Development of Fish Immunity and the Role of β-Glucan in Immune Responses

. 2020 Nov 17 ; 25 (22) : . [epub] 20201117

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33213001

Grantová podpora
RVO 61388971 Institutional grant (CZ)

Administration of β-glucans through various routes, including immersion, dietary inclusion, or injection, have been found to stimulate various facets of immune responses, such as resistance to infections and resistance to environmental stress. β-Glucans used as an immunomodulatory food supplement have been found beneficial in eliciting immunity in commercial aquaculture. Despite extensive research involving more than 3000 published studies, knowledge of the receptors involved in recognition of β-glucans, their downstream signaling, and overall mechanisms of action is still lacking. The aim of this review is to summarize and discuss what is currently known about of the use of β-glucans in fish.

Zobrazit více v PubMed

Dimler R.J., Davis H.A., Hilbert G.E. A new anhydride of d-glucose: d-glucosan <1,4>beta<1,6>. J. Am. Chem. Soc. 1946;68:1377–1380. doi: 10.1021/ja01211a085. PubMed DOI

Wooles W.R., Diluzio N.R. Reticuloendothelial function and the immune response. Science. 1963;142:1078–1080. doi: 10.1126/science.142.3595.1078. PubMed DOI

Murphy E.A., Davis J.M., Carmichael M.D. Immune modulating effects of beta-glucan. Curr. Opin. Clin. Nutr. Metab. Care. 2010;13:656–661. doi: 10.1097/MCO.0b013e32833f1afb. PubMed DOI

Vetvicka V., Oliveira C. beta(1-3)(1-6)-d-Glucans modulate immune status in pigs: Potential importance for efficiency of commercial farming. Ann. Transl. Med. 2014;2:16. doi: 10.3978/j.issn.2305-5839.2014.01.04. PubMed DOI PMC

Vetvicka V., Vannucci L., Sima P. The effects of beta-glucan on pig growth and immunity. Open Biochem J. 2014;8:89–93. doi: 10.2174/1874091X01408010089. PubMed DOI PMC

Eicher S.D., Patterson J.A., Rostagno M.H. β-Glucan plus ascorbic acid in neonatal calves modulates immune functions with and without Salmonella enterica serovar Dublin. Vet. Immunol. Immunopathol. 2011;142:258–264. doi: 10.1016/j.vetimm.2011.05.014. PubMed DOI

Paap P., Roberti F. Race horses perform better with beta-glucans. Health Nutr. 2014;22:500–502.

Waller K.P., Colditz I.G. Effect of intramammary infusion of beta-1,3-glucan or interleukin-2 on leukocyte subpopulations in mammary glands of sheep. Am. J. Vet. Res. 1999;60:703–707. PubMed

Tian X., Shao Y., Wang Z., Guo Y. Effects of dietary yeast β-glucans supplementation on growth performance, gut morphology, intestinal Clostridium perfringens population and immune response of broiler chickens challenged with necrotic enteritis. Anim. Feed. Sci. Technol. 2016;215:144–155. doi: 10.1016/j.anifeedsci.2016.03.009. DOI

Crumlish M., Inglis V. Improved disease resistance in Rana rugulosa (Daudin) after beta-glucan administration. Aquac. Res. 1999;30:431–435. doi: 10.1046/j.1365-2109.1999.00345.x. DOI

Pilarski F., Ferreira de Oliveira C.A., Darpossolo de Souza F.P.B., Zanuzzo F.S. Different beta-glucans improve the growth performance and bacterial resistance in Nile tilapia. Fish Shellfish Immunol. 2017;70:25–29. doi: 10.1016/j.fsi.2017.06.059. PubMed DOI

Wu Y.S., Liau S.Y., Huang C.T., Nan F.H. Beta 1,3/1,6-glucan and vitamin C immunostimulate the non-specific immune response of white shrimp (Litopenaeus vannamei) Fish Shellfish Immunol. 2016;57:269–277. doi: 10.1016/j.fsi.2016.08.046. PubMed DOI

Zhang X., Zhu Y.T., Li X.J., Wang S.C., Li D., Li W.W., Wang Q. Lipopolysaccharide and beta-1,3-glucan binding protein (LGBP) stimulates prophenoloxidase activating system in Chinese mitten crab (Eriocheir sinensis) Dev. Comp. Immunol. 2016;61:70–79. doi: 10.1016/j.dci.2016.03.017. PubMed DOI

Mazzei M., Fronte B., Sagona S., Carrozza M.L., Forzan M., Pizzurro F., Bibbiani C., Miragliotta V., Abramo F., Millanta F., et al. Effect of 1,3-1,6 beta-glucan on natural and experimental deformed wing virus infection in newly emerged honeybees (Apis mellifera ligustica) PLoS ONE. 2016;11:e0166297. doi: 10.1371/journal.pone.0166297. PubMed DOI PMC

Kim Y.S., Ryu J.H., Han S.J., Choi K.H., Nam K.B., Jang I.H., Lemaitre B., Brey P.T., Lee W.J. Gram-negative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and beta-1,3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. J. Biol. Chem. 2000;275:32721–32727. doi: 10.1074/jbc.M003934200. PubMed DOI

De Oliveira C.A.F., Vetvicka V., Zanuzzo F.S. β-Glucan successfully stimulated the immune system in different jawed vertebrate species. Comp. Immunol. Microbiol. Infect. Dis. 2019;62:1–6. doi: 10.1016/j.cimid.2018.11.006. PubMed DOI

Tort L., Balasch J.C., Mackenzie S. Fish immune system. A crossroads between innate and adaptive responses. Inmunologia. 2003;22:277–286.

Sohn K.S., Kim M.K., Kim J.D., Han I.K. The role of immunostimulants in monogastric animal and fish-Review. Asian Australas. J. Anim. Sci. 2000;13:1178–1187. doi: 10.5713/ajas.2000.1178. DOI

Scholz U., Garcia Diaz G., Ricque D., Cruz Suarez L.E., Vargas Albores F., Latchford J. Enhancement of vibriosis resistance in juvenile Penaeus vannamei by supplementation of diets with different yeast products. Aquaculture. 1999;176:271–283. doi: 10.1016/S0044-8486(99)00030-7. DOI

Bondad-Reantaso M.G., Subasinghe R.P., Arthur J.R., Ogawa K., Chinabut S., Adlard R., Tan Z., Shariff M. Disease and health management in Asian aquaculture. Vet. Parasitol. 2005;132:249–272. doi: 10.1016/j.vetpar.2005.07.005. PubMed DOI

Sakai M. Current research status of fish immunostimulants. Aquaculture. 1999;172:63–92. doi: 10.1016/S0044-8486(98)00436-0. DOI

Zanuzzo F.S., Sabioni R.E., Montoya L.N.F., Favero G., Urbinati E.C. Aloe vera enhances the innate immune response of pacu (Piaractus mesopotamicus) after transport stress and combined heat killed Aeromonas hydrophila infection. Fish Shellfish Immunol. 2017;65:198–205. doi: 10.1016/j.fsi.2017.04.013. PubMed DOI

Wang Q., Sheng X., Shi A., Hu H., Yang Y., Liu L., Fei L., Liu H. β-Glucans: Relationships between modification, conformation and functional activities. Molecules. 2017;22:257. doi: 10.3390/molecules22020257. PubMed DOI PMC

Barsanti L., Passarelli V., Evangelista V., Frassanito A.M., Gualtieri P. Chemistry, physico-chemistry and applications linked to biological activities of beta-glucans. Nat. Prod. Rep. 2011;28:457–466. doi: 10.1039/c0np00018c. PubMed DOI

Aramli M.S., Kamangar B., Nazari R.M. Effects of dietary beta-glucan on the growth and innate immune response of juvenile Persian sturgeon, Acipenser persicus. Fish Shellfish Immunol. 2015;47:606–610. doi: 10.1016/j.fsi.2015.10.004. PubMed DOI

Chen J., Seviour R. Medicinal importance of fungal beta-(1→3), (1→6)-glucans. Mycol. Res. 2007;111:635–652. doi: 10.1016/j.mycres.2007.02.011. PubMed DOI

Miura N.N., Ohno N., Aketagawa J., Tamura H., Tanaka S., Yadomae T. Blood clearance of (1→3)-beta-d-glucan in MRL lpr/lpr mice. FEMS Immunol. Med. Microbiol. 1996;13:51–57. doi: 10.1111/j.1574-695X.1996.tb00215.x. PubMed DOI

Chihara G. Recent progress in immunopharmacology and therapeutic effects of polysaccharides. Dev. Biol. Stand. 1992;77:191–197. PubMed

