Statins Directly Influence the Polarization of Adipose Tissue Macrophages: A Role in Chronic Inflammation
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
17-28103A
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
33669779
PubMed Central
PMC7923086
DOI
10.3390/biomedicines9020211
PII: biomedicines9020211
Knihovny.cz E-resources
- Keywords
- human, hypercholesterolemia, inflammation, macrophage polarization, statins,
- Publication type
- Journal Article MeSH
Statins represent one of the most widely used classes of drugs in current medicine. In addition to a substantial decrease in atherogenic low density lipoprotein (LDL) particle concentrations, several large trials have documented their potent anti-inflammatory activity. Based on our preliminary data, we showed that statins are able to decrease the proportion of pro-inflammatory macrophages (CD14+16+CD36high) in visceral adipose tissue in humans. In the present study including 118 healthy individuals (living kidney donors), a very close relationship between the pro-inflammatory macrophage proportion and LDL cholesterol levels was found. This was confirmed after adjustment for the most important risk factors. The effect of statins on the proportion of pro-inflammatory macrophages was also confirmed in an experimental model of the Prague hereditary hypercholesterolemia rat. A direct anti-inflammatory effect of fluvastatin on human macrophage polarization in vitro was documented. Based on modifying the LDL cholesterol concentrations, statins are suggested to decrease the cholesterol inflow through the lipid raft of macrophages in adipose tissue and hypercholesterolemia to enhance the pro-inflammatory macrophage phenotype polarization. On the contrary, due to their opposite effect, statins respond with anti-inflammatory activity, affecting the whole organism.
Department of Immunology Faculty of Science Charles University 128 00 Prague Czech Republic
Department of Physiology Faculty of Science Charles University 128 00 Prague Czech Republic
See more in PubMed
Kannel W.B., Thom T.J. Declining cardiovascular mortality. Circulation. 1984;70:331–336. doi: 10.1161/01.CIR.70.3.331. PubMed DOI
Ford E.S., Ajani U.A., Croft J.B., Critchley J.A., Labarthe D.R., Kottke T.E., Giles W.H., Capewell S. Explaining the decrease in U.S. deaths from coronary disease, 1980-2000. N. Engl. J. Med. 2007;356:2388–2398. doi: 10.1056/NEJMsa053935. PubMed DOI
Bjorck L., Rosengren A., Bennett K., Lappas G., Capewell S. Modelling the decreasing coronary heart disease mortality in Sweden between 1986 and 2002. Eur. Heart J. 2009;30:1046–1056. doi: 10.1093/eurheartj/ehn554. PubMed DOI
Boren J., Chapman M.J., Krauss R.M., Packard C.J., Bentzon J.F., Binder C.J., Daemen M.J., Demer L.L., Hegele R.A., Nicholls S.J., et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2020;41:2313–2330. doi: 10.1093/eurheartj/ehz962. PubMed DOI PMC
Ridker P.M., Rifai N., Rose L., Buring J.E., Cook N.R. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N. Engl. J. Med. 2002;347:1557–1565. doi: 10.1056/NEJMoa021993. PubMed DOI
Ridker P.M., MacFadyen J., Libby P., Glynn R.J. Relation of Baseline High-Sensitivity C-Reactive Protein Level to Cardiovascular Outcomes with Rosuvastatin in the Justification for Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) Am. J. Cardiol. 2010;106:204–209. doi: 10.1016/j.amjcard.2010.03.018. PubMed DOI
