• This record comes from PubMed

Statins Directly Influence the Polarization of Adipose Tissue Macrophages: A Role in Chronic Inflammation

. 2021 Feb 19 ; 9 (2) : . [epub] 20210219

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
17-28103A Ministerstvo Zdravotnictví Ceské Republiky

Links

PubMed 33669779
PubMed Central PMC7923086
DOI 10.3390/biomedicines9020211
PII: biomedicines9020211
Knihovny.cz E-resources

Statins represent one of the most widely used classes of drugs in current medicine. In addition to a substantial decrease in atherogenic low density lipoprotein (LDL) particle concentrations, several large trials have documented their potent anti-inflammatory activity. Based on our preliminary data, we showed that statins are able to decrease the proportion of pro-inflammatory macrophages (CD14+16+CD36high) in visceral adipose tissue in humans. In the present study including 118 healthy individuals (living kidney donors), a very close relationship between the pro-inflammatory macrophage proportion and LDL cholesterol levels was found. This was confirmed after adjustment for the most important risk factors. The effect of statins on the proportion of pro-inflammatory macrophages was also confirmed in an experimental model of the Prague hereditary hypercholesterolemia rat. A direct anti-inflammatory effect of fluvastatin on human macrophage polarization in vitro was documented. Based on modifying the LDL cholesterol concentrations, statins are suggested to decrease the cholesterol inflow through the lipid raft of macrophages in adipose tissue and hypercholesterolemia to enhance the pro-inflammatory macrophage phenotype polarization. On the contrary, due to their opposite effect, statins respond with anti-inflammatory activity, affecting the whole organism.

See more in PubMed

Kannel W.B., Thom T.J. Declining cardiovascular mortality. Circulation. 1984;70:331–336. doi: 10.1161/01.CIR.70.3.331. PubMed DOI

Ford E.S., Ajani U.A., Croft J.B., Critchley J.A., Labarthe D.R., Kottke T.E., Giles W.H., Capewell S. Explaining the decrease in U.S. deaths from coronary disease, 1980-2000. N. Engl. J. Med. 2007;356:2388–2398. doi: 10.1056/NEJMsa053935. PubMed DOI

Bjorck L., Rosengren A., Bennett K., Lappas G., Capewell S. Modelling the decreasing coronary heart disease mortality in Sweden between 1986 and 2002. Eur. Heart J. 2009;30:1046–1056. doi: 10.1093/eurheartj/ehn554. PubMed DOI

Boren J., Chapman M.J., Krauss R.M., Packard C.J., Bentzon J.F., Binder C.J., Daemen M.J., Demer L.L., Hegele R.A., Nicholls S.J., et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2020;41:2313–2330. doi: 10.1093/eurheartj/ehz962. PubMed DOI PMC

Ridker P.M., Rifai N., Rose L., Buring J.E., Cook N.R. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N. Engl. J. Med. 2002;347:1557–1565. doi: 10.1056/NEJMoa021993. PubMed DOI

Ridker P.M., MacFadyen J., Libby P., Glynn R.J. Relation of Baseline High-Sensitivity C-Reactive Protein Level to Cardiovascular Outcomes with Rosuvastatin in the Justification for Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) Am. J. Cardiol. 2010;106:204–209. doi: 10.1016/j.amjcard.2010.03.018. PubMed DOI

Libby P., Ridker P.M., Hansson G.K. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–325. doi: 10.1038/nature10146. PubMed DOI

Berg A.H., Scherer P.E. Adipose tissue, inflammation, and cardiovascular disease. Circ. Res. 2005;96:939–949. doi: 10.1161/01.RES.0000163635.62927.34. PubMed DOI

Kralova Lesna I., Petras M., Cejkova S., Kralova A., Fronek J., Janousek L., Thieme F., Tyll T., Poledne R. Cardiovascular disease predictors and adipose tissue macrophage polarization: Is there a link? Eur. J. Prev. Cardiol. 2018;25:328–334. doi: 10.1177/2047487317743355. PubMed DOI