Behall K.M., Scholfield D.J., Hallfrisch J. Effect of beta-glucan level in oat fiber extracts on blood lipids in men and women. J. Am. Coll. Nutr. 1997;16:46–51. doi: 10.1080/07315724.1997.10718648. PubMed DOI

Bell S., Goldman V.M., Bistrian B.R., Arnold A.H., Ostroff G., Forse R.A. Effect of beta-glucan from oats and yeast on serum lipids. Crit. Rev. Food Sci. Nutr. 1999;39:189–202. doi: 10.1080/10408399908500493. PubMed DOI

Braaten J.T., Wood P.J., Scott F.W., Wolynetz M.S., Lowe M.K., Bradley-White P., Collins M.W. Oat beta-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. Eur. J. Clin. Nutr. 1994;48:465–474. PubMed

Pick M.E., Hawrysh Z.J., Gee M.I., Toth E., Garg M.L., Hardin R.T. Oat bran concentrate bread products improve long-term control of diabetes: A pilot study. J. Am. Diet. Assoc. 1996;96:1254–1261. doi: 10.1016/S0002-8223(96)00329-X. PubMed DOI

Wood P.J. Physicochemical properties and physiological effects of the (1→3)(1→4)-beta-d-glucan from oats. Adv. Exp. Med. Biol. 1990;270:119–127. doi: 10.1007/978-1-4684-5784-1_11. PubMed DOI

Gantner B.N., Simmons R.M., Canavera S.J., Akira S., Underhill D.M. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. 2003;197:1107–1117. doi: 10.1084/jem.20021787. PubMed DOI PMC

Herre J., Gordon S., Brown G.D. Dectin-1 and its role in the recognition of beta-glucans by macrophages. Mol. Immunol. 2004;40:869–876. doi: 10.1016/j.molimm.2003.10.007. PubMed DOI

Raa J. In: The Use of Immune-Stimulants in Fish and Shellfish Feeds. Cruz-Suarez L.E., Ricque-Marie D., Tapia-Salazar M., Olvera-Novoa M.A., Civera-Cerecedo R., editors. [(accessed on 16 November 2020)]. Available online: http://www.aquatech.com.ve/pdf/raa.pdf.

Helfman G., Collette B.B., Facey D.E., Bowen B.W. The Diversity of Fishes: Biology, Evolution, and Ecology. 2nd ed. Wiley-Blackwell; Hoboken, NJ, USA: 2009.

Nelson J.S. Fishes of the World. 4th ed. John Wiley; Hoboken, NJ, USA: 2006.

Carroll R.L. Vertebrate Paleontology an Evolution. WH Freeman and Co.; New York, NY, USA: 1988.

Fricke R., Eschmeyer W.N., van der Laan R. In: Eschmeyer’s Catalog of Fishes: Genera, Species, References. Eschmeyer W.N., editor. California Academy of Sciences; San Francisco, CA, USA: 2019.

Colbert E.H. Evolution of Vertebrates. John Wiley and Sons; New York, NY, USA: 1980.

Rombout J.H., Huttenhuis H.B., Picchietti S., Scapigliati G. Phylogeny and ontogeny of fish leucocytes. Fish Shellfish Immunol. 2005;19:441–455. doi: 10.1016/j.fsi.2005.03.007. PubMed DOI

Magnadottir B. Innate immunity of fish (overview) Fish Shellfish Immunol. 2006;20:137–151. doi: 10.1016/j.fsi.2004.09.006. PubMed DOI

Magnadottir B. Immunological control of fish diseases. Mar. Biotechnol. 2010;12:361–379. doi: 10.1007/s10126-010-9279-x. PubMed DOI

Magnadottir B. Comparison of immunoglobulin (IgM) from four fish species. Icel. Agric. Sci. 1998;12:47–59.

Fearon D.T., Locksley R.M. The instructive role of innate immunity in the acquired immune response. Science. 1996;272:50–53. doi: 10.1126/science.272.5258.50. PubMed DOI

Fischer U., Koppang E.O., Nakanishi T. Teleost T and NK cell immunity. Fish Shellfish Immunol. 2013;35:197–206. doi: 10.1016/j.fsi.2013.04.018. PubMed DOI

Holland M.C., Lambris J.D. The complement system in teleosts. Fish Shellfish Immunol. 2002;12:399–420. doi: 10.1006/fsim.2001.0408. PubMed DOI

Sakai D.K. Repertoire of complement in immunological defense mechanisms of fish. Ann. Rev. Fish Dis. 1992;2:223–247. doi: 10.1016/0959-8030(92)90065-6. DOI

Uribe C., Folch H., Enriquez R., Moran G. Innate and adaptive immunity in teleost fish: A review. Vet. Med. 2011;56:486–503.

Du Pasquier L. The immune system of invertebrates and vertebrates. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2001;129:1–15. doi: 10.1016/S1096-4959(01)00306-2. PubMed DOI

Sima P., Vetvicka V. Evolution of Immune Functions. CRC Press; Boca Raton, FL, USA: 1990.

Větvička V., Síma P. Evolutionary Mechanisms of Defense Reactions. Birkhauser Verlag; Basel, Switzerland: Boston, FL, USA: 1998. p. xi.196p

Firdaus-Nawi M., Zamri-Saad M. Major components of fish immunity: A review. Pertanika J. Trop. Agric. Sci. 2016;39:393–420.

Zapata A., Diez B., Cejalvo T., Gutierrez-de Frias C., Cortes A. Ontogeny of the immune system of fish. Fish Shellfish Immunol. 2006;20:126–136. doi: 10.1016/j.fsi.2004.09.005. PubMed DOI

Bowden T.J., Cook P., Rombout J.H. Development and function of the thymus in teleosts. Fish Shellfish Immunol. 2005;19:413–427. doi: 10.1016/j.fsi.2005.02.003. PubMed DOI

Press C.M., Dannevig B.H., Landsverk T. Immune and enzyme histochemical phenotypes of lymphoid and nonlymphoid cells within the spleen and head kidney of Atlantic salmon (Salmo salar L.) Fish Shellfish Immunol. 1994;4:79–93. doi: 10.1006/fsim.1994.1007. DOI

Manning M.J. Fishes. In: Zapata A.G., Cooper E.L., editors. The Immune System: Comparative Histophysiology. John Wiley and Sons; Chichester, UK: 1990. pp. 69–100.

Zapata A.G., Cooper E.L. The Immune System: Comparative Histophysiology. John Wiley and Sons; Chichester, UK: 1990.

Ferguson H.W., Dukes T.W. Systemic Pathology of Fish: A Text and Atlas of Comparative Tissue Responses in Diseases of Teleosts. 1st ed. Iowa State University Press; Ames, IA, USA: 1989. p. ix.263p

Imagawa T., Hashimoto Y., Kon Y., Sugimura M. Immunoglobulin containing cells in the head kidney of carp (Cyprinus carpio L.) after bovine serum albumin injection. Fish Shellfish Immunol. 1991;1:173–185. doi: 10.1016/S1050-4648(10)80003-8. DOI

Salinas I., Zhang Y.A., Sunyer J.O. Mucosal immunoglobulins and B cells of teleost fish. Dev. Comp. Immunol. 2011;35:1346–1365. doi: 10.1016/j.dci.2011.11.009. PubMed DOI PMC

Fuglem B., Jirillo E., Bjerkas I., Kiyono H., Nochi T., Yuki Y., Raida M., Fischer U., Koppang E.O. Antigen-sampling cells in the salmonid intestinal epithelium. Dev. Comp. Immunol. 2010;34:768–774. doi: 10.1016/j.dci.2010.02.007. PubMed DOI

Ellis A.E. Innate host defense mechanisms of fish against viruses and bacteria. Dev. Comp. Immunol. 2001;25:827–839. doi: 10.1016/S0145-305X(01)00038-6. PubMed DOI

Gomez G.D., Balcazar J.L. A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunol. Med. Microbiol. 2008;52:145–154. doi: 10.1111/j.1574-695X.2007.00343.x. PubMed DOI

Robertsen R., Engstad E., Jorgensen J.B. β-Glucans as immunostimulants in fish. In: Stolen J.S., Fletcher T.C., editors. Modulators of Fish Immune Responses. SOS Publications; Fair Haven, NJ, USA: 1994. pp. 83–99.

