Bringing SEM and MSI Closer Than Ever Before: Visualizing Aspergillus and Pseudomonas Infection in the Rat Lungs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1509
Ministry of Education, Youth and Sports of the Czech Republic
19-10907S
Czech Science Foundation
PubMed
33143040
PubMed Central
PMC7711807
DOI
10.3390/jof6040257
PII: jof6040257
Knihovny.cz E-zdroje
- Klíčová slova
- bacteria, fixation, fungi, matrix-assisted laser desorption/ionization mass spectrometry imaging, rat lung tissue, scanning electron microscopy,
- Publikační typ
- časopisecké články MeSH
A procedure for processing frozen rat lung tissue sections for scanning electron microscopy (SEM) from deeply frozen samples initially collected and stored for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was developed. The procedure employed slow thawing of the frozen sections while floating on the surface and melting in a fixative solution. After the float-washing step, the sections were dehydrated in a graded ethanol series and dried in a critical point dryer. The SEM generated images with well-preserved structures, allowing for monitoring of bacterial cells and fungal hyphae in the infected tissue. Importantly, the consecutive nonfixed frozen sections were fully compatible with MALDI-MSI, providing molecular biomarker maps of Pseudomonas aeruginosa. The protocol enables bimodal image fusion in the in-house software CycloBranch, as demonstrated by SEM and MALDI-MSI.
Zobrazit více v PubMed
Fonta C.L., Humbel B.M. Correlative microscopy. Arch. Biochem. Biophys. 2015;581:98–110. doi: 10.1016/j.abb.2015.05.017. PubMed DOI
Hoffman D.P., Shtengel G., Xu C.S., Campbell K.R., Freeman M., Wang L., Milkie D.E., Pasolli H.A., Iyer N., Bogovic J.A., et al. Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science. 2020;367:eaaz5357. doi: 10.1126/science.aaz5357. PubMed DOI PMC
Mallah K., Quanico J., Raffo-Romero A., Cardon T., Aboulouard S., Devos D., Kobeissy F., Zibara K., Salzet M., Fournier I. Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging of Lipids in Experimental Model of Traumatic Brain Injury Detecting Acylcarnitines as Injury Related Markers. Anal. Chem. 2019;91:11879–11887. doi: 10.1021/acs.analchem.9b02633. PubMed DOI
Murphy R.C., Hankin J.A., Barkley R.M. Imaging of lipid species by MALDI mass spectrometry. J. Lipid Res. 2008;50:S317–S322. doi: 10.1194/jlr.R800051-JLR200. PubMed DOI PMC
Chaurand P., Cornett D.S., Angel P.M., Caprioli R.M. From Whole-body Sections Down to Cellular Level, Multiscale Imaging of Phospholipids by MALDI Mass Spectrometry. Mol. Cell. Proteom. 2010;10:O110.004259. doi: 10.1074/mcp.O110.004259. PubMed DOI PMC
Kaya I., Michno W., Brinet D., Iacone Y., Zanni G., Blennow K., Zetterberg H., Hanrieder J. Histology-Compatible MALDI Mass Spectrometry Based Imaging of Neuronal Lipids for Subsequent Immunofluorescent Staining. Anal. Chem. 2017;89:4685–4694. doi: 10.1021/acs.analchem.7b00313. PubMed DOI
Feenstra A.D., Due nas M.E., Lee Y.J. Five Micron High Resolution MALDI Mass Spectrometry Imaging with Simple, Interchangeable, Multi-Resolution Optical System. J. Am. Soc. Mass Spectrom. 2017;28:434–442. doi: 10.1007/s13361-016-1577-8. PubMed DOI
Niehaus M., Soltwisch J., Belov M.E., Dreisewerd K. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat. Methods. 2019;16:925–931. doi: 10.1038/s41592-019-0536-2. PubMed DOI
Goldstein J.I., Newbury D.E., Michael J.R., Ritchie N.W.M., Scott J.H.J., Joy D.C. Scanning Electron Microscopy and X-ray Microanalysis. Springer; New York, NY, UYA: 2018. DOI
