Nollmotzite, Mg[UV(UVIO2)2O4F3]·4H2O, the first natural uranium oxide containing fluorine
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1603
Ministry of Education, Youth and Sports National sustainability program I of the Czech Republic
DKRVO 2108/02, National Museum 00023272
Ministry of Culture of the Czech Republic
PubMed
30141421
PubMed Central
PMC6108157
DOI
10.1107/s2052520618007321
PII: S2052520618007321
Knihovny.cz E-zdroje
- Klíčová slova
- new mineral, nollmotzite, pentavalent uranium, uranium oxide fluoride,
- Publikační typ
- časopisecké články MeSH
Nollmotzite (IMA2017-100), Mg[UV(UVIO2)2F3O4](H2O)4, is a new uranium oxide fluoride mineral found in the Clara mine, Black Forest Mountains, Germany. Electron microprobe analysis provided the empirical formula (Mg1.06Cu0.02)Σ1.08[UV(UVIO2)2O3.85F3.15][(H2O)3.69(OH)0.31]Σ4.00 based on three U and 15 O + F atoms per formula unit. Nollmotzite is monoclinic, space group Cm, with a = 7.1015 (12) Å, b = 11.7489 (17) Å, c = 8.1954 (14) Å, β = 98.087 (14)°, V = 676.98 (19) Å3 and Z = 2. The crystal structure [twinned by reticular merohedry; refined to R = 0.0369 with GoF = 1.09 for 1527 unique observed reflections, I > 3σ(I)] is based upon [UV(UVIO2)2F3O4]2- sheets of β-U3O8 topology and contains an interlayer with MgF2(H2O)4 octahedra. Adjacent sheets are linked through F-Mg-F bonds, as well as via hydrogen bonds. The presence of fluorine and pentavalent uranium in the structure of nollmotzite has potentially important implications for the safe disposal of nuclear waste.
Department of Mineralogy and Petrology National Museum Cirkusová 1740 Prague 9 19300 Czech Republic
Institute of Physics ASCR v v i Na Slovance 2 Praha 8 18221 Czech Republic
Zobrazit více v PubMed
Bartlett, J. R. & Cooney, R. P. (1989). J. Mol. Struct. 193, 295–300.
Belai, N., Frisch, M., Ilton, E. S., Ravel, B. & Cahill, C. L. (2008). Inorg. Chem. 47, 10135–10140. PubMed
Blatov, V. A. & Serezhkin, V. N. (2000). Russ. J. Inorg. Chem. 45, S105–S222.
Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576–3586.
Blatov, V. A., Shevchenko, A. P. & Serenzhkin, V. N. (1995). Acta Cryst. A51, 909–916.
Blatov, V. A., Shevchenko, A. P. & Serezhkin, V. N. (1999). Koord. Khim. 25, 483–497.
Brese, N. E. & O’Keeffe, M. (1991). Acta Cryst. B47, 192–197.
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, pp. 278. Oxford University Press.
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
Burns, P. C. (2005). Can. Mineral. 43, 1839–1894.
Burns, P. C., Ewing, R. C. & Hawthorne, F. C. (1997a). Can. Mineral. 35, 1551–1570.
Burns, P. C. & Finch, R. J. (1999). Am. Mineral. 84, 1456–1460.
Burns, P. C., Finch, R. J., Hawthorne, F. C., Miller, M. L. & Ewing, R. C. (1997b). J. Nucl. Mater. 249, 199–206.
Čejka, J., Sejkora, J., Skála, R., Čejka, J. Jr, Novotná, M. & Ederová, J. (1998). N. Jahrb. Miner. Abh. 174, 159–180.
Cordfunke, E. H. P., van Vlaanderen, P. V., Goubitz, K. & Loopstra, B. O. (1985). J. Solid State Chem. 56, 166–170.
Dickens, P. G., Stuttard, G. P., Ball, R. G. J., Powell, A. V., Hull, S. & Patat, S. (1992). J. Mater. Chem. 2, 161–166.
Dothée, D. G. & Camelot, M. M. (1982). Bull. Soc. Chim. Fr. 3–4, 97–102.
Ewing, R. C. (2015). Nat. Mater. 14, 252–257. PubMed
Ewing, R. C., Whittleston, R. A. & Yardley, B. W. D. (2016). Elements, 12, 233–237.
Felder, J. B., Smith, M. & zur Loye, H.-C. (2018). Cryst. Growth Des. 18, 1236–1244.
Finch, R. J. & Ewing, R. C. (1992). J. Nucl. Mater. 190, 133–156.
Finch, R. J. & Murakami, T. (1999). Rev. Mineral. Geochem. 38, 91–179.
Finch, R. J., Suksi, J., Rasilainen, K. & Ewing, R. C. (1996). Mater. Res. Soc. Symp. Proc. 412, 823–830.
Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578. PubMed PMC
Gunter, M. E., Bandli, B. R., Bloss, F. D., Evans, S. H., Su, S. C. & Weaver, R. (2004). Microscope, 52, 23–39.