Zhou R.B., Tardivel A., Thorens B., Choi I., Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 2010;11:136–140. doi: 10.1038/ni.1831. PubMed DOI

Wen H.T., Gris D., Lei Y., Jha S., Zhang L., Huang M.T.H., Brickey W.J., Ting J.P.Y. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 2011;12:408–415. doi: 10.1038/ni.2022. PubMed DOI PMC

Murphy A.J., Akhtari M., Tolani S., Pagler T., Bijl N., Kuo C.L., Wang M., Sanson M., Abramowicz S., Welch C., et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J. Clin. Invest. 2011;121:4138–4149. doi: 10.1172/JCI57559. PubMed DOI PMC

Ridker P.M. High-sensitivity C-reactive protein as a predictor of all-cause mortality: Implications for research and patient care. Clin. Chem. 2008;54:234–237. doi: 10.1373/clinchem.2007.099465. PubMed DOI

Lee M.K.S., Moore X.L., Fu Y., Al-Sharea A., Dragoljevic D., Fernandez-Rojo M.A., Parton R., Sviridov D., Murphy A.J., Chin-Dusting J.P.F. High-density lipoprotein inhibits human M1 macrophage polarization through redistribution of caveolin-1. Br. J. Pharm. 2016;173:741–751. doi: 10.1111/bph.13319. PubMed DOI PMC

Fu Y., Moore S., Chin-Dusting J.P.F. Caveolin-1 plays a critical role in the differentiation of monocytes into macrophages. Vasc. Pharm. 2012;56:373. doi: 10.1016/j.vph.2011.08.183. PubMed DOI

Zeiser R. Immune modulatory effects of statins. Immunology. 2018;154:69–75. doi: 10.1111/imm.12902. PubMed DOI PMC

Hechinger A.K., Maas K., Durr C., Leonhardt F., Prinz G., Marks R., Gerlach U., Hofmann M., Fisch P., Finke J., et al. Inhibition of protein geranylgeranylation and farnesylation protects against graft-versus-host disease via effects on CD4 effector T cells. Haematologica. 2013;98:31–40. doi: 10.3324/haematol.2012.065789. PubMed DOI PMC

Kobashigawa J.A., Katznelson S., Laks H., Johnson J.A., Yeatman L., Wang X.M., Chia D., Terasaki P.I., Sabad A., Cogert G.A., et al. Effect of Pravastatin on Outcomes after Cardiac Transplantation. N. Engl. J. Med. 1995;333:621–627. doi: 10.1056/NEJM199509073331003. PubMed DOI

Liao J.K., Laufs U. Pleiotropic effects of statins. Annu. Rev. Pharm. 2005;45:89–118. doi: 10.1146/annurev.pharmtox.45.120403.095748. PubMed DOI PMC

Ridker P.M., Cannon C.P., Braunwald E. C-reactive protein levels and outcomes after statin therapy—Reply. N. Engl. J. Med. 2005;352:1604–1605. doi: 10.1056/NEJMoa042378. PubMed DOI

Ridker P.M., Cannon C.P., Morrow D., Rifai N., Rose L.M., McCabe C.H., Pfeffer M.A., Braunwald E., Investigators P.I.-T. C-reactive protein levels and outcomes after statin therapy. N. Engl. J. Med. 2005;352:20–28. doi: 10.1056/NEJMoa042378. PubMed DOI

Sacks F.M., Pfeffer M.A., Moye L.A., Rouleau J.L., Rutherford J.D., Cole T.G., Brown L., Warnica J.W., Arnold J.M., Wun C.C., et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N. Engl. J. Med. 1996;335:1001–1009. doi: 10.1056/NEJM199610033351401. PubMed DOI

Albert M.A., Danielson E., Rifai N., Ridker P.M., Investigators P. Effect of statin therapy on C-reactive protein levels: The pravastatin inflammation/CRP evaluation (PRINCE): A randomized trial and cohort study. JAMA. 2001;286:64–70. doi: 10.1001/jama.286.1.64. PubMed DOI