Bystrianský L., Hujslová M., Hršelová H., Řezáčová V., Němcová L., Šimsová J., Gryndlerová H., Kofroňová O., Benada O., Gryndler M. Observations on two microbial life strategies in soil: Planktonic and biofilm-forming microorganisms are separable. Soil. Biol. Biochem. 2019;136:107535. doi: 10.1016/j.soilbio.2019.107535. DOI
Fischer E.R., Hansen B.T., Nair V., Hoyt F.H., Dorward D.W. Scanning Electron Microscopy. Curr. Protoc. Microbiol. 2012;25:2B.2.1–2B.2.47. doi: 10.1002/9780471729259.mc02b02s25. PubMed DOI PMC
Hayat M.A. Fixation for Electron Microscopy. Academic Press; Cambridge, MA, USA: 1981. DOI
Shen C.H. Diagnostic Molecular Biology. Elsevier; Amsterdam, The Netherlands: 2019. Quantification and Analysis of Proteins; pp. 187–214. Chapter 8. DOI
Metz B., Kersten G.F.A., Hoogerhout P., Brugghe H.F., Timmermans H.A.M., de Jong A., Meiring H., ten Hove J., Hennink W.E., Crommelin D.J.A., et al. Identification of Formaldehyde-induced Modifications in Proteins. J. Biol. Chem. 2003;279:6235–6243. doi: 10.1074/jbc.M310752200. PubMed DOI
Norris J.L., Caprioli R.M. Analysis of Tissue Specimens by Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry in Biological and Clinical Research. Chem. Rev. 2013;113:2309–2342. doi: 10.1021/cr3004295. PubMed DOI PMC
Caldwell R.L., Caprioli R.M. Tissue Profiling by Mass Spectrometry. Mol. Cell. Proteom. 2005;4:394–401. doi: 10.1074/mcp.R500006-MCP200. PubMed DOI
Ferguson C.N., Fowler J.W.M., Waxer J.F., Gatti R.A., Loo J.A. Mass Spectrometry-Based Tissue Imaging of Small Molecules. In: Woods A.G., Darie C.C., editors. Advances in Experimental Medicine and Biology. Springer International Publishing; Berlin/Heidelberg, Germany: 2014. pp. 283–299. PubMed DOI PMC
Tucker K.R., Lanni E.J., Serebryannyy L.A., Rubakhin S.S., Sweedler J.V. Stretched Tissue Mounting for MALDI Mass Spectrometry Imaging. Anal. Chem. 2011;83:9181–9185. doi: 10.1021/ac201857k. PubMed DOI PMC
Anderson D.M.G., Floyd K.A., Barnes S., Clark J.M., Clark J.I., Mchaourab H., Schey K.L. A method to prevent protein delocalization in imaging mass spectrometry of non-adherent tissues: Application to small vertebrate lens imaging. Anal. Bioanal. Chem. 2015;407:2311–2320. doi: 10.1007/s00216-015-8489-5. PubMed DOI PMC
Bowman A.P., Bogie J.F.J., Hendriks J.J.A., Haidar M., Belov M., Heeren R.M.A., Ellis S.R. Evaluation of lipid coverage and high spatial resolution MALDI-imaging capabilities of oversampling combined with laser post-ionisation. Anal. Bioanal. Chem. 2019;412:2277–2289. doi: 10.1007/s00216-019-02290-3. PubMed DOI PMC
Tucker L.H., Conde-González A., Cobice D., Hamm G.R., Goodwin R.J.A., Campbell C.J., Clarke D.J., Mackay C.L. MALDI Matrix Application Utilizing a Modified 3D Printer for Accessible High Resolution Mass Spectrometry Imaging. Anal. Chem. 2018;90:8742–8749. doi: 10.1021/acs.analchem.8b00670. PubMed DOI
Wiegelmann M., Dreisewerd K., Soltwisch J. Influence of the Laser Spot Size, Focal Beam Profile, and Tissue Type on the Lipid Signals Obtained by MALDI-MS Imaging in Oversampling Mode. J. Am. Soc. Mass Spectrom. 2016;27:1952–1964. doi: 10.1007/s13361-016-1477-y. PubMed DOI
Fincher J.A., Jones D.R., Korte A.R., Dyer J.E., Parlanti P., Popratiloff A., Brantner C.A., Morris N.J., Pirlo R.K., Shanmugam V.K., et al. Mass Spectrometry Imaging of Lipids in Human Skin Disease Model Hidradenitis Suppurativa by Laser Desorption Ionization from Silicon Nanopost Arrays. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-53938-0. PubMed DOI PMC
The European Parliament and the Council of the European Union DIRECTIVE 2000/54/EC of the European Parliament and of the Council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work (seventh individual directive within the meaning of Article 16(1) of Directive 89/391/EEC) Off. J. Eur. Communities. 2020;45:21–46.