Guo, X., Lipp, C., Tiferet, E., Lanzirotti, A., Newville, M., Engelhard, M. H., Wu, D., Ilton, E. S., Sutton, S. R., Xu, H., Burns, P. C. & Navrotsky, A. (2016). Dalton Trans. 45, 18892–18899. PubMed
Hawthorne, F. C., Finch, R. J. & Ewing, R. C. (2006). Can. Mineral. 44, 1379–1385.
Hawthorne, F. C. & Schindler, M. (2008). Z. Kristallogr. 223, 41–68.
Hoppe, R. (1979). Z. Kristallogr. 150, 23–52.
Janeczek, J., Ewing, R. C., Oversby, V. M. & Werme, L. O. (1996). J. Nucl. Mater. 238, 121–130.
Jouffret, L. J., Hiltbrunner, J.-M., Rivenet, M., Sergent, N., Obbade, S., Avignant, D. & Dubois, M. (2016). Inorg. Chem. 55, 12185–12192. PubMed
Klingensmith, A. L., Deely, K. M., Kinman, W. S., Kelly, V. & Burns, P. C. (2007). Am. Mineral. 92, 662–669.
Krivovichev, S. V. (2013). Crystal Chemistry of Uranium Oxides and Minerals. Comprehensive Inorganic Chemistry II, pp. 611–640. Elsevier.
Krivovichev, S. V. & Plášil, J. (2013). In Uranium, from Cradle to Grave, edited by P. C. Burns and G. E. Sigmon. MAC Short Course series, Vol. 43, pp. 15–119. Mineralogical Association of Canada.
Kubatko, K. A., Helean, K., Navrotsky, A. & Burns, P. C. (2006). Am. Mineral. 91, 658–666.
Libowitzky, E. (1999). Monatsh. Chem. 130, 1047–1059.
Lin, Ch.-H., Chen, Ch.-S., Shiryaev, A. A., Zubavichus, Ya. V. & Lii, K.-H. (2008). Inorg. Chem. 47, 4445–4447. PubMed
Liu, H.-K. & Lii, K.-H. (2011). Inorg. Chem. 50, 5870–5872. PubMed
Lussier, A. J., Lopez, R. A. K. & Burns, P. C. (2016). Can. Mineral. 54, 177–283.
Lutz, H. D. (1988). Struct. Bond. 69, 99–125.
Maher, K., Bargar, J. R. & Brown, G. E. Jr (2013). Inorg. Chem. 52, 3510–3532. PubMed
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.
Morrison, J. M., Moore-Shay, L. J. & Burns, P. C. (2011). Inorg. Chem. 50, 2272–2277. PubMed
Nguyen, Q. B., Liu, H.-K., Chang, W. J. & Lii, K.-H. (2011). Inorg. Chem. 50, 4241–4243. PubMed
O’Hare, P. A. G., Lewis, B. M. & Nguyen, S. N. (1988). J. Chem. Thermodyn. 20, 1287–1296.
Olds, T. A., Lussier, A. J., Oliver, A. G., Petříček, V., Plášil, J., Kampf, A. R., Burns, P. C., Dembowski, M., Carlson, S. M. & Steele, I. M. (2017). Mineral. Mag. 81, 403–409.
Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.
Petříček, V., Dušek, M. & Plášil, J. (2016). Z. Kristallogr. 231, 583–599.
Plášil, J. (2014). J. Geosci. 59, 99–114.
Plášil, J. (2017). Am. Mineral. 102, 1771–1775.
Plášil, J. (2018). Eur. J. Mineral. 30, 237–251.
Rigaku Oxford Diffraction (2017). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK.
Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570. PubMed
Rojo, H., Scheinost, A. C., Lothenbach, B., Laube, A., Weiland, E. & Tits, J. (2018). Dalton Trans. 47, 4209–4208. PubMed
Schindler, M. & Hawthorne, F. C. (2004). Can. Mineral. 42, 1601–1627.
Serezhkin, V. N. (2007). In Structural Chemistry of Inorganic Actinide Compounds, edited by S. V. Krivovichev, P. C. Burns and I. G. Tananaev, pp. 31–64. Elsevier.
Serezhkin, V. N., Kovba, L. M. & Trunov, V. K. (1973). Kristallografiya, 18, 514–517 (in Russian).
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. PubMed
Stritzinger, J. T., Alekseev, E. V., Polinski, M. J., Cross, J. N., Eaton, T. M. & Albrecht-Schmitt, T. E. (2014). Inorg. Chem. 53, 5294–5299. PubMed
Unruh, D. K., Baranay, M., Baranay, M. & Burns, P. C. (2010). Inorg. Chem. 49, 6793–6795. PubMed
Wronkiewicz, D. J., Bates, J. K., Gerding, T. J., Veleckis, E. & Tani, B. S. (1992). J. Nucl. Mater. 190, 107–127.
Wronkiewicz, D. J., Bates, J. K., Wolf, S. F. & Buck, E. C. (1996). J. Nucl. Mater. 238, 78–95.
Wu, S., Ling, J., Wang, S., Skanthakumar, S., Soderholm, L., Albrecht-Schmitt, T., Alekseev, E. A., Krivovichev, S. V. & Depmeier, W. (2009). Eur. J. Inorg. Chem. 2009, 4039–4042.
Zachariasen, W. H. (1978). J. Less-Common Met. 62, 1–7.