Hidden and apparent twins in uranyl-oxide minerals agrinierite and rameauite: a demonstration of metric and reticular merohedry

. 2021 Dec 01 ; 54 (Pt 6) : 1656-1663. [epub] 20211102

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34963763

In this work, the structures of chemically related uranyl-oxide minerals agrinierite and rameauite have been revisited and some corrections to the available structure data are provided. Both structures were found to be twinned. The two minerals are chemically similar, and though their structures differ considerably, their unit-cell metrics are similar. Agrinierite was found to be twinned by metric merohedry (diffraction type I), whereas the structure of rameauite is twinned by reticular merohedry (diffraction type II). The twinning of the monoclinic unit cells (true cells) leads to pseudo-orthorhombic or pseudo-tetragonal supercells in the single-crystal diffraction patterns of both minerals. According to the new data and refinement, agrinierite is monoclinic (space group Cm), with a = 14.069 (3), b = 14.220 (3), c = 13.967 (3) Å, β = 120.24 (12)° and V = 2414.2 (12) Å3 (Z = 2). The twinning can be expressed as a mirror in (101) (apart from the inversion twin), which leads to a supercell with a = 14.121, b = 14.276, c = 24.221 Å and V = 2 × 2441 Å3, which is F centered. The new structure refinement converged to R = 3.54% for 6545 unique observed reflections with I > 3σ(I) and GOF = 1.07. Rameauite is also monoclinic (space group Cc), with a = 13.947 (3), b = 14.300 (3), c = 13.888 (3) Å, β = 118.50 (3)° and V = 2434.3 (11) Å3 (Z = 2). The twinning can be expressed as a mirror in (101) (apart from the inversion twin), which leads to a supercell with a = 14.223, b = 14.300, c = 23.921 Å and V = 2 × 2434 Å3, which is C centered. The new structure refinement of rameauite converged to R = 4.23% for 2344 unique observed reflections with I > 3σ(I) and GOF = 1.48. The current investigation documented how peculiar twinning can be, not only for this group of minerals, and how care must be taken in handling the data biased by twinning.

Zobrazit více v PubMed

Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, p. 278. Oxford University Press.

Brown, I. D. (2009). Chem. Rev. 109, 6858–6919. PubMed PMC

Cahill, C. L. & Burns, P. C. (2000). Am. Mineral. 85, 1294–1297.

Casas, I., Bruno, J., Cera, E., Finch, R. J. & Ewing, R. C. (1997). Geochim. Cosmochim. Acta, 61, 3879–3884.

Cesbron, F., Brown, W. L., Bariand, P. & Geffroy, J. (1972). Miner. Mag. 38, 781–789.

Finch, R. J., Cooper, M. A., Hawthorne, F. C. & Ewing, R. C. (1996). Can. Mineral. 34, 1071–1088.

Finch, R. J. & Ewing, R. C. (1992). J. Nucl. Mater. 190, 133–156.

Finch, R. J. & Murakami, T. (1999). Uranium: Mineralogy, Geochemistry and the Environment, edited by P. C. Burns & R. J. Finch, Reviews in Mineralogy, Vol. 38, pp. 91–179. Washington, DC: Mineralogical Society of America

Finch, R. J., Suksi, J., Rasilainen, K. & Ewing, R. C. (1996). Mater. Res. Soc. Symp. Proc. 412, 823–830.

Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578. PubMed PMC

Gorman-Lewis, D., Fein, J. B., Burns, P. C., Szymanowski, J. E. S. & Converse, J. (2008). J. Chem. Thermodyn. 40, 980–990.

Janeczek, J., Ewing, R. C., Oversby, V. M. & Werme, L. O. (1996). J. Nucl. Mater. 238, 121–130.

Kirkegaard, M. C., Niedziela, J. L., Miskowiec, A., Shields, A. E. & Anderson, B. B. (2019). Inorg. Chem. 58, 7310–7323. PubMed

Klingensmith, A. L., Deely, K. M., Kinman, W. S., Kelly, V. & Burns, P. C. (2007). Am. Mineral. 92, 662–669.

Kubatko, K. A., Helean, K., Navrotsky, A. & Burns, P. C. (2006). Am. Mineral. 91, 658–666.

Lu, K. T., Zhang, Y., Aughterson, R. D. & Zheng, R. (2020b). Dalton Trans. 49, 15854–15863. PubMed

Lu, K. T., Zhang, Y., Wei, T., Čejka, J. & Zheng, R. (2020a). Dalton Trans. 49, 5832–5841. PubMed

Merlet, C. (1994). Mikrochim. Acta, 114–115, 363–376.

Olds, T. A., Plášil, J., Kampf, A. R., Škoda, R., Burns, P. C., Čejka, J., Bourgoin, V. & Boulliard, J.-C. (2017). Eur. J. Mineral. 29, 129–141.

Olds, T., Plášil, J., Kampf, A. R., Spano, T., Haynes, P., Carlson, S. M., Burns, P. C., Simonetti, A. & Mills, O. P. (2018). Am. Miner. 103, 143–150.

Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.

Petříček, V., Dušek, M. & Plášil, J. (2016). Z. Kristallogr. 231, 583–599.

Plášil, J. (2014). J. Geosci. 59, 99–114.

Plášil, J. (2017). Am. Miner. 102, 1171–1175.

Plášil, J. (2018a). Eur. J. Mineral. 30, 237–251.

Plášil, J. (2018b). J. Geosci. 63, 65–73.

Plášil, J., Kampf, A. R., Olds, T. A., Sejkora, J., Škoda, R., Burns, P. C. & Čejka, J. (2020). Am. Miner. 105, 561–568.

Plášil, J., Kampf, A. R., Škoda, R. & Čejka, J. (2018). Acta Cryst. B74, 362–369. PubMed PMC

Plášil, J., Petříček, V. & Škácha, P. (2021). Acta Cryst. B77, 378–383. PubMed PMC

Plášil, J., Škoda, R., Čejka, J., Bourgoin, V. & Boulliard, J.-C. (2016). Eur. J. Mineral. 28, 959–967.

Rigaku (2019). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. PubMed

Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. PubMed

Wronkiewicz, D. J., Bates, J. K., Wolf, S. F. & Buck, E. C. (1996). J. Nucl. Mater. 238, 78–95.

Zhang, Y., Aughterson, R., Karatchevtseva, I., Kong, L., Trong Tran, T., Čejka, J., Aharonovich, I. & Lumpkin, G. R. (2018). New J. Chem. 42, 12267–13184.

Zhang, Y., Aughterson, R., Zhang, Z., Wei, T., Lu, K., Čejka, J. & Karatchevtseva, I. (2019). Inorg. Chem. 58, 10812–10821. PubMed

Zhang, Y., Čejka, J., Lumpkin, G. R., Tran, T. T., Aharonovich, I., Karatchevtseva, I., Price, J. R., Scales, N. & Lu, K. (2016). New J. Chem. 40, 5357–5363.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...