Rombout J.H., Abelli L., Picchietti S., Scapigliati G., Kiron V. Teleost intestinal immunology. Fish Shellfish Immunol. 2011;31:616–626. doi: 10.1016/j.fsi.2010.09.001. PubMed DOI

Matsunaga T., Rahman A. What brought the adaptive immune system to vertebrates?—The jaw hypothesis and the seahorse. Immunol. Rev. 1998;166:177–186. doi: 10.1111/j.1600-065X.1998.tb01262.x. PubMed DOI

Danilova N., Bussmann J., Jekosch K., Steiner L.A. The immunoglobulin heavy-chain locus in zebrafish: Identification and expression of a previously unknown isotype, immunoglobulin Z. Nat. Immunol. 2005;6:295–302. doi: 10.1038/ni1166. PubMed DOI

Solem S.T., Stenvik J. Antibody repertoire development in teleosts—A review with emphasis on salmonids and Gadus morhua L. Dev. Comp. Immunol. 2006;30:57–76. doi: 10.1016/j.dci.2005.06.007. PubMed DOI

Flajnik M.F., Kasahara M. Origin and evolution of the adaptive immune system: Genetic events and selective pressures. Nat. Rev. Genet. 2010;11:47–59. doi: 10.1038/nrg2703. PubMed DOI PMC

Morrison R.N., Nowak B.F. The antibody response of teleost fish. Semin. Avian Exot. Pet Med. 2002;11:46–54. doi: 10.1053/saep.2002.28241. DOI

Anderson D.P. Immunostimulants, adjuvants, and vaccine carriers in fish: Applications to aquaculture. Ann. Rev. Fish Dis. 1992;2:281–307. doi: 10.1016/0959-8030(92)90067-8. DOI

Burrells C., Williams P.D., Forno P.F. Dietary nucleotides: A novel supplement in fish feeds: 1. Effects on resistance to disease in salmonids. Aquaculture. 2001;199:159–169. doi: 10.1016/S0044-8486(01)00577-4. DOI

Burrells C., Williams P.D., Southgate P.J., Wadsworth S.L. Dietary nucleotides: A novel supplement in fish feeds: 2. Effects on vaccination, salt water transfer, growth rates and physiology of Atlantic salmon (Salmo salar L.) Aquaculture. 2001;199:171–184. doi: 10.1016/S0044-8486(01)00576-2. DOI

Li P., Lewis D.H., Gatlin D.M., 3rd Dietary oligonucleotides from yeast RNA influence immune responses and resistance of hybrid striped bass (Morone chrysops × Morone saxatilis) to Streptococcus iniae infection. Fish Shellfish Immunol. 2004;16:561–569. doi: 10.1016/j.fsi.2003.09.005. PubMed DOI

Sakai M., Taniguchi K., Mamoto K., Ogawa H., Tabata M. Immunostimulant effects of nucleotide isolated from yeast RNA on carp, Cyprinus carpio L. J. Fish Dis. 2001;24:433–438. doi: 10.1046/j.1365-2761.2001.00314.x. DOI

Leonardi M., Sandino A.M., Klempau A. Effect of a nucleotide-enriched diet on the immune system, plasma cortisol levels and resistance to infectious pancreatic necrosis (IPN) in juvenile rainbow trout (Oncorhynchus mykiss) Bull. Eur. Assoc. Fish Pathol. 2003;23:52–59.

Gatesoupe F.J. The use of probiotics in aquaculture. Aquaculture. 1999;180:147–165. doi: 10.1016/S0044-8486(99)00187-8. DOI

Wang T., Holland J.W., Carrington A., Zou J., Secombes C.J. Molecular and functional characterization of IL-15 in rainbow trout Oncorhynchus mykiss: A potent inducer of IFN-gamma expression in spleen leukocytes. J. Immunol. 2007;179:1475–1488. doi: 10.4049/jimmunol.179.3.1475. PubMed DOI

Yanbo W., Zirong X. Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Anim. Feed Sci. Technol. 2006;127:283–292. doi: 10.1016/j.anifeedsci.2005.09.003. DOI

Aderem A., Ulevitch R.J. Toll-like receptors in the induction of the innate immune response. Nature. 2000;406:782–787. doi: 10.1038/35021228. PubMed DOI

Bricknell I., Dalmo R.A. The use of immunostimulants in fish larval aquaculture. Fish Shellfish Immunol. 2005;19:457–472. doi: 10.1016/j.fsi.2005.03.008. PubMed DOI

O’Hagan D.T., MacKichan M.L., Singh M. Recent developments in adjuvants for vaccines against infectious diseases. Biomol. Eng. 2001;18:69–85. doi: 10.1016/S1389-0344(01)00101-0. PubMed DOI

Schijns V.E. Mechanisms of vaccine adjuvant activity: Initiation and regulation of immune responses by vaccine adjuvants. Vaccine. 2003;21:829–831. doi: 10.1016/S0264-410X(02)00527-3. PubMed DOI

Underhill D.M., Ozinsky A., Hajjar A.M., Stevens A., Wilson C.B., Bassetti M., Aderem A. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature. 1999;401:811–815. doi: 10.1038/44605. PubMed DOI

Brown G.D., Herre J., Williams D.L., Willment J.A., Marshall A.S., Gordon S. Dectin-1 mediates the biological effects of beta-glucans. J. Exp. Med. 2003;197:1119–1124. doi: 10.1084/jem.20021890. PubMed DOI PMC

Bose N., Chan A.S., Guerrero F., Maristany C.M., Qiu X., Walsh R.M., Ertelt K.E., Jonas A.B., Gorden K.B., Dudney C.M., et al. Binding of soluble yeast beta-glucan to human neutrophils and monocytes is complement-dependent. Front. Immunol. 2013;4:230. doi: 10.3389/fimmu.2013.00230. PubMed DOI PMC

Elder M.J., Webster S.J., Chee R., Williams D.L., Hill Gaston J.S., Goodall J.C. beta-glucan size controls dectin-1-mediated immune responses in human dendritic cells by regulating IL-1beta production. Front. Immunol. 2017;8:791. doi: 10.3389/fimmu.2017.00791. PubMed DOI PMC

McGreal E.P., Miller J.L., Gordon S. Ligand recognition by antigen-presenting cell C-type lectin receptors. Curr. Opin. Immunol. 2005;17:18–24. doi: 10.1016/j.coi.2004.12.001. PubMed DOI PMC

Zimmerman J.W., Lindermuth J., Fish P.A., Palace G.P., Stevenson T.T., DeMong D.E. A novel carbohydrate-glycosphingolipid interaction between a beta-(1–3)-glucan immunomodulator, PGG-glucan, and lactosylceramide of human leukocytes. J. Biol. Chem. 1998;273:22014–22020. doi: 10.1074/jbc.273.34.22014. PubMed DOI

Xia Y., Vetvicka V., Yan J., Hanikyrova M., Mayadas T., Ross G.D. The beta-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. J. Immunol. 1999;162:2281–2290. PubMed

Bajic G., Yatime L., Sim R.B., Vorup-Jensen T., Andersen G.R. Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3. Proc. Natl. Acad. Sci. USA. 2013;110:16426–16431. doi: 10.1073/pnas.1311261110. PubMed DOI PMC

Goodridge H.S., Wolf A.J., Underhill D.M. Beta-glucan recognition by the innate immune system. Immunol. Rev. 2009;230:38–50. doi: 10.1111/j.1600-065X.2009.00793.x. PubMed DOI PMC

Jin Y., Li P., Wang F. β-Glucans as potential immunoadjuvants: A review on the adjuvanticity, structure-activity relationship and receptor recognition properties. Vaccine. 2018;36:5235–5244. doi: 10.1016/j.vaccine.2018.07.038. PubMed DOI

Chan G.C., Chan W.K., Sze D.M. The effects of beta-glucan on human immune and cancer cells. J. Hematol. Oncol. 2009;2:25. doi: 10.1186/1756-8722-2-25. PubMed DOI PMC

Brown G.D., Taylor P.R., Reid D.M., Willment J.A., Williams D.L., Martinez-Pomares L., Wong S.Y., Gordon S. Dectin-1 is a major beta-glucan receptor on macrophages. J. Exp. Med. 2002;196:407–412. doi: 10.1084/jem.20020470. PubMed DOI PMC

Cohen N.R., Tatituri R.V., Rivera A., Watts G.F., Kim E.Y., Chiba A., Fuchs B.B., Mylonakis E., Besra G.S., Levitz S.M., et al. Innate recognition of cell wall beta-glucans drives invariant natural killer T cell responses against fungi. Cell Host Microbe. 2011;10:437–450. doi: 10.1016/j.chom.2011.09.011. PubMed DOI PMC

