Structural complexity of natural uranyl sulfates

. 2019 Feb 01 ; 75 (Pt 1) : 39-48. [epub] 20190122

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32830776

Grantová podpora
GACR 17-09161S Czech Science Foundation
No. 18-17-00018 Russian Science Foundation

Uranyl sulfates, including those occurring in Nature (∼40 known members), possess particularly interesting structures. They exhibit a great dimensional and topological diversity of structures: from those based upon clusters of polyhedra to layered structures. There is also a great variability in the type of linkages between U and S polyhedra. From the point of view of complexity of those structures (measured as the amount of Shannon information per unit cell), most of the natural uranyl sulfates are intermediate (300-500 bits per cell) to complex (500-1000 bits per cell) with some exceptions, which can be considered as very complex structures (>1000 bits per cell). These exceptions are minerals alwilkinsite-(Y) (1685.95 bits per cell), sejkoraite-(Y) (1859.72 bits per cell), and natrozippeite (2528.63 bits per cell). The complexity of these structures is due to an extensive hydrogen bonding network which is crucial for the stability of these mineral structures. The hydrogen bonds help to propagate the charge from the highly charged interlayer cations (such as Y3+) or to link a high number of interlayer sites (i.e. five independent Na sites in the monoclinic natrozippeite) occupied by monovalent cations (Na+). The concept of informational ladder diagrams was applied to the structures of uranyl sulfates in order to quantify the particular contributions to the overall informational complexity and identifying the most contributing sources (topology, real symmetry, interlayer bonding).

Citace poskytuje Crossref.org

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...