Ridker P.M., Danielson E., Fonseca F.A., Genest J., Gotto A.M., Jr., Kastelein J.J., Koenig W., Libby P., Lorenzatti A.J., Macfadyen J.G., et al. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: A prospective study of the JUPITER trial. Lancet. 2009;373:1175–1182. doi: 10.1016/S0140-6736(09)60447-5. PubMed DOI

Patel J.M., Snaith C., Thickett D.R., Linhartova L., Melody T., Hawkey P., Barnett A.H., Jones A., Hong T., Cooke M.W., et al. Randomized double-blind placebo-controlled trial of 40 mg/day of atorvastatin in reducing the severity of sepsis in ward patients (ASEPSIS Trial) Crit Care. 2012;16:R231. doi: 10.1186/cc11895. PubMed DOI PMC

Hohensinner P.J., Baumgartner J., Ebenbauer B., Thaler B., Fischer M.B., Huber K., Speidl W.S., Wojta J. Statin treatment reduces matrix degradation capacity of proinflammatory polarized macrophages. Vasc. Pharm. 2018;110:49–54. doi: 10.1016/j.vph.2018.08.003. PubMed DOI

Sakai K., Nagashima S., Wakabayashi T., Tumenbayar B., Hayakawa H., Hayakawa M., Karasawa T., Ohashi K., Yamazaki H., Takei A., et al. Myeloid HMG-CoA (3-Hydroxy-3-Methylglutaryl-Coenzyme A) Reductase Determines Atherosclerosis by Modulating Migration of Macrophages. Arter. Throm. Vas. Biol. 2018;38:2590–2600. doi: 10.1161/ATVBAHA.118.311664. PubMed DOI

Xu X., Gao W., Cheng S., Yin D., Li F., Wu Y., Sun D., Zhou S., Wang D., Zhang Y., et al. Anti-inflammatory and immunomodulatory mechanisms of atorvastatin in a murine model of traumatic brain injury. J. Neuroinflamm. 2017;14:167. doi: 10.1186/s12974-017-0934-2. PubMed DOI PMC

Abe M., Matsuda M., Kobayashi H., Miyata Y., Nakayama Y., Komuro R., Fukuhara A., Shimomura I. Effects of statins on adipose tissue inflammation their inhibitory effect on MyD88-independent IRF3/IFN-beta pathway in macrophages. Arter. Throm. Vas. Biol. 2008;28:871–877. doi: 10.1161/ATVBAHA.107.160663. PubMed DOI

Kralova Lesna I., Kralova A., Cejkova S., Fronek J., Petras M., Sekerkova A., Thieme F., Janousek L., Poledne R. Characterisation and comparison of adipose tissue macrophages from human subcutaneous, visceral and perivascular adipose tissue. J. Transl. Med. 2016;14:208. doi: 10.1186/s12967-016-0962-1. PubMed DOI PMC

Kovar J., Tonar Z., Heczkova M., Poledne R. Prague hereditary hypercholesterolemic (PHHC) rat—A model of polygenic hypercholesterolemia. Physiol. Res. 2009;58(Suppl. 2):S95–S99. PubMed

Poledne R., Malinska H., Kubatova H., Fronek J., Thieme F., Kauerova S., Lesna I.K. Polarization of Macrophages in Human Adipose Tissue is Related to the Fatty Acid Spectrum in Membrane Phospholipids. Nutrients. 2019;12:8. doi: 10.3390/nu12010008. PubMed DOI PMC

Ohkawa R., Low H., Mukhamedova N., Fu Y., Lai S.J., Sasaoka M., Hara A., Yamazaki A., Kameda T., Horiuchi Y., et al. Cholesterol transport between red blood cells and lipoproteins contributes to cholesterol metabolism in blood. J. Lipid Res. 2020;61:1577–1588. doi: 10.1194/jlr.RA120000635. PubMed DOI PMC

Poledne R., Kralova Lesna I., Kralova A., Fronek J., Cejkova S. The relationship between non-HDL cholesterol and macrophage phenotypes in human adipose tissue. J. Lipid Res. 2016;57:1899–1905. doi: 10.1194/jlr.P068015. PubMed DOI PMC