Aizawa M., Watanabe K., Tominari T., Matsumoto C., Hirata M., Grundler F.M.W., Inada M., Miyaura C. Low molecular-weight curdlan, (1→3)-beta-glucan suppresses TLR2-induced RANKL-dependent bone resorption. Biol. Pharm. Bull. 2018;41:1282–1285. doi: 10.1248/bpb.b18-00057. PubMed DOI

Goodridge H.S., Reyes C.N., Becker C.A., Katsumoto T.R., Ma J., Wolf A.J., Bose N., Chan A.S., Magee A.S., Danielson M.E., et al. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature. 2011;472:471–475. doi: 10.1038/nature10071. PubMed DOI PMC

Shah V.B., Williams D.L., Keshvara L. β-Glucan attenuates TLR2- and TLR4-mediated cytokine production by microglia. Neurosci. Lett. 2009;458:111–115. doi: 10.1016/j.neulet.2009.04.039. PubMed DOI PMC

Ferwerda G., Netea M.G., Joosten L.A., van der Meer J.W., Romani L., Kullberg B.J. The role of Toll-like receptors and C-type lectins for vaccination against Candida albicans. Vaccine. 2010;28:614–622. doi: 10.1016/j.vaccine.2009.10.082. PubMed DOI

Heinsbroek S.E., Taylor P.R., Rosas M., Willment J.A., Williams D.L., Gordon S., Brown G.D. Expression of functionally different dectin-1 isoforms by murine macrophages. J. Immunol. 2006;176:5513–5518. doi: 10.4049/jimmunol.176.9.5513. PubMed DOI

Sahasrabudhe N.M., Dokter-Fokkens J., de Vos P. Particulate beta-glucans synergistically activate TLR4 and Dectin-1 in human dendritic cells. Mol. Nutr. Food Res. 2016;60:2514–2522. doi: 10.1002/mnfr.201600356. PubMed DOI

Branzk N., Lubojemska A., Hardison S.E., Wang Q., Gutierrez M.G., Brown G.D., Papayannopoulos V. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 2014;15:1017–1025. doi: 10.1038/ni.2987. PubMed DOI PMC

Baert K., Sonck E., Goddeeris B.M., Devriendt B., Cox E. Cell type-specific differences in beta-glucan recognition and signalling in porcine innate immune cells. Dev. Comp. Immunol. 2015;48:192–203. doi: 10.1016/j.dci.2014.10.005. PubMed DOI

Huang J.H., Lin C.Y., Wu S.Y., Chen W.Y., Chu C.L., Brown G.D., Chuu C.P., Wu-Hsieh B.A. CR3 and dectin-1 collaborate in macrophage cytokine response through association on lipid rafts and activation of Syk-JNK-AP-1 pathway. PLoS Pathog. 2015;11:e1004985. doi: 10.1371/journal.ppat.1004985. PubMed DOI PMC

Sahasrabudhe N.M., Tian L., van den Berg M., Bruggeman G., Bruininx E., Schols H.A., Faas M.M., de Vos P. Endo-glucanase digestion of oat β-glucan enhances Dectin-1 activation in human dendritic cells. J. Funct. Foods. 2016;21:104–112. doi: 10.1016/j.jff.2015.11.037. DOI

Ferwerda G., Meyer-Wentrup F., Kullberg B.J., Netea M.G., Adema G.J. Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell. Microbiol. 2008;10:2058–2066. doi: 10.1111/j.1462-5822.2008.01188.x. PubMed DOI

Kanjan P., Sahasrabudhe N.M., de Haan B.J., de Vos P. Immune effects of β-glucan are determined by combined effects on Dectin-1, TLR2, 4 and 5. J. Funct. Foods. 2017;37:433–440. doi: 10.1016/j.jff.2017.07.061. DOI

Su C.H., Lu M.K., Lu T.J., Lai M.N., Ng L.T. A (1→6)-Branched (1→4)-beta-d-glucan from Grifola frondosa inhibits lipopolysaccharide-induced cytokine production in RAW264.7 macrophages by binding to TLR2 rather than Dectin-1 or CR3 receptors. J. Nat. Prod. 2020;83:231–242. doi: 10.1021/acs.jnatprod.9b00584. PubMed DOI

Liu M., Tong Z., Ding C., Luo F., Wu S., Wu C., Albeituni S., He L., Hu X., Tieri D., et al. Transcription factor c-Maf is a checkpoint that programs macrophages in lung cancer. J. Clin. Investig. 2020;130:2081–2096. doi: 10.1172/JCI131335. PubMed DOI PMC

Petit J., Bailey E.C., Wheeler R.T., de Oliveira C.A.F., Forlenza M., Wiegertjes G.F. Studies into beta-glucan recognition in fish suggests a key role for the C-type lectin pathway. Front. Immunol. 2019;10:280. doi: 10.3389/fimmu.2019.00280. PubMed DOI PMC

Novak M., Vetvicka V. Beta-glucans, history, and the present: Immunomodulatory aspects and mechanisms of action. J. Immunotoxicol. 2008;5:47–57. doi: 10.1080/15476910802019045. PubMed DOI

Vetvicka V., Vetvickova J. A comparison of injected and orally administered β-glucans. J. Am. Nutr. Assoc. 2008;11:42–49.

Volman J.J., Ramakers J.D., Plat J. Dietary modulation of immune function by beta-glucans. Physiol. Behav. 2008;94:276–284. doi: 10.1016/j.physbeh.2007.11.045. PubMed DOI

Selvaraj V., Sampath K., Sekar V. Adjuvant and immunostimulatory effects of beta-glucan administration in combination with lipopolysaccharide enhances survival and some immune parameters in carp challenged with Aeromonas hydrophila. Vet. Immunol. Immunopathol. 2006;114:15–24. doi: 10.1016/j.vetimm.2006.06.011. PubMed DOI

Suanyuk N., Itsaro A. Efficacy of inactivated Streptococcus iniae vaccine and protective effect of beta-(1,3/1,6)-glucan on the effectiveness of vaccine in red tilapia Oreochromis niloticus x O. mossambicus. Songklanakarin J. Sci. Technol. 2011;33:143–149.

Anderson D.P., Siwicki A.K. Duration of protection against Aeromonas salmonicida in brook trout immunostimulated with glucan or chitosan by injection or immersion. Prog. Fish Cult. 1994;56:258–261. doi: 10.1577/1548-8640(1994)056<0258:DOPAAS>2.3.CO;2. DOI

Misra C.K., Das B.K., Mukherjee S.C., Pattnaik P. Effect of multiple injections of beta-glucan on non-specific immune response and disease resistance in Labeo rohita fingerlings. Fish Shellfish Immunol. 2006;20:305–319. doi: 10.1016/j.fsi.2005.05.007. PubMed DOI

Selvaraj V., Sampath K., Sekar V. Administration of yeast glucan enhances survival and some non-specific and specific immune parameters in carp (Cyprinus carpio) infected with Aeromonas hydrophila. Fish Shellfish Immunol. 2005;19:293–306. doi: 10.1016/j.fsi.2005.01.001. PubMed DOI

Guselle N.J., Speare D.J., Markham R.J.F., Patelakis S. Efficacy of intraperitoneally and orally administered ProVale, a Yeast β-(1,3)/(1,6)-d-glucan product, in inhibiting Xenoma formation by the microsporidian Loma salmonae on rainbow Trout gills. N. Am. J. Aquac. 2010;72:65–72. doi: 10.1577/A09-017.1. DOI

Paredes M., Gonzalez K., Figueroa J., Montiel-Eulefi E. Immunomodulatory effect of prolactin on Atlantic salmon (Salmo salar) macrophage function. Fish Physiol. Biochem. 2013;39:1215–1221. doi: 10.1007/s10695-013-9777-7. PubMed DOI

Yan Y., Huo X., Ai T., Su J. beta-glucan and anisodamine can enhance the immersion immune efficacy of inactivated cyprinid herpesvirus 2 vaccine in Carassius auratus gibelio. Fish Shellfish Immunol. 2020;98:285–295. doi: 10.1016/j.fsi.2020.01.025. PubMed DOI

Petit J., Wiegertjes G.F. Long-lived effects of administering beta-glucans: Indications for trained immunity in fish. Dev. Comp. Immunol. 2016;64:93–102. doi: 10.1016/j.dci.2016.03.003. PubMed DOI

Bazan S.B., Breinig T., Schmitt M.J., Breinig F. Heat treatment improves antigen-specific T cell activation after protein delivery by several but not all yeast genera. Vaccine. 2014;32:2591–2598. doi: 10.1016/j.vaccine.2014.03.043. PubMed DOI

