Crystal structure of the uranyl arsenate mineral hügelite, Pb2(UO2)3O2(AsO4)2(H2O)5, revisited: a correct unit cell, twinning and hydrogen bonding
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media print-electronic
Document type Journal Article
Grant support
20-11949S
Czech Science Foundation (GACR 20-11949S)
DKRVO 2019-2023/1.II.c
Ministry of Culture of the Czech Republic
PubMed
34096520
PubMed Central
PMC8182802
DOI
10.1107/s2052520621004091
PII: S2052520621004091
Knihovny.cz E-resources
- Keywords
- JANA2006, crystal structure, hügelite, reticular merohedry, twinning, uranyl arsenate,
- Publication type
- Journal Article MeSH
Revisiting the structure of uranyl arsenate mineral hügelite provided some corrections to the available structural data. The previous twinning model (by reticular merohedry) in hügelite has been corrected. Twinning of the monoclinic unit cell [a = 7.0189 (7) Å, b = 17.1374 (10) Å, c = 8.1310 (10) Å and β = 108.904 (10)°], which can be expressed as a mirror in [100], leads to a pseudo-orthorhombic unit cell (a = 7.019 Å, b = 17.137 Å, c = 61.539 Å and β = 90.02°), which is eight times larger, with respect to the unit-cell volume, than a real cell. Moreover, the unit cell of chosen here and the unit cell given by the previous structure description both lead to the same supercell. A new structure refinement undertaken on an untwinned crystal of hügelite resulted in R = 4.82% for 12 864 reflections with Iobs > 3σ(I) and GOF = 1.12. The hydrogen-bonding scheme has been proposed for hügelite for the first time.
Department of Mineralogy and Petrology National Museum Cirkusová 1740 Praha 9 19300 Czech Republic
Institute of Physics ASCR v v i Na Slovance 2 Praha 8 18221 Czech Republic
See more in PubMed
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, p. 278. Oxford University Press.
Brown, I. D. (2009). Chem. Rev. 109, 6858–6919. PubMed PMC
Burns, P. C. (2005). Can. Mineral. 43, 1839–1894.
Dürrfeld, V. (1913). Z. Krystallogr. Mineral. 51, 278–279.
Finch, R. J. & Murakami, T. (1999). Reviews in Mineralogy, Vol. 38, Uranium: Mineralogy, Geochemistry and the Environment, edited by P. C. Burns & R. Finch, pp. 91–179. Chantilly, VA: Mineralogical Society of America and Geochemical Society.
Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578. PubMed PMC
Gorman-Lewis, D., Shvareva, T., Kubatko, K. A., Burns, P. C., Wellman, D. M., McNamara, B., Szymanowski, J. E. S., Navrotsky, A. & Fein, J. B. (2009). Environ. Sci. Technol. 43, 7416–7422. PubMed
Krivovichev, S. V. & Plášil, J. (2013). Uranium, from cradle to grave, MAC Short Course series, Vol. 43, edited by P. C. Burns & G. E. Sigmon, pp. 15–119. Québec: Mineralogical Association of Canada.
Locock, A. J. & Burns, P. C. (2003). Mineral. Mag. 67, 1109–1120.
Lussier, A. J., Lopez, R. A. K. & Burns, P. C. (2016). Can. Mineral. 54, 177–283.
Maher, K., Bargar, J. R. & Brown, G. E. Jr (2013). Inorg. Chem. 52, 3510–3532. PubMed
Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.
Petříček, V., Dušek, M. & Plášil, J. (2016). Z. Kristallogr. 231, 583–599.
Piret, P. & Piret-Meunier, J. (1988). Bull. Minéral. 111, 439–442.
Plášil, J. (2014). J. Geosci. 59, 99–114.
Plášil, J., Kiefer, B., Ghazisaeed, S. & Philippo, S. (2020). Acta Cryst. B76, 502–509. PubMed PMC
Rigaku (2019). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Schindler, M. & Hawthorne, F. C. (2008). Can. Mineral. 46, 467–501.
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. PubMed
Vochten, R. & Goeminne, A. (1984). Phys. Chem. Miner. 11, 95–100.
Walenta, K. (1979). Tschermaks Mineral. Petrogr. Mitt. 26, 11–19.
Walenta, K. & Wimmenauer, W. (1961). Jahresh. Geol. Landesamtes Baden-Wuerttemb. 4, 7–37.