10.1021/ja0255960. PubMed DOI

Sanchez-Valle C, et al. Brillouin scattering study on the single crystal of natrolite and analcime zeolites. J. Appl. Phys. 2005;98:53508. doi: 10.1063/1.2014932. DOI

Sanchez-Valle C, et al. Negative Poisson’s Ratios in Siliceous Zeolite MFI-Silicalite. J. Chem. Phys. 2008;128:184503. doi: 10.1063/1.2912061. PubMed DOI

Gatta GD, Lee Y. Anisotropic elastic behaviour and structural evolution of zeolite phillipsite at high pressure: A synchrotron powder diffraction study. Micropor. Mesopor. Mater. 2007;105:239–250. doi: 10.1016/j.micromeso.2007.01.031. DOI

Gatta GD, Lee Y. Zeolites at high pressure: A review. Mineral. Mag. 2014;78:267–291. doi: 10.1180/minmag.2014.078.2.04. DOI

Coudert FX. Systematic investigation of the mechanical properties of pure silica zeolites: stiffness, anisotropy, and negative linear compressibility. Phys. Chem. Chem. Phys. 2013;15:16102–16018. doi: 10.1039/C3CP51817E. PubMed DOI

Coudert FX. Predicting the mechanical properties of zeolite frameworks by machine learning. Chem. Mater. 2017;29:7833–7839. doi: 10.1021/acs.chemmater.7b02532. DOI

Hall LJ, et al. Sign change of Poisson’s ratio for carbon nanotube sheets. Science. 2008;320:504–507. doi: 10.1126/science.1149815. PubMed DOI

Coluci VR, et al. Modeling the Auxetic Transition for Carbon Nanotube Sheets. Phys. Rev. B. 2008;78:115408. doi: 10.1103/PhysRevB.78.115408. DOI

De Volder MFL, Tawfick SH, Baughman RH. & Hart. J. Carbon Nanotubes: Present and Future Commercial Applications. Science. 2013;239:535–539. doi: 10.1126/science.1222453. PubMed DOI

Sajadi SM, et al. 3D Printed Tubulanes as Lightweight Hypervelocity Impact Resistant Structures. Small. 2019;15:1904747. doi: 10.1002/smll.201904747. PubMed DOI

Chen L, Liu W, Zhang W, Hu C, Fan S. Auxetic materials with large negative Poisson’s ratios based on highly oriented carbon nanotube structures. Appl. Phys. Lett. 2009;94:253111. doi: 10.1063/1.3159467. DOI

Aliev AE, et al. Giant-Stroke, Superelastic carbon nanotube aerogel muscles. Science. 2009;323:1575–1578. doi: 10.1126/science.1168312. PubMed DOI

Wang W, He C, Xie L, Peng Q. The Temperature-Sensitive Anisotropic Negative Poisson’s Ratio of Carbon Honeycomb. Nanomaterials. 2019;9:487. doi: 10.3390/nano9040487. PubMed DOI PMC

Overvelde JTB, Bertoldi K. Relating pore shape to the non-linear response of periodic elastomeric structures. J. Mech. Phys. Solids. 2014;64:351–366. doi: 10.1016/j.jmps.2013.11.014. DOI

Baughman RH, Fonseca AF. Straining to expand entanglements. Nat. Mater. 2015;15:7–8. doi: 10.1038/nmat4436. PubMed DOI

Qu J, Kadic M, Wegener M. Three-dimensional poroelastic metamaterials with extremely negative or positive effective static volume compressibility. Extreme Mech. Lett. 2018;22:165–171. doi: 10.1016/j.eml.2018.06.007. DOI

Mizzi L, et al. Mechanical metamaterials with star-shaped pores exhibiting negative and zero Poisson’s ratio. Mater. Des. 2018;146:28–37. doi: 10.1016/j.matdes.2018.02.051. DOI

Degabriele EP, et al. On the Compressibility Properties of the Wine-Rack like Carbon Allotropes and Related Poly(phenylacetylene) Systems. Phys. Stat. Sol. (b) 2019;256:1800572. doi: 10.1002/pssb.201800572. DOI