Libby P., Ridker P.M., Hansson G.K. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–325. doi: 10.1038/nature10146. PubMed DOI
Berg A.H., Scherer P.E. Adipose tissue, inflammation, and cardiovascular disease. Circ. Res. 2005;96:939–949. doi: 10.1161/01.RES.0000163635.62927.34. PubMed DOI
Kralova Lesna I., Petras M., Cejkova S., Kralova A., Fronek J., Janousek L., Thieme F., Tyll T., Poledne R. Cardiovascular disease predictors and adipose tissue macrophage polarization: Is there a link? Eur. J. Prev. Cardiol. 2018;25:328–334. doi: 10.1177/2047487317743355. PubMed DOI
Zhou R.B., Tardivel A., Thorens B., Choi I., Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 2010;11:136–140. doi: 10.1038/ni.1831. PubMed DOI
Wen H.T., Gris D., Lei Y., Jha S., Zhang L., Huang M.T.H., Brickey W.J., Ting J.P.Y. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 2011;12:408–415. doi: 10.1038/ni.2022. PubMed DOI PMC
Murphy A.J., Akhtari M., Tolani S., Pagler T., Bijl N., Kuo C.L., Wang M., Sanson M., Abramowicz S., Welch C., et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J. Clin. Invest. 2011;121:4138–4149. doi: 10.1172/JCI57559. PubMed DOI PMC
Ridker P.M. High-sensitivity C-reactive protein as a predictor of all-cause mortality: Implications for research and patient care. Clin. Chem. 2008;54:234–237. doi: 10.1373/clinchem.2007.099465. PubMed DOI
Lee M.K.S., Moore X.L., Fu Y., Al-Sharea A., Dragoljevic D., Fernandez-Rojo M.A., Parton R., Sviridov D., Murphy A.J., Chin-Dusting J.P.F. High-density lipoprotein inhibits human M1 macrophage polarization through redistribution of caveolin-1. Br. J. Pharm. 2016;173:741–751. doi: 10.1111/bph.13319. PubMed DOI PMC
Fu Y., Moore S., Chin-Dusting J.P.F. Caveolin-1 plays a critical role in the differentiation of monocytes into macrophages. Vasc. Pharm. 2012;56:373. doi: 10.1016/j.vph.2011.08.183. PubMed DOI
Zeiser R. Immune modulatory effects of statins. Immunology. 2018;154:69–75. doi: 10.1111/imm.12902. PubMed DOI PMC
Hechinger A.K., Maas K., Durr C., Leonhardt F., Prinz G., Marks R., Gerlach U., Hofmann M., Fisch P., Finke J., et al. Inhibition of protein geranylgeranylation and farnesylation protects against graft-versus-host disease via effects on CD4 effector T cells. Haematologica. 2013;98:31–40. doi: 10.3324/haematol.2012.065789. PubMed DOI PMC
Kobashigawa J.A., Katznelson S., Laks H., Johnson J.A., Yeatman L., Wang X.M., Chia D., Terasaki P.I., Sabad A., Cogert G.A., et al. Effect of Pravastatin on Outcomes after Cardiac Transplantation. N. Engl. J. Med. 1995;333:621–627. doi: 10.1056/NEJM199509073331003. PubMed DOI
Liao J.K., Laufs U. Pleiotropic effects of statins. Annu. Rev. Pharm. 2005;45:89–118. doi: 10.1146/annurev.pharmtox.45.120403.095748. PubMed DOI PMC
Ridker P.M., Cannon C.P., Braunwald E. C-reactive protein levels and outcomes after statin therapy—Reply. N. Engl. J. Med. 2005;352:1604–1605. doi: 10.1056/NEJMoa042378. PubMed DOI
Ridker P.M., Cannon C.P., Morrow D., Rifai N., Rose L.M., McCabe C.H., Pfeffer M.A., Braunwald E., Investigators P.I.-T. C-reactive protein levels and outcomes after statin therapy. N. Engl. J. Med. 2005;352:20–28. doi: 10.1056/NEJMoa042378. PubMed DOI