De Gregorio E., D’Oro U., Wack A. Immunology of TLR-independent vaccine adjuvants. Curr. Opin. Immunol. 2009;21:339–345. doi: 10.1016/j.coi.2009.05.003. PubMed DOI

Miyamoto N., Mochizuki S., Sakurai K. Designing an immunocyte-targeting delivery system by use of beta-glucan. Vaccine. 2018;36:186–189. doi: 10.1016/j.vaccine.2017.11.053. PubMed DOI

Figueras A., Santarem M.M., Novoa B. Influence of the sequence of administration of beta-glucans and a Vibrio damsela vaccine on the immune response of turbot (Scophthalmus maximus L.) Vet. Immunol. Immunopathol. 1998;64:59–68. doi: 10.1016/S0165-2427(98)00114-7. PubMed DOI

Berner V.K., duPre S.A., Redelman D., Hunter K.W. Microparticulate beta-glucan vaccine conjugates phagocytized by dendritic cells activate both naive CD4 and CD8 T cells in vitro. Cell. Immunol. 2015;298:104–114. doi: 10.1016/j.cellimm.2015.10.007. PubMed DOI

Hino S., Kito A., Yokoshima R., Sugino R., Oshima K., Morita T., Okajima T., Nadano D., Uchida K., Matsuda T. Discharge of solubilized and Dectin-1-reactive beta-glucan from macrophage cells phagocytizing insoluble beta-glucan particles: Involvement of reactive oxygen species (ROS)-driven degradation. Biochem. Biophys. Res. Commun. 2012;421:329–334. doi: 10.1016/j.bbrc.2012.04.009. PubMed DOI

Swennen K., Courtin C.M., Delcour J.A. Non-digestible oligosaccharides with prebiotic properties. Crit. Rev. Food Sci. Nutr. 2006;46:459–471. doi: 10.1080/10408390500215746. PubMed DOI

Cao Y., Zou S., Xu H., Li M., Tong Z., Xu M., Xu X. Hypoglycemic activity of the Baker’s yeast beta-glucan in obese/type 2 diabetic mice and the underlying mechanism. Mol. Nutr. Food Res. 2016;60:2678–2690. doi: 10.1002/mnfr.201600032. PubMed DOI

Harris S.J., Bray D.P., Adamek M., Hulse D.R., Steinhagen D., Hoole D. Effect of beta-1/3,1/6-glucan upon immune responses and bacteria in the gut of healthy common carp (Cyprinus carpio) J. Fish Biol. 2020;96:444–455. doi: 10.1111/jfb.14222. PubMed DOI

Lee P.T., Liao Z.H., Huang H.T., Chuang C.Y., Nan F.H. Beta-glucan alleviates the immunosuppressive effects of oxytetracycline on the non-specific immune responses and resistance against Vibrio alginolyticus infection in Epinephelus fuscoguttatus × Epinephelus lanceolatus hybrids. Fish Shellfish Immunol. 2020;100:467–475. doi: 10.1016/j.fsi.2020.03.046. PubMed DOI

Miest J.J., Hoole D. Time and concentration dependency of MacroGard(R) induced apoptosis. Fish Shellfish Immunol. 2015;42:363–366. doi: 10.1016/j.fsi.2014.11.009. PubMed DOI

Sirimanapong W., Thompson K.D., Ooi E.L., Bekaert M., Collet B., Taggart J.B., Bron J.E., Green D.M., Shinn A.P., Adams A., et al. The effects of feeding beta-glucan to Pangasianodon hypophthalmus on immune gene expression and resistance to Edwardsiella ictaluri. Fish Shellfish Immunol. 2015;47:595–605. doi: 10.1016/j.fsi.2015.09.042. PubMed DOI

Do-Huu H., Nguyen T.H.N., Tran V.H. Effects of dietary β-glucan supplementation of growth, innate immune, and capacity against pathogen Streptococcus iniae of juvenile pompano (Trachinotus ovatus) Isr. J. Aquac. 2019;71:1622–1632.

Di Domenico J., Canova R., Soveral L., Nied C., Costa M., Frandoloso R., Carlos K. Immunomodulatory effects of dietary β-glucan in silver catfish (Rhamdia quelen) Pesqui. Vet. Bras. 2017;37:73–78. doi: 10.1590/s0100-736x2017000100012. DOI

Akramiene D., Kondrotas A., Didziapetriene J., Kevelaitis E. Effects of beta-glucans on the immune system. Medicina (Kaunas) 2007;43:597–606. doi: 10.3390/medicina43080076. PubMed DOI

Rice P.J., Adams E.L., Ozment-Skelton T., Gonzalez A.J., Goldman M.P., Lockhart B.E., Barker L.A., Breuel K.F., Deponti W.K., Kalbfleisch J.H., et al. Oral delivery and gastrointestinal absorption of soluble glucans stimulate increased resistance to infectious challenge. J. Pharmacol. Exp. Ther. 2005;314:1079–1086. doi: 10.1124/jpet.105.085415. PubMed DOI

Thompson I.J., Oyston P.C., Williamson D.E. Potential of the beta-glucans to enhance innate resistance to biological agents. Expert Rev. Anti-Infect. Ther. 2010;8:339–352. doi: 10.1586/eri.10.10. PubMed DOI

Rodriguez F.E., Valenzuela B., Farias A., Sandino A.M., Imarai M. beta-1,3/1,6-glucan-supplemented diets antagonize immune inhibitory effects of hypoxia and enhance the immune response to a model vaccine. Fish Shellfish Immunol. 2016;59:36–45. doi: 10.1016/j.fsi.2016.10.020. PubMed DOI

Carda-Dieguez M., Mira A., Fouz B. Pyrosequencing survey of intestinal microbiota diversity in cultured sea bass (Dicentrarchus labrax) fed functional diets. FEMS Microbiol. Ecol. 2014;87:451–459. doi: 10.1111/1574-6941.12236. PubMed DOI

Covello J.M., Friend S.E., Purcell S.L., Burka J.F., Markham R.J.F., Donkin A.W., Groman D.B., Fast M.D. Effects of orally administered immunostimulants on inflammatory gene expression and sea lice (Lepeophtheirus salmonis) burdens on Atlantic salmon (Salmo salar) Aquaculture. 2012;366–367:9–16. doi: 10.1016/j.aquaculture.2012.08.051. DOI

Schmitt P., Wacyk J., Morales-Lange B., Rojas V., Guzman F., Dixon B., Mercado L. Immunomodulatory effect of cathelicidins in response to a beta-glucan in intestinal epithelial cells from rainbow trout. Dev. Comp. Immunol. 2015;51:160–169. doi: 10.1016/j.dci.2015.03.007. PubMed DOI

Djordjevic B., Skugor S., Jorgensen S.M., Overland M., Mydland L.T., Krasnov A. Modulation of splenic immune responses to bacterial lipopolysaccharide in rainbow trout (Oncorhynchus mykiss) fed lentinan, a beta-glucan from mushroom Lentinula edodes. Fish Shellfish Immunol. 2009;26:201–209. doi: 10.1016/j.fsi.2008.10.012. PubMed DOI

Skov J., Kania P.W., Holten-Andersen L., Fouz B., Buchmann K. Immunomodulatory effects of dietary beta-1,3-glucan from Euglena gracilis in rainbow trout (Oncorhynchus mykiss) immersion vaccinated against Yersinia ruckeri. Fish Shellfish Immunol. 2012;33:111–120. doi: 10.1016/j.fsi.2012.04.009. PubMed DOI

Chang C.S., Huang S.L., Chen S., Chen S.N. Innate immune responses and efficacy of using mushroom beta-glucan mixture (MBG) on orange-spotted grouper, Epinephelus coioides, aquaculture. Fish Shellfish Immunol. 2013;35:115–125. doi: 10.1016/j.fsi.2013.04.004. PubMed DOI

Dawood M.A., Koshio S., Ishikawa M., Yokoyama S. Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and beta-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major. Fish Shellfish Immunol. 2015;45:33–42. doi: 10.1016/j.fsi.2015.01.033. PubMed DOI

El-Boshy M.E., El-Ashram A.M., Abdelhamid F.M., Gadalla H.A. Immunomodulatory effect of dietary Saccharomyces cerevisiae, beta-glucan and laminaran in mercuric chloride treated Nile tilapia (Oreochromis niloticus) and experimentally infected with Aeromonas hydrophila. Fish Shellfish Immunol. 2010;28:802–808. doi: 10.1016/j.fsi.2010.01.017. PubMed DOI