Oliveira EF, Autreto PAS, Woellner CF, Galvao DS. On the mechanical properties of novamene: A fully atomistic molecular dynamics and DFT investigation. Carbon. 2018;139:782–788. doi: 10.1016/j.carbon.2018.07.038. DOI

Oliveira EF, Autreto PAS, Woellner CF, Galvao DS. On the mechanical properties of protomene: A theoretical investigation. Comput. Mater. Sci. 2019;161:190–198. doi: 10.1016/j.commatsci.2019.01.050. DOI

Francesconi L, Baldi A, Liang X, Aymerich F, Taylor M. Variable Poisson’s ratio materials for globally stable static and dynamic compression resistance. Extreme Mech. Lett. 2019;26:1–7. doi: 10.1016/j.eml.2018.11.001. DOI

Colmenero F, Cobos J, Timón V. Periodic DFT Study of the Structure, Raman Spectrum and Mechanical Properties of Schoepite Mineral. Inorg. Chem. 2018;57:4470–4481. doi: 10.1021/acs.inorgchem.8b00150. PubMed DOI

Colmenero F, Fernández AM, Timón V, Cobos J. Becquerelite Mineral Phase: Crystal Structure and Thermodynamic and Mechanic Stability by Using Periodic DFT. RSC Adv. 2018;8:24599–24616. doi: 10.1039/C8RA04678F. PubMed DOI PMC

Clark SJ, et al. First Principles Methods Using CASTEP. Z. Kristallogr. 2005;220:567–570. doi: 10.1524/zkri.220.5.567.65075. DOI

MaterialsStudio, http://3dsbiovia.com/products/collaborative-scien-ce/biovia-materials-studio/ (accessed Sept. 2019).

Payne MC, Teter MP, Ailan DC, Arias A, Joannopoulos JD. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992;64:1045–1097. doi: 10.1103/RevModPhys.64.1045. DOI

Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Grimme S. Semiempirical GGA-type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI

Troullier N, Martins JL. Efficient Pseudopotentials for Plane-Wave Calculations. Phys. Rev. B. 1991;43:1993–2006. doi: 10.1103/PhysRevB.43.1993. PubMed DOI

Pfrommer BG, Cote M, Louie SG, Cohen ML. Relaxation of Crystals with the Quasi-Newton Method. J. Comput. Phys. 1997;131:233–240. doi: 10.1006/jcph.1996.5612. DOI

Monkhorst HJ, Pack JD. Special Points for Brillouin-zone Integration. Phys. Rev. B. 1976;13:5188–5192. doi: 10.1103/PhysRevB.16.1746. DOI

Refson K, Tulip PR, Clark SJ. Variational Density-Functional Perturbation Theory for Dielectrics and Lattice Dynamics. Phys. Rev. B. 2006;73:155114. doi: 10.1103/PhysRevB.73.155114. DOI

Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P. Phonons and Related Crystal Properties from Density-Functional Perturbation Theory. Rev. Mod. Phys. 2001;73:515–562. doi: 10.1103/RevModPhys.73.515. DOI

Hehre, W. J., Radom, L., Schleyer, P. V. R. & Pople J. A. Ab Initio Molecular Orbital Theory (Wiley, 1986).

Nye, J. F. Physical Properties of Crystals (Clarendon, 1976).

Yu R, Zhu J, Ye HQ. Calculations of Single-Crystal Elastic Constants Made Simple. Comput. Phys. Commun. 2010;181:671–675. doi: 10.1016/j.cpc.2009.11.017. DOI

Birch F. Finite Elastic Strain of Cubic Crystal. Phys. Rev. 1947;71:809–824. doi: 10.1103/PhysRev.71.809. DOI

Angel RJ. Equations of State. Rev. Mineral. Geochem. 2000;41:35–60. doi: 10.2138/rmg.2000.41.2. DOI

EOSFIT 5.2 software, http://programming.ccp14.ac.uk/ccp/webmirrors/ross-angel/crystal/software.html (accessed Sept. 2019).