Sacks F.M., Pfeffer M.A., Moye L.A., Rouleau J.L., Rutherford J.D., Cole T.G., Brown L., Warnica J.W., Arnold J.M., Wun C.C., et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N. Engl. J. Med. 1996;335:1001–1009. doi: 10.1056/NEJM199610033351401. PubMed DOI
Albert M.A., Danielson E., Rifai N., Ridker P.M., Investigators P. Effect of statin therapy on C-reactive protein levels: The pravastatin inflammation/CRP evaluation (PRINCE): A randomized trial and cohort study. JAMA. 2001;286:64–70. doi: 10.1001/jama.286.1.64. PubMed DOI
Ridker P.M., Danielson E., Fonseca F.A., Genest J., Gotto A.M., Jr., Kastelein J.J., Koenig W., Libby P., Lorenzatti A.J., Macfadyen J.G., et al. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: A prospective study of the JUPITER trial. Lancet. 2009;373:1175–1182. doi: 10.1016/S0140-6736(09)60447-5. PubMed DOI
Patel J.M., Snaith C., Thickett D.R., Linhartova L., Melody T., Hawkey P., Barnett A.H., Jones A., Hong T., Cooke M.W., et al. Randomized double-blind placebo-controlled trial of 40 mg/day of atorvastatin in reducing the severity of sepsis in ward patients (ASEPSIS Trial) Crit Care. 2012;16:R231. doi: 10.1186/cc11895. PubMed DOI PMC
Hohensinner P.J., Baumgartner J., Ebenbauer B., Thaler B., Fischer M.B., Huber K., Speidl W.S., Wojta J. Statin treatment reduces matrix degradation capacity of proinflammatory polarized macrophages. Vasc. Pharm. 2018;110:49–54. doi: 10.1016/j.vph.2018.08.003. PubMed DOI
Sakai K., Nagashima S., Wakabayashi T., Tumenbayar B., Hayakawa H., Hayakawa M., Karasawa T., Ohashi K., Yamazaki H., Takei A., et al. Myeloid HMG-CoA (3-Hydroxy-3-Methylglutaryl-Coenzyme A) Reductase Determines Atherosclerosis by Modulating Migration of Macrophages. Arter. Throm. Vas. Biol. 2018;38:2590–2600. doi: 10.1161/ATVBAHA.118.311664. PubMed DOI
Xu X., Gao W., Cheng S., Yin D., Li F., Wu Y., Sun D., Zhou S., Wang D., Zhang Y., et al. Anti-inflammatory and immunomodulatory mechanisms of atorvastatin in a murine model of traumatic brain injury. J. Neuroinflamm. 2017;14:167. doi: 10.1186/s12974-017-0934-2. PubMed DOI PMC
Abe M., Matsuda M., Kobayashi H., Miyata Y., Nakayama Y., Komuro R., Fukuhara A., Shimomura I. Effects of statins on adipose tissue inflammation their inhibitory effect on MyD88-independent IRF3/IFN-beta pathway in macrophages. Arter. Throm. Vas. Biol. 2008;28:871–877. doi: 10.1161/ATVBAHA.107.160663. PubMed DOI
Kralova Lesna I., Kralova A., Cejkova S., Fronek J., Petras M., Sekerkova A., Thieme F., Janousek L., Poledne R. Characterisation and comparison of adipose tissue macrophages from human subcutaneous, visceral and perivascular adipose tissue. J. Transl. Med. 2016;14:208. doi: 10.1186/s12967-016-0962-1. PubMed DOI PMC
Kovar J., Tonar Z., Heczkova M., Poledne R. Prague hereditary hypercholesterolemic (PHHC) rat—A model of polygenic hypercholesterolemia. Physiol. Res. 2009;58(Suppl. 2):S95–S99. PubMed
Poledne R., Malinska H., Kubatova H., Fronek J., Thieme F., Kauerova S., Lesna I.K. Polarization of Macrophages in Human Adipose Tissue is Related to the Fatty Acid Spectrum in Membrane Phospholipids. Nutrients. 2019;12:8. doi: 10.3390/nu12010008. PubMed DOI PMC
Ohkawa R., Low H., Mukhamedova N., Fu Y., Lai S.J., Sasaoka M., Hara A., Yamazaki A., Kameda T., Horiuchi Y., et al. Cholesterol transport between red blood cells and lipoproteins contributes to cholesterol metabolism in blood. J. Lipid Res. 2020;61:1577–1588. doi: 10.1194/jlr.RA120000635. PubMed DOI PMC