Guzman-Villanueva L.T., Tovar-Ramirez D., Gisbert E., Cordero H., Guardiola F.A., Cuesta A., Meseguer J., Ascencio-Valle F., Esteban M.A. Dietary administration of beta-1,3/1,6-glucan and probiotic strain Shewanella putrefaciens, single or combined, on gilthead seabream growth, immune responses and gene expression. Fish Shellfish Immunol. 2014;39:34–41. doi: 10.1016/j.fsi.2014.04.024. PubMed DOI

Bagni M., Romano N., Finoia M.G., Abelli L., Scapigliati G., Tiscar P.G., Sarti M., Marino G. Short- and long-term effects of a dietary yeast beta-glucan (Macrogard) and alginic acid (Ergosan) preparation on immune response in sea bass (Dicentrarchus labrax) Fish Shellfish Immunol. 2005;18:311–325. doi: 10.1016/j.fsi.2004.08.003. PubMed DOI

Verlhac V., Obach A., Gabaudan J., SchÜEp W., Hole R. Immunomodulation by dietary vitamin C and glucan in rainbow trout (Oncorhynchus mykiss) Fish Shellfish Immunol. 1998;8:409–424. doi: 10.1006/fsim.1998.0148. DOI

Falco A., Frost P., Miest J., Pionnier N., Irnazarow I., Hoole D. Reduced inflammatory response to Aeromonas salmonicida infection in common carp (Cyprinus carpio L.) fed with beta-glucan supplements. Fish Shellfish Immunol. 2012;32:1051–1057. doi: 10.1016/j.fsi.2012.02.028. PubMed DOI

Pionnier N., Falco A., Miest J., Frost P., Irnazarow I., Shrive A., Hoole D. Dietary beta-glucan stimulate complement and C-reactive protein acute phase responses in common carp (Cyprinus carpio) during an Aeromonas salmonicida infection. Fish Shellfish Immunol. 2013;34:819–831. doi: 10.1016/j.fsi.2012.12.017. PubMed DOI

Miest J.J., Falco A., Pionnier N.P., Frost P., Irnazarow I., Williams G.T., Hoole D. The influence of dietary beta-glucan, PAMP exposure and Aeromonas salmonicida on apoptosis modulation in common carp (Cyprinus carpio) Fish Shellfish Immunol. 2012;33:846–856. doi: 10.1016/j.fsi.2012.07.014. PubMed DOI

Falco A., Miest J.J., Pionnier N., Pietretti D., Forlenza M., Wiegertjes G.F., Hoole D. β-Glucan-supplemented diets increase poly(I:C)-induced gene expression of Mx, possibly via Tlr3-mediated recognition mechanism in common carp (Cyprinus carpio) Fish Shellfish Immunol. 2014;36:494–502. doi: 10.1016/j.fsi.2013.12.005. PubMed DOI

Cook M.T., Hayball P.J., Hutchinson W., Nowak B., Hayball J.D. The efficacy of a commercial beta-glucan preparation, EcoActiva, on stimulating respiratory burst activity of head-kidney macrophages from pink snapper (Pagrus auratus), Sparidae. Fish Shellfish Immunol. 2001;11:661–672. doi: 10.1006/fsim.2001.0343. PubMed DOI

Meena D.K., Das P., Kumar S., Mandal S.C., Prusty A.K., Singh S.K., Akhtar M.S., Behera B.K., Kumar K., Pal A.K., et al. Beta-glucan: An ideal immunostimulant in aquaculture (a review) Fish Physiol. Biochem. 2013;39:431–457. doi: 10.1007/s10695-012-9710-5. PubMed DOI

Cook M.T., Hayball P.J., Hutchinson W., Nowak B.F., Hayball J.D. Administration of a commercial immunostimulant preparation, EcoActiva as a feed supplement enhances macrophage respiratory burst and the growth rate of snapper (Pagrus auratus, Sparidae (Bloch and Schneider)) in winter. Fish Shellfish Immunol. 2003;14:333–345. doi: 10.1006/fsim.2002.0441. PubMed DOI

Palic D., Andreasen C.B., Herolt D.M., Menzel B.W., Roth J.A. Immunomodulatory effects of beta-glucan on neutrophil function in fathead minnows (Pimephales promelas Rafinesque, 1820) Dev. Comp. Immunol. 2006;30:817–830. doi: 10.1016/j.dci.2005.11.004. PubMed DOI

Ai Q., Mai K., Zhang L., Tan B., Zhang W., Xu W., Li H. Effects of dietary beta-1, 3 glucan on innate immune response of large yellow croaker, Pseudosciaena crocea. Fish Shellfish Immunol. 2007;22:394–402. doi: 10.1016/j.fsi.2006.06.011. PubMed DOI

Kumari J., Sahoo P.K. Dietary immunostimulants influence specific immune response and resistance of healthy and immunocompromised Asian catfish Clarias batrachus to Aeromonas hydrophila infection. Dis. Aquat. Organ. 2006;70:63–70. doi: 10.3354/dao070063. PubMed DOI

Kumari J., Sahoo P.K. Non-specific immune response of healthy and immunocompromised Asian catfish (Clarias batrachus) to several immunostimulants. Aquaculture. 2006;255:133–141. doi: 10.1016/j.aquaculture.2005.12.012. PubMed DOI

Dalmo R.A., Bogwald J. β-Glucans as conductors of immune symphonies. Fish Shellfish Immunol. 2008;25:384–396. doi: 10.1016/j.fsi.2008.04.008. PubMed DOI

Álvarez-Rodríguez M., Pereiro P., Reyes-López F.E., Tort L., Figueras A., Novoa B. Analysis of the long-lived responses induced by immunostimulants and their effects on a viral infection in Zebrafish (Danio rerio) Front. Immunol. 2018;9 doi: 10.3389/fimmu.2018.01575. PubMed DOI PMC

Sahoo P.K. Role of immunostimulants in disease resistance of fish. CAB Rev. 2007;2 doi: 10.1079/PAVSNNR20072045. DOI

Sabioni R.E., Zanuzzo F.S., Gimbo R.Y., Urbinati E.C. beta-glucan enhances respiratory activity of leukocytes suppressed by stress and modulates blood glucose levels in pacu (Piaractus mesopotamicus) Fish Physiol. Biochem. 2020;46:629–640. doi: 10.1007/s10695-019-00739-x. PubMed DOI

Misra C.K., Das B.K., Mukherjee S.C., Pattnaik P. Effect of long term administration of dietary β-glucan on immunity, growth and survival of Labeo rohita fingerlings. Aquaculture. 2006;255:82–94. doi: 10.1016/j.aquaculture.2005.12.009. DOI

Lauridsen J.H., Buchmann K. Effects of short- and long-term glucan feeding of rainbow trout (Salmonidae) on the susceptibility to Ichthyophthirius multifiliis infections. Acta Ichthyol. Piscat. 2010;40:61–66. doi: 10.3750/AIP2010.40.1.08. DOI

Lin S., Pan Y., Luo L., Luo L. Effects of dietary beta-1,3-glucan, chitosan or raffinose on the growth, innate immunity and resistance of koi (Cyprinus carpio koi) Fish Shellfish Immunol. 2011;31:788–794. doi: 10.1016/j.fsi.2011.07.013. PubMed DOI

Kumari J., Sahoo P.K. Dietary beta-1,3 glucan potentiates innate immunity and disease resistance of Asian catfish, Clarias batrachus (L.) J. Fish Dis. 2006;29:95–101. doi: 10.1111/j.1365-2761.2006.00691.x. PubMed DOI

Douxfils J., Fierro-Castro C., Mandiki S.N., Emile W., Tort L., Kestemont P. Dietary beta-glucans differentially modulate immune and stress-related gene expression in lymphoid organs from healthy and Aeromonas hydrophila-infected rainbow trout (Oncorhynchus mykiss) Fish Shellfish Immunol. 2017;63:285–296. doi: 10.1016/j.fsi.2017.02.027. PubMed DOI

Do Huu H., Sang H.M., Thanh Thuy N.T. Dietary β-glucan improved growth performance, Vibrio counts, haematological parameters and stress resistance of pompano fish, Trachinotus ovatus Linnaeus, 1758. Fish Shellfish Immunol. 2016;54:402–410. doi: 10.1016/j.fsi.2016.03.161. PubMed DOI

Adloo M.N., Soltanian S., Hafezieh M., Ghadimi N. Effects of long term dietary administration of beta-Glucan on the growth, survival and some blood parameters of striped catfish, Pangasianodon hypophthalmus (Siluriformes: Pangasiidae) Iran. J. Ichthyol. 2015;2:194–200.