Luptáková D., Pluháček T., Petřík M., Novák J., Palyzová A., Sokolová L., Škríba A., Šedivá B., Lemr K., Havlíček V. Non-invasive and invasive diagnoses of aspergillosis in a rat model by mass spectrometry. Sci. Rep. 2017;7:16523. doi: 10.1038/s41598-017-16648-z. PubMed DOI PMC
Petřík M., Umlaufová E., Raclavský V., Palyzová A., Havlíček V., Haas H., Nový Z., Doležal D., Hajduch M., Decristoforo C. Imaging of Pseudomonas aeruginosa infection with Ga-68 labelled pyoverdine for positron emission tomography. Sci. Rep. 2018 doi: 10.1038/s41598-018-33895-w. PubMed DOI PMC
Grocott R.G. A Stain for Fungi in Tissue Sections and Smears. Am. J. Clin. Pathol. 1955;25:975–979. doi: 10.1093/ajcp/25.8_ts.0975. PubMed DOI
Becerra S.C., Roy D.C., Sanchez C.J., Christy R.J., Burmeister D.M. An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue. BMC Res. Notes. 2016;9 doi: 10.1186/s13104-016-1902-0. PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Linkert M., Rueden C.T., Allan C., Burel J.M., Moore W., Patterson A., Loranger B., Moore J., Neves C., MacDonald D., et al. Metadata matters: Access to image data in the real world. J. Cell. Biol. 2010;189:777–782. doi: 10.1083/jcb.201004104. PubMed DOI PMC
Khursheed A. Ultimate resolution limits for scanning electron microscope immersion objective lenses. Optik. 2002;113:67–77. doi: 10.1078/0030-4026-00118. DOI
Müllerová I., Lenc M. Some approaches to low-voltage scanning electron microscopy. Ultramicroscopy. 1992;41:399–410. doi: 10.1016/0304-3991(92)90219-A. DOI
Phifer D., Tůma L., Vystavěl T., Wandrol P., Young R.J. Improving SEM imaging performance using beam deceleration. Micros. Today. 2009;17:40–49. doi: 10.1017/S1551929509000170. DOI
Xiao N., Li M. [(accessed on 15 August 2020)];Scientific Journal and Sci-Fi Themed Color Palettes for ’ggplot2’. 2018 R Package Version 2.9. Available online: https://scholar.google.com.hk/scholar?cluster=15844498918001731978&hl=zh-CN&as_sdt=2005&sciodt=0,5.
Rueden C.T., Schindelin J., Hiner M.C., DeZonia B.E., Walter A.E., Arena E.T., Eliceiri K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017;18 doi: 10.1186/s12859-017-1934-z. PubMed DOI PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Novák J., Škríba A., Havlíček V. CycloBranch 2: Molecular Formula Annotations Applied to imzML Data Sets in Bimodal Fusion and LC-MS Data Files. Anal. Chem. 2020;92:6844–6849. doi: 10.1021/acs.analchem.0c00170. PubMed DOI
Dagenais T.R.T., Keller N.P. Pathogenesis of Aspergillus Fumigatus Invasive Aspergillosis. Clin. Microbiol. Rev. 2009;22:447–465. doi: 10.1128/CMR.00055-08. PubMed DOI PMC
Guarner J., Brandt M.E. Histopathologic Diagnosis of Fungal Infections in the 21st Century. Clin. Microbiol. Rev. 2011;24:247–280. doi: 10.1128/CMR.00053-10. PubMed DOI PMC
Kradin R.L., Mark E.J. The pathology of pulmonary disorders due to Aspergillus Spp. Arch. Pathol. Lab. Med. 2008;132:606–614. doi: 10.1043/1543-2165(2008)132[606:TPOPDD]2.0.CO;2. PubMed DOI
Novák J., Škríba A., Zápal J., Kuzma M., Havlíček V. CycloBranch: An open tool for fine isotope structures in conventional and product ion mass spectra. J. Mass Spectrom. 2018;53:1097–1103. doi: 10.1002/jms.4285. PubMed DOI
Pluháček T., Petřík M., Luptáková D., Benada O., Palyzová A., Lemr K., Havlíček V. Aspergillus infection monitored by multimodal imaging in a rat model. Proteomics. 2016;16:1785–1792. doi: 10.1002/pmic.201500487. PubMed DOI
Lanni E.J., Rubakhin S.S., Sweedler J.V. Mass spectrometry imaging and profiling of single cells. J. Proteom. 2012;75:5036–5051. doi: 10.1016/j.jprot.2012.03.017. PubMed DOI PMC
Passarelli M.K., Ewing A.G. Single-cell imaging mass spectrometry. Curr. Opin. Chem. Biol. 2013;17:854–859. doi: 10.1016/j.cbpa.2013.07.017. PubMed DOI PMC
Patterson T.F., Thompson G.R., Denning D.W., Fishman J.A., Hadley S., Herbrecht R., Kontoyiannis D.P., Marr K.A., Morrison V.A., Nguyen M.H., et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016;63:e1–e60. doi: 10.1093/cid/ciw326. PubMed DOI PMC
Inagawa R., Okada H., Takemura G., Suzuki K., Takada C., Yano H., Ando Y., Usui T., Hotta Y., Miyazaki N., et al. Ultrastructural Alteration of Pulmonary Capillary Endothelial Glycocalyx during Endotoxemia. Chest. 2018;154:317–325. doi: 10.1016/j.chest.2018.03.003. PubMed DOI