Poledne R., Kralova Lesna I., Kralova A., Fronek J., Cejkova S. The relationship between non-HDL cholesterol and macrophage phenotypes in human adipose tissue. J. Lipid Res. 2016;57:1899–1905. doi: 10.1194/jlr.P068015. PubMed DOI PMC
Pirillo A., Bonacina F., Norata G.D., Catapano A.L. The Interplay of Lipids, Lipoproteins, and Immunity in Atherosclerosis. Curr. Atheroscler. Rep. 2018;20:1–9. doi: 10.1007/s11883-018-0715-0. PubMed DOI
Lemaire-Ewing S., Lagrost L., Neel D. Lipid rafts: A signalling platform linking lipoprotein metabolism to atherogenesis. Atherosclerosis. 2012;221:303–310. doi: 10.1016/j.atherosclerosis.2011.10.016. PubMed DOI
Ortegren U., Karlsson M., Blazic N., Blomqvist M., Nystrom F.H., Gustavsson J., Fredman P., Stralfors P. Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes. Eur. J. Biochem. 2004;271:2028–2036. doi: 10.1111/j.1432-1033.2004.04117.x. PubMed DOI
Rothberg K.G., Heuser J.E., Donzell W.C., Ying Y.S., Glenney J.R., Anderson R.G.W. Caveolin, a Protein-Component of Caveolae Membrane Coats. Cell. 1992;68:673–682. doi: 10.1016/0092-8674(92)90143-Z. PubMed DOI
Galkina E., Ley K. Vascular adhesion molecules in atherosclerosis. Arter. Throm. Vas. Biol. 2007;27:2292–2301. doi: 10.1161/ATVBAHA.107.149179. PubMed DOI
Xu X.Y., Zhang A.L., Li N.J., Li P.L., Zhang F. Concentration-Dependent Diversification Effects of Free Cholesterol Loading on Macrophage Viability and Polarization. Cell. Physiol. Biochem. 2015;37:419–431. doi: 10.1159/000430365. PubMed DOI PMC
Liu S.L., Sheng R., Jung J.H., Wang L., Stec E., O’Connor M.J., Song S., Bikkavilli R.K., Winn R.A., Lee D., et al. Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat. Chem. Biol. 2017;13:268–274. doi: 10.1038/nchembio.2268. PubMed DOI PMC
Montecucco F., Burger F., Pelli G., Poku N.K., Berlier C., Steffens S., Mach F. Statins inhibit C-reactive protein-induced chemokine secretion, ICAM-1 upregulation and chemotaxis in adherent human monocytes. Rheumatology. 2009;48:233–242. doi: 10.1093/rheumatology/ken466. PubMed DOI
Komukai K., Kubo T., Kitabata H., Matsuo Y., Ozaki Y., Takarada S., Okumoto Y., Shiono Y., Orii M., Shimamura K., et al. Effect of Atorvastatin Therapy on Fibrous Cap Thickness in Coronary Atherosclerotic Plaque as Assessed by Optical Coherence Tomography. J. Am. Coll. Cardiol. 2014;64:2207–2217. doi: 10.1016/j.jacc.2014.08.045. PubMed DOI
Rubio-Navarro A., Guerrero-Hue M., Martn-Fernandez B., Cortegano I., Olivares-Alvaro E., Heras N.D., Alia M., de Andres B., Gaspar M.L., Egido J., et al. Phenotypic Characterization of Macrophages from Rat Kidney by Flow Cytometry. JoVE J. Vis. Exp. 2016:e54599. doi: 10.3791/54599. PubMed DOI PMC
Zhang X.L., Xiao S.J., Li Q.Z. Pravastatin polarizes the phenotype of macrophages toward M2 and elevates serum cholesterol levels in apolipoprotein E knockout mice. J. Int Med. Res. 2018;46:3365–3373. doi: 10.1177/0300060518787671. PubMed DOI PMC
Wang Y., Chen Q., Tan Q., Feng Z., He Z., Tang J., Feng H., Zhu G., Chen Z. Simvastatin accelerates hematoma resolution after intracerebral hemorrhage in a PPARgamma-dependent manner. Neuropharmacology. 2018;128:244–254. doi: 10.1016/j.neuropharm.2017.10.021. PubMed DOI