Jones, B. F. & Galan, E. Sepiolite and Palygorskite. Rev. Mineral. Geochem. 19, 631–674, https://pubs.geoscienceworld.org/msa/rimg/article-abstract/19/1/631/87234/Sepiolite-and-palygorskite (1988).

Güven N, de la Caillerie JBE, Fripiat JJ. The coordination of aluminum ions in the palygorskite structure. Clays Clay. Miner. 1992;40:457–461. doi: 10.1346/CCMN.1992.0400410. DOI

Serna, C., van Scoyoc, G. E. & Ahlrichs, J. L. Hydroxyl groups and water in palygorskite, Am. Mineral. 62, 784–792, https:// pubs.geoscienceworld.org/ msa/ammin/article-abstract/62/7-8/784/40804/Hydroxyl-groups-and-water-in-palygorskite (1997).

Colmenero F, et al. Crystal Structure, Hydrogen Bonding, Mechanical Properties and Raman Spectrum of the Lead Uranyl Silicate Monohydrate Mineral Kasolite. RSC Adv. 2019;9:15323–15334. doi: 10.1039/C9RA02931A. PubMed DOI PMC

Weck PF, Kim E, Buck EC. On the Mechanical Stability of Uranyl Peroxide Hydrates: Implications for Nuclear Fuel Degradation. RSC Adv. 2015;5:79090–79097. doi: 10.1039/C5RA16111H. DOI

Born M. On the Stability of Crystal Lattices. I. Math. Proc. Camb. Phil. Soc. 1940;36:160–172. doi: 10.1017/S0305004100017138. DOI

Mouhat F, Coudert FX. Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems. Phys. Rev. B. 2014;90:224104. doi: 10.1103/PhysRevB.90.224104. DOI

Voigt, W, Lehrbuch der Kristallphysik (Teubner, 1962).

Reuss A. Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle. Z. Angew. Math. Mech. 1929;9:49–58. doi: 10.1002/zamm.19290090104. DOI

Hill R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. Lond. A. 1952;65:349–354. doi: 10.1088/0370-1298/65/5/307. DOI

Pugh SF. XCII. Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals. Phil. Mag. 1954;45:823–843. doi: 10.1080/14786440808520496. DOI

Bouhadda Y, Djella S, Bououdina M, Fenineche N, Boudouma Y. Structural and Elastic Properties of LiBH4 for Hydrogen Storage Applications. J. Alloys Compd. 2012;534:20–24. doi: 10.1016/j.jallcom.2012.04.060. DOI

Niu H, et al. Electronic, Optical, and Mechanical Properties of Superhard Cold-Compressed Phases of Carbon. Appl. Phys. Lett. 2011;99:031901. doi: 10.1063/1.3610996. DOI

Ranganathan SI, Ostoja-Starzewski M. Universal Elastic Anisotropy Index. Phys. Rev. Lett. 2008;101:055504. doi: 10.1103/PhysRevLett.101.055504. PubMed DOI

Lethbridge, Z. A. D., Walton, R. I., Marmier, A. S. H., Smith C. W., & Evans, K. E. Elastic Anisotropy and Extreme Poisson’s Ratios in Single Crystals. Acta Mater. 58, 6444–6451, 10.1016/j.actamat.2010.08.006 (2010).

Marmier A, et al. ElAM: A Computer Program for the Analysis and Representation of Anisotropic Elastic Properties. Comput. Phys. Commun. 2010;181:2102–2115. doi: 10.1016/j.cpc.2010.08.033. DOI

Gaines, R. V., Skinner, H. C., Foord, E. E., Mason, B. & Rosenzweig, A. Dana’s New Mineralogy, Eighth Edition (John Wiley & Sons, 1997).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Full crystal structure, hydrogen bonding and spectroscopic, mechanical and thermodynamic properties of mineral uranopilite

. 2020 Aug 26 ; 10 (53) : 31947-31960. [epub] 20200827

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...