Kiseleva M., Balabanova L., Elyakova L., Rasskazov V., Zvyagintseva T. Effect of treatment of chum salmon Oncorhynchus keta (Walbaum) eggs with 1,3;1,6-beta-d-glucans on their development and susceptibility to Saprolegnia infection. J. Fish Dis. 2014;37:3–10. doi: 10.1111/jfd.12043. PubMed DOI

Zhang Z., Swain T., Bogwald J., Dalmo R.A., Kumari J. Bath immunostimulation of rainbow trout (Oncorhynchus mykiss) fry induces enhancement of inflammatory cytokine transcripts, while repeated bath induce no changes. Fish Shellfish Immunol. 2009;26:677–684. doi: 10.1016/j.fsi.2009.02.014. PubMed DOI

Nikl L., Evelyn T.P.T., Albright L.J. Trials with an orally and immersion-administered beta-1,3 glucan as an immunoprophylactic against Aeromonas salmonicida in juvenile chinook salmon Oncorhynchus tshawytscha. Dis. Aquat. Organ. 1993;17:191–196. doi: 10.3354/dao017191. DOI

Salinas I. The mucosal immune system of teleost fish. Biology. 2015;4:525–539. doi: 10.3390/biology4030525. PubMed DOI PMC

Lam K.-L., Chi-Keung Cheung P. Non-digestible long chain beta-glucans as novel prebiotics. Bioact Carbohydr. Diet. Fibre. 2013;2:45–64. doi: 10.1016/j.bcdf.2013.09.001. DOI

Wiegertjes G.F., Wentzel A.S., Spaink H.P., Elks P.M., Fink I.R. Polarization of immune responses in fish: The ‘macrophages first’ point of view. Mol. Immunol. 2016;69:146–156. doi: 10.1016/j.molimm.2015.09.026. PubMed DOI

Refstie S., Baeverfjord G., Seim R.R., Elvebø O. Effects of dietary yeast cell wall β-glucans and MOS on performance, gut health, and salmon lice resistance in Atlantic salmon (Salmo salar) fed sunflower and soybean meal. Aquaculture. 2010;305:109–116. doi: 10.1016/j.aquaculture.2010.04.005. DOI

Pietretti D., Vera-Jimenez N.I., Hoole D., Wiegertjes G.F. Oxidative burst and nitric oxide responses in carp macrophages induced by zymosan, MacroGard((R)) and selective dectin-1 agonists suggest recognition by multiple pattern recognition receptors. Fish Shellfish Immunol. 2013;35:847–857. doi: 10.1016/j.fsi.2013.06.022. PubMed DOI

Barros M.M., Falcon D.R., Orsi Rde O., Pezzato L.E., Fernandes A.C., Jr., Guimaraes I.G., Fernandes A., Jr., Padovani C.R., Sartori M.M. Non-specific immune parameters and physiological response of Nile tilapia fed beta-glucan and vitamin C for different periods and submitted to stress and bacterial challenge. Fish Shellfish Immunol. 2014;39:188–195. doi: 10.1016/j.fsi.2014.05.004. PubMed DOI

Miest J.J., Arndt C., Adamek M., Steinhagen D., Reusch T.B. Dietary beta-glucan (MacroGard(R)) enhances survival of first feeding turbot (Scophthalmus maximus) larvae by altering immunity, metabolism and microbiota. Fish Shellfish Immunol. 2016;48:94–104. doi: 10.1016/j.fsi.2015.11.013. PubMed DOI

Montoya L.N.F., Martins T.P., Gimbo R.Y., Zanuzzo F.S., Urbinati E.C. β-glucan-induced cortisol levels improve the early immune response in matrinxã (Brycon amazonicus) Fish Shellfish Immunol. 2017;60:197–204. doi: 10.1016/j.fsi.2016.11.055. PubMed DOI

Barros M.M., Falcon D.R., Orsi R.O., Pezzato L.E., Fernandes A.C., Fernandes A., de Carvalho P.L.P.F., Padovani C.R., Guimaraes I.G., Sartori M.M.P. Immunomodulatory effects of dietary -glucan and vitamin C in nile tilapia, Oreochromis niloticus L., subjected to cold-induced stress or bacterial challenge. J. World Aquac. Soc. 2015;46:363–380. doi: 10.1111/jwas.12202. DOI

Salah A.S., El Nahas A.F., Mahmoud S. Modulatory effect of different doses of beta-1,3/1,6-glucan on the expression of antioxidant, inflammatory, stress and immune-related genes of Oreochromis niloticus challenged with Streptococcus iniae. Fish Shellfish Immunol. 2017;70:204–213. doi: 10.1016/j.fsi.2017.09.008. PubMed DOI

Jung-Schroers V., Adamek M., Harris S., Syakuri H., Jung A., Irnazarow I., Steinhagen D. Response of the intestinal mucosal barrier of carp (Cyprinus carpio) to a bacterial challenge by Aeromonas hydrophila intubation after feeding with beta-1,3/1,6-glucan. J. Fish Dis. 2018;41:1077–1092. doi: 10.1111/jfd.12799. PubMed DOI

Kiron V., Kulkarni A., Dahle D., Vasanth G., Lokesh J., Elvebo O. Recognition of purified beta 1,3/1,6 glucan and molecular signalling in the intestine of Atlantic salmon. Dev. Comp. Immunol. 2016;56:57–66. doi: 10.1016/j.dci.2015.11.007. PubMed DOI

Brogden G., von Kockritz-Blickwede M., Adamek M., Reuner F., Jung-Schroers V., Naim H.Y., Steinhagen D. β-Glucan protects neutrophil extracellular traps against degradation by Aeromonas hydrophila in carp (Cyprinus carpio) Fish Shellfish Immunol. 2012;33:1060–1064. doi: 10.1016/j.fsi.2012.08.009. PubMed DOI

Vera-Jimenez N.I., Nielsen M.E. Carp head kidney leukocytes display different patterns of oxygen radical production after stimulation with PAMPs and DAMPs. Mol. Immunol. 2013;55:231–236. doi: 10.1016/j.molimm.2013.01.016. PubMed DOI

Vera-Jimenez N.I., Pietretti D., Wiegertjes G.F., Nielsen M.E. Comparative study of beta-glucan induced respiratory burst measured by nitroblue tetrazolium assay and real-time luminol-enhanced chemiluminescence assay in common carp (Cyprinus carpio L.) Fish Shellfish Immunol. 2013;34:1216–1222. doi: 10.1016/j.fsi.2013.02.004. PubMed DOI

Montoya L.N.F., Favero G.C., Zanuzzo F.S., Urbinati E.C. Distinct β-glucan molecules modulates differently the circulating cortisol levels and innate immune responses in matrinxã (Brycon amazonicus) Fish Shellfish Immunol. 2018;83:314–320. doi: 10.1016/j.fsi.2018.09.042. PubMed DOI

Kuhlwein H., Emery M.J., Rawling M.D., Harper G.M., Merrifield D.L., Davies S.J. Effects of a dietary beta-(1,3)(1,6)-d-glucan supplementation on intestinal microbial communities and intestinal ultrastructure of mirror carp (Cyprinus carpio L.) J. Appl. Microbiol. 2013;115:1091–1106. doi: 10.1111/jam.12313. PubMed DOI

Do-Huu H., Lam H.S., Nguyen C.V. Efficiency of dietary β-glucan supplementation on growth, body composition, feed, and nutrient utilization in juveniles of pompano fish (Trachinotus ovatus, Linnaeus, 1758) Isr. J. Aquac. 2018;70:1–13.