Pirillo A., Bonacina F., Norata G.D., Catapano A.L. The Interplay of Lipids, Lipoproteins, and Immunity in Atherosclerosis. Curr. Atheroscler. Rep. 2018;20:1–9. doi: 10.1007/s11883-018-0715-0. PubMed DOI

Lemaire-Ewing S., Lagrost L., Neel D. Lipid rafts: A signalling platform linking lipoprotein metabolism to atherogenesis. Atherosclerosis. 2012;221:303–310. doi: 10.1016/j.atherosclerosis.2011.10.016. PubMed DOI

Ortegren U., Karlsson M., Blazic N., Blomqvist M., Nystrom F.H., Gustavsson J., Fredman P., Stralfors P. Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes. Eur. J. Biochem. 2004;271:2028–2036. doi: 10.1111/j.1432-1033.2004.04117.x. PubMed DOI

Rothberg K.G., Heuser J.E., Donzell W.C., Ying Y.S., Glenney J.R., Anderson R.G.W. Caveolin, a Protein-Component of Caveolae Membrane Coats. Cell. 1992;68:673–682. doi: 10.1016/0092-8674(92)90143-Z. PubMed DOI

Galkina E., Ley K. Vascular adhesion molecules in atherosclerosis. Arter. Throm. Vas. Biol. 2007;27:2292–2301. doi: 10.1161/ATVBAHA.107.149179. PubMed DOI

Xu X.Y., Zhang A.L., Li N.J., Li P.L., Zhang F. Concentration-Dependent Diversification Effects of Free Cholesterol Loading on Macrophage Viability and Polarization. Cell. Physiol. Biochem. 2015;37:419–431. doi: 10.1159/000430365. PubMed DOI PMC

Liu S.L., Sheng R., Jung J.H., Wang L., Stec E., O’Connor M.J., Song S., Bikkavilli R.K., Winn R.A., Lee D., et al. Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat. Chem. Biol. 2017;13:268–274. doi: 10.1038/nchembio.2268. PubMed DOI PMC

Montecucco F., Burger F., Pelli G., Poku N.K., Berlier C., Steffens S., Mach F. Statins inhibit C-reactive protein-induced chemokine secretion, ICAM-1 upregulation and chemotaxis in adherent human monocytes. Rheumatology. 2009;48:233–242. doi: 10.1093/rheumatology/ken466. PubMed DOI

Komukai K., Kubo T., Kitabata H., Matsuo Y., Ozaki Y., Takarada S., Okumoto Y., Shiono Y., Orii M., Shimamura K., et al. Effect of Atorvastatin Therapy on Fibrous Cap Thickness in Coronary Atherosclerotic Plaque as Assessed by Optical Coherence Tomography. J. Am. Coll. Cardiol. 2014;64:2207–2217. doi: 10.1016/j.jacc.2014.08.045. PubMed DOI

Rubio-Navarro A., Guerrero-Hue M., Martn-Fernandez B., Cortegano I., Olivares-Alvaro E., Heras N.D., Alia M., de Andres B., Gaspar M.L., Egido J., et al. Phenotypic Characterization of Macrophages from Rat Kidney by Flow Cytometry. JoVE J. Vis. Exp. 2016:e54599. doi: 10.3791/54599. PubMed DOI PMC

Zhang X.L., Xiao S.J., Li Q.Z. Pravastatin polarizes the phenotype of macrophages toward M2 and elevates serum cholesterol levels in apolipoprotein E knockout mice. J. Int Med. Res. 2018;46:3365–3373. doi: 10.1177/0300060518787671. PubMed DOI PMC

Wang Y., Chen Q., Tan Q., Feng Z., He Z., Tang J., Feng H., Zhu G., Chen Z. Simvastatin accelerates hematoma resolution after intracerebral hemorrhage in a PPARgamma-dependent manner. Neuropharmacology. 2018;128:244–254. doi: 10.1016/j.neuropharm.2017.10.021. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...