Sych G., Frost P., Irnazarow I. Influence of β-glucan (Macrogard®) on innate immunity of carp fry. Bull. Vet. Inst. Pulawy. 2013;57:219–223. doi: 10.2478/bvip-2013-0039. DOI

Brogden G., Krimmling T., Adamek M., Naim H.Y., Steinhagen D., von Kockritz-Blickwede M. The effect of beta-glucan on formation and functionality of neutrophil extracellular traps in carp (Cyprinus carpio L.) Dev. Comp. Immunol. 2014;44:280–285. doi: 10.1016/j.dci.2014.01.003. PubMed DOI

Marinho de Mello M.M., de Fatima Pereira de Faria C., Zanuzzo F.S., Urbinati E.C. Beta-glucan modulates cortisol levels in stressed pacu (Piaractus mesopotamicus) inoculated with heat-killed Aeromonas hydrophila. Fish Shellfish Immunol. 2019;93:1076–1083. doi: 10.1016/j.fsi.2019.07.068. PubMed DOI

Fronte B., Kim C.H., Bagliacca M., Casini L., De Zoysa M. 1,3-1-6 β-glucans enhance tissue regeneration in zebrafish (Danio rerio): Potential advantages for aquaculture applications. Aquac. Res. 2019;50:3163–3170. doi: 10.1111/are.14270. DOI

De Jesus R.B., Petit J., Pilarski F., Wiegertjes G.F., Koch J.F.A., de Oliveira C.A.F., Zanuzzo F.S. An early β-glucan bath during embryo development increases larval size of Nile tilapia. Aquac. Res. 2019;50:2012–2014. doi: 10.1111/are.14047. DOI

Przybylska-Diaz D.A., Schmidt J.G., Vera-Jimenez N.I., Steinhagen D., Nielsen M.E. β-Glucan enriched bath directly stimulates the wound healing process in common carp (Cyprinus carpio L.) Fish Shellfish Immunol. 2013;35:998–1006. doi: 10.1016/j.fsi.2013.05.014. PubMed DOI

Filho F.d.O.R., Koch J.F.A., Wallace C., Leal M.C. Dietary β-1,3/1,6-glucans improve the effect of a multivalent vaccine in Atlantic salmon infected with Moritella viscosa or infectious salmon anemia virus. Aquac. Int. 2019;27:1825–1834. doi: 10.1007/s10499-019-00436-9. DOI

Biller-Takahashi J.D., Takahashi L.S., Marzocchi-Machado C.M., Zanuzzo F.S., Urbinati E.C. Disease resistance of pacu Piaractus mesopotamicus (Holmberg, 1887) fed with beta-glucan. Braz. J. Biol. 2014;74:698–703. doi: 10.1590/bjb.2014.0083. PubMed DOI

Kuhlwein H., Merrifield D.L., Rawling M.D., Foey A.D., Davies S.J. Effects of dietary beta-(1,3)(1,6)-d-glucan supplementation on growth performance, intestinal morphology and haemato-immunological profile of mirror carp (Cyprinus carpio L.) J. Anim. Physiol. Anim. Nutr. (Berl.) 2014;98:279–289. doi: 10.1111/jpn.12078. PubMed DOI

Pionnier N., Falco A., Miest J.J., Shrive A.K., Hoole D. Feeding common carp Cyprinus carpio with beta-glucan supplemented diet stimulates C-reactive protein and complement immune acute phase responses following PAMPs injection. Fish Shellfish Immunol. 2014;39:285–295. doi: 10.1016/j.fsi.2014.05.008. PubMed DOI

Jung-Schroers V., Adamek M., Jung A., Harris S., Dóza Ö.S., Baumer A., Steinhagen D. Feeding of β-1,3/1,6-glucan increases the diversity of the intestinal microflora of carp (Cyprinus carpio) Aquac. Nutr. 2016;22:1026–1039. doi: 10.1111/anu.12320. DOI

Schmidt J.G., Andersen E.W., Ersboll B.K., Nielsen M.E. Muscle wound healing in rainbow trout (Oncorhynchus mykiss) Fish Shellfish Immunol. 2016;48:273–284. doi: 10.1016/j.fsi.2015.12.010. PubMed DOI

Welker T.L., Lim C., Yildirim-Aksoy M., Klesius P.H. Use of diet crossover to determine the effects of beta-glucan supplementation on immunity and growth of nile tilapia, Oreochromis niloticus. J. World Aquac. Soc. 2012;43:335–348. doi: 10.1111/j.1749-7345.2012.00569.x. DOI

Dos Santos Voloski A.P., de Figueiredo Soveral L., Dazzi C.C., Sutili F., Frandoloso R., Kreutz L.C. β-Glucan improves wound healing in silver catfish (Rhamdia quelen) Fish Shellfish Immunol. 2019;93:575–579. doi: 10.1016/j.fsi.2019.08.010. PubMed DOI

Ghaedi G., Keyvanshokooh S., Mohammadi Azarm H., Akhlaghi M. Proteomic analysis of muscle tissue from rainbow trout (Oncorhynchus mykiss) fed dietary beta-glucan. Iran. J. Vet. Res. 2016;17:184–189. PubMed PMC

Dawood M.A.O., Abdo S.E., Gewaily M.S., Moustafa E.M., SaadAllah M.S., AbdEl-Kader M.F., Hamouda A.H., Omar A.A., Alwakeel R.A. The influence of dietary beta-glucan on immune, transcriptomic, inflammatory and histopathology disorders caused by deltamethrin toxicity in Nile tilapia (Oreochromis niloticus) Fish Shellfish Immunol. 2020;98:301–311. doi: 10.1016/j.fsi.2020.01.035. PubMed DOI

Soltanian S., Adloo M.N., Hafeziyeh M., Ghadimi N. Effect of β-glucan on cold-stress resistance of striped catfish, Pangasianodon hypophthalmus (Sauvage, 1878) Vet. Med. 2014;59:440–446. doi: 10.17221/7684-VETMED. DOI

Divya M., Gopi N., Iswarya A., Govindarajan M., Alharbi N.S., Kadaikunnan S., Khaled J.M., Almanaa T.N., Vaseeharan B. β-Glucan extracted from eukaryotic single-celled microorganism Saccharomyces cerevisiae: Dietary supplementation and enhanced ammonia stress tolerance on Oreochromis mossambicus. Microb. Pathog. 2020;139:103917. doi: 10.1016/j.micpath.2019.103917. PubMed DOI

Netea M.G., Quintin J., van der Meer J.W. Trained immunity: A memory for innate host defense. Cell Host Microbe. 2011;9:355–361. doi: 10.1016/j.chom.2011.04.006. PubMed DOI

Alvarez-Errico D., Vento-Tormo R., Sieweke M., Ballestar E. Epigenetic control of myeloid cell differentiation, identity and function. Nat. Rev. Immunol. 2015;15:7–17. doi: 10.1038/nri3777. PubMed DOI

Kleinnijenhuis J., Quintin J., Preijers F., Benn C.S., Joosten L.A., Jacobs C., van Loenhout J., Xavier R.J., Aaby P., van der Meer J.W., et al. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J. Innate Immunol. 2014;6:152–158. doi: 10.1159/000355628. PubMed DOI PMC

Kleinnijenhuis J., Quintin J., Preijers F., Joosten L.A., Ifrim D.C., Saeed S., Jacobs C., van Loenhout J., de Jong D., Stunnenberg H.G., et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl. Acad. Sci. USA. 2012;109:17537–17542. doi: 10.1073/pnas.1202870109. PubMed DOI PMC

Netea M.G., Latz E., Mills K.H., O’Neill L.A. Innate immune memory: A paradigm shift in understanding host defense. Nat. Immunol. 2015;16:675–679. doi: 10.1038/ni.3178. PubMed DOI

Conrath U. Systemic acquired resistance. Plant Signal. Behav. 2006;1:179–184. doi: 10.4161/psb.1.4.3221. PubMed DOI PMC

Ryals J.A., Neuenschwander U.H., Willits M.G., Molina A., Steiner H.Y., Hunt M.D. Systemic acquired resistance. Plant Cell. 1996;8:1809–1819. doi: 10.2307/3870231. PubMed DOI PMC

Vernooij B., Friedrich L., Goy P.A., Staub T., Kessmann H., Ryals J. 2,6-Dichloroisonicotinic acid-induced resistance to pathogens without the accumulation of salicylic acid. Mol. Plant Microbe Interact. 1995;8:228–234. doi: 10.1094/MPMI-8-0228. DOI

Kurtz J. Specific memory within innate immune systems. Trends Immunol. 2005;26:186–192. doi: 10.1016/j.it.2005.02.001. PubMed DOI

Olivier G., Eaton C.A., Campbell N. Interaction between Aeromonas salmonicida and peritoneal macrophages of brook trout (Salvelinus fontinalis) Vet. Immunol. Immunopathol. 1986;12:223–234. doi: 10.1016/0165-2427(86)90126-1. PubMed DOI

Kato G., Kondo H., Aoki T., Hirono I. BCG vaccine confers adaptive immunity against Mycobacterium sp. infection in fish. Dev. Comp. Immunol. 2010;34:133–140. doi: 10.1016/j.dci.2009.08.013. PubMed DOI

Kato G., Kondo H., Aoki T., Hirono I. Mycobacterium bovis BCG vaccine induces non-specific immune responses in Japanese flounder against Nocardia seriolae. Fish Shellfish Immunol. 2012;33:243–250. doi: 10.1016/j.fsi.2012.05.002. PubMed DOI

Hohn C., Petrie-Hanson L. Rag1−/− mutant zebrafish demonstrate specific protection following bacterial re-exposure. PLoS ONE. 2012;7:e44451. doi: 10.1371/journal.pone.0044451. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace