MassSpecBlocks: a web-based tool to create building blocks and sequences of nonribosomal peptides and polyketides for tandem mass spectra analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-17044S
Grantová Agentura České Republiky
PubMed
34233741
PubMed Central
PMC8265115
DOI
10.1186/s13321-021-00530-2
PII: 10.1186/s13321-021-00530-2
Knihovny.cz E-zdroje
- Klíčová slova
- Building blocks, CycloBranch, Mass spectrometry, MassSpecBlocks, Nonribosomal petides, Polyketides, Siderophores, SmilesDrawer, Tanimoto similarity,
- Publikační typ
- časopisecké články MeSH
Nonribosomal peptides and polyketides are natural products commonly synthesized by microorganisms. They are widely used in medicine, agriculture, environmental protection, and other fields. The structures of natural products are often analyzed by high-resolution tandem mass spectrometry, which becomes more popular with its increasing availability. However, the characterization of nonribosomal peptides and polyketides from tandem mass spectra is a nontrivial task because they are composed of many uncommon building blocks in addition to proteinogenic amino acids. Moreover, many of them have cyclic and branch-cyclic structures. Here, we introduce MassSpecBlocks - an open-source and web-based tool that converts the input chemical structures in SMILES format into sequences of building blocks. The structures can be searched in public databases PubChem, ChemSpider, ChEBI, NP Atlas, COCONUT, and Norine and edited in a user-friendly graphical interface. Although MassSpecBlocks can serve as a stand-alone database, our primary goal was to enable easy construction of custom sequence and building block databases, which can be used to annotate mass spectra in CycloBranch software. CycloBranch is an open-source, cross-platform, and stand-alone tool that we recently released for annotating spectra of linear, cyclic, branched, and branch-cyclic nonribosomal peptides and polyketide siderophores. The sequences and building blocks created in MassSpecBlocks can be easily exported into a plain text format used by CycloBranch. MassSpecBlocks is available online or can be installed entirely offline. It offers a REST API to cooperate with other tools.
Zobrazit více v PubMed
Strieker M, Tanovic A, Marahiel MA. Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol. 2010;20(2):234–240. doi: 10.1016/j.sbi.2010.01.009. PubMed DOI
Pluhacek T, Lemr K, Ghosh D, Milde D, Novak J, Havlicek V. Characterization of microbial siderophores by mass spectrometry. Mass Spectrom Rev. 2016;35(1):35–47. doi: 10.1002/mas.21461. PubMed DOI
Hider RC, Kong X. Chemistry and biology of siderophores. Nat Prod Rep. 2010;27(5):637–657. doi: 10.1039/b906679a. PubMed DOI
Luptakova D, Pluhacek T, Petrik M, Novak J, Palyzova A, Sokolova L, Skriba A, Sediva B, Lemr K, Havlicek V. Non-invasive and invasive diagnoses of aspergillosis in a rat model by mass spectrometry. Sci Rep. 2017;7(1):16523. doi: 10.1038/s41598-017-16648-z. PubMed DOI PMC
Dobias R, Havlicek V. Microbial siderophores: markers of infectious diseases. In: Das S, Dash HR, editors. Microbial and natural macromolecules. UK: Academic Press; 2021. pp. 57–72.
Novak J, Lemr K, Schug KA, Havlicek V. CycloBranch: De Novo sequencing of nonribosomal peptides from accurate product ion mass spectra. J Am Soc Mass Spectrom. 2015;26(10):1780–1786. doi: 10.1007/s13361-015-1211-1. PubMed DOI
Novak J, Sokolova L, Lemr K, Pluhacek T, Palyzova A, Havlicek V. Batch-processing of imaging or liquid-chromatography mass spectrometry datasets and De Novo sequencing of polyketide siderophores. BBA Proteins Proteom. 2017;1865(7):768–775. doi: 10.1016/j.bbapap.2016.12.003. PubMed DOI
Prichystal J, Schug KA, Lemr K, Novak J, Havlicek V. Structural analysis of natural products. Anal Chem. 2016;88(21):10338–10346. doi: 10.1021/acs.analchem.6b02386. PubMed DOI
Paizs B, Suhai S. Fragmentation pathways of protonated peptides. Mass Spectrom Rev. 2005;24(4):508–548. doi: 10.1002/mas.20024. PubMed DOI
Van Santen, J.A., Jacob, G., Singh, A.L., Aniebok, V., Balunas, M.J., Bunsko, D., Neto, F.C., Castaño-Espriu, L., Chang, C., Clark, T.N., Cleary Little, J.L., Delgadillo, D.A., Dorrestein, P.C., Duncan, K.R., Egan, J.M., Galey, M.M., Haeckl, F.P.J., Hua, A., Hughes, A.H., Iskakova, D., Khadilkar, A., Lee, J.-H., Lee, S., Legrow, N., Liu, D.Y., Macho, J.M., McCaughey, C.S., Medema, M.H., Neupane, R.P., O’Donnell, T.J., Paula, J.S., Sanchez, L.M., Shaikh, A.F., Soldatou, S., Terlouw, B.R., Tran, T.A., Valentine, M., Van Der Hooft, J.J.J., Vo, D.A., Wang, M., Wilson, D., Zink, K.E., Linington, R.G.: The natural products atlas: an open access knowledge base for microbial natural products discovery. ACS Central Sci. 5(11), 1824–1833 (2019). 10.1021/acscentsci.9b00806 PubMed PMC
Sorokina M, Merseburger P, Rajan K, Yirik MA, Steinbeck C. COCONUT online: collection of open natural products database. J Cheminformatics. 2021;13(1):2. doi: 10.1186/s13321-020-00478-9. PubMed DOI PMC
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2018;47(D1):1102–1109. doi: 10.1093/nar/gky1033. PubMed DOI PMC
Royal Society of Chemistry: ChemSpider (2021). https://www.chemspider.com/. Accessed 12 Apr 2021
Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. ChEBI in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res. 2016;44(D1):1214–1219. doi: 10.1093/nar/gkv1031. PubMed DOI PMC
Ibrahim A, Yang L, Johnston C, Liu X, Ma B, Magarvey NA. Dereplicating nonribosomal peptides using an informatic search algorithm for natural products (iSNAP) discovery. Proc Natl Acad Sci U S A. 2012;109(47):19196–19201. doi: 10.1073/pnas.1206376109. PubMed DOI PMC
Ibrahim, A., et al.: iSNAP Analogue Search (2021). https://magarveylab.ca/analogue/. Accessed 12 Apr 2021
Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci. 1988;28(1):31–36. doi: 10.1021/ci00057a005. DOI
James, C.A.: OpenSMILES specification (2021). http://opensmiles.org/opensmiles.html. Accessed 12 Apr 2021
Mohimani H, Gurevich A, Mikheenko A, Garg N, Nothias L-F, Ninomiya A, Takada K, Dorrestein PC, Pevzner PA. Dereplication of peptidic natural products through database search of mass spectra. Nat Chem Biol. 2017;13(1):30–37. doi: 10.1038/nchembio.2219. PubMed DOI PMC
Wang, M., et al.: GNPS (2021). https://gnps.ucsd.edu/. Accessed 12 Apr 2021
Mohimani H, Gurevich A, Shlemov A, Mikheenko A, Korobeynikov A, Cao L, Shcherbin E, Nothias L-F, Dorrestein PC, Pevzner PA. Dereplication of microbial metabolites through database search of mass spectra. Nat Commun. 2018;9(1):4035. doi: 10.1038/s41467-018-06082-8. PubMed DOI PMC
Gurevich A, Mikheenko A, Shlemov A, Korobeynikov A, Mohimani H, Pevzner PA. Increased diversity of peptidic natural products revealed by modification-tolerant database search of mass spectra. Nat Microbiol. 2018;3(3):319–327. doi: 10.1038/s41564-017-0094-2. PubMed DOI PMC
Ricart E, Pupin M, Müller M, Lisacek F. Automatic annotation and dereplication of tandem mass spectra of peptidic natural products. Anal Chem. 2020;92(24):15862–15871. doi: 10.1021/acs.analchem.0c03208. PubMed DOI
Caboche S, Pupin M, Leclere V, Fontaine A, Jacques P, Kucherov G. NORINE: a database of nonribosomal peptides. Nucleic Acids Res. 2008;36(suppl 1):326–331. doi: 10.1093/nar/gkm792. PubMed DOI PMC
Flissi A, Ricart E, Campart C, Chevalier M, Dufresne Y, Michalik J, Jacques P, Flahaut C, Lisacek F, Leclere V, Pupin M. Norine: update of the nonribosomal peptide resource. Nucleic Acids Res. 2019;48(D1):465–469. doi: 10.1093/nar/gkz1000. PubMed DOI PMC
Flissi A, Dufresne Y, Michalik J, Tonon L, Janot S, Noe L, Jacques P, Leclere V, Pupin M. Norine, the knowledgebase dedicated to non-ribosomal peptides, is now open to crowdsourcing. Nucleic Acids Res. 2016;44(D1):1113–1118. doi: 10.1093/nar/gkv1143. PubMed DOI PMC
Dufresne Y, Noe L, Leclere V, Pupin M. Smiles2Monomers: a link between chemical and biological structures for polymers. J Cheminformatics. 2015;7(1):62. doi: 10.1186/s13321-015-0111-5. PubMed DOI PMC
Ricart E, Leclere V, Flissi A, Mueller M, Pupin M, Lisacek F. RBAN: Retro-biosynthetic analysis of nonribosomal peptides. J Cheminformatics. 2019;11(1):13. doi: 10.1186/s13321-019-0335-x. PubMed DOI PMC
Novak, J.: CycloBranch (2021). https://ms.biomed.cas.cz/cyclobranch/. Accessed 12 Apr 2021
Novak, J.: CycloBranch on GitHub (2021). https://github.com/novak-jiri/cyclobranch/. Accessed 12 Apr 2021
Novak J, Skriba A, Havlicek V. CycloBranch 2: molecular formula annotations applied to imzml data sets in bimodal fusion and LC-MS data files. Anal Chem. 2020;92(10):6844–6849. doi: 10.1021/acs.analchem.0c00170. PubMed DOI
Behsaz B, Mohimani H, Gurevich A, Prjibelski A, Fisher M, Vargas F, Smarr L, Dorrestein PC, Mylne JS, Pevzner PA. De Novo peptide sequencing reveals many cyclopeptides in the human gut and other environments. Cell Syst. 2020;10(1):99–108. doi: 10.1016/j.cels.2019.11.007. PubMed DOI
Mohimani H, Pevzner PA. Dereplication, sequencing and identification of peptidic natural products: From genome mining to peptidogenomics to spectral networks. Nat Prod Rep. 2016;33(1):73–86. doi: 10.1039/c5np00050e. PubMed DOI PMC
Privratsky, J.: MassSpecBlocks: Database of Sequences and Building Blocks of Microbial Metabolites for Mass Spectra Analysis. Master’s Thesis, Czech Technical University in Prague, Faculty of Information Technology (2021). https://github.com/privrja/MassSpecBlocks/blob/main/text/MassSpecBlocks.pdf. Accessed 1 May 2021
Privratsky, J.: MassSpecBlocks on GitHub (2021). https://github.com/privrja/MassSpecBlocks. Accessed 12 Apr 2021
Facebook Inc.: React (2021). https://reactjs.org/. Accessed 12 Apr 2021
OpenJS Foundation: Node.js (2021). https://nodejs.org/. Accessed 12 Apr 2021
Kim S, Thiessen PA, Bolton EE, Bryant SH. PUG-SOAP and PUG-REST: web services for programmatic access to chemical information in PubChem. Nucleic Acids Res. 2015;43(W1):605–611. doi: 10.1093/nar/gkv396. PubMed DOI PMC
Royal Society of Chemistry: APIs (2021). https://developer.rsc.org/apis. Accessed 12 Apr 2021
Van Santen, J.A., et al.: NP Atlas API (2021). https://www.npatlas.org/api/v1/docs. Accessed 17 Jun 2021
EMBL EBI: ChEBI Web Services (2021). https://www.ebi.ac.uk/chebi/webServices.do. Accessed 12 Apr 2021
Probst D, Reymond J-L. SmilesDrawer: parsing and drawing SMILES-encoded molecular structures using client-side javascript. J Chem Inf Model. 2018;58(1):1–7. doi: 10.1021/acs.jcim.7b00425. PubMed DOI
Bienfait B, Ertl P. JSME: a free molecule editor in JavaScript. J Cheminformatics. 2013;5(1):24. doi: 10.1186/1758-2946-5-24. PubMed DOI PMC
Oracle Corporation and/or its affiliates: MySQL™ (2021). https://www.mysql.com/. Accessed 12 Apr 2021
Symfony SAS: Symfony™ (2021). https://symfony.com/. Accessed 12 Apr 2021
Privratsky, J.: MassSpecBlocks—REST API Documentation (2021). https://ms.biomed.cas.cz/msb-backend/public/index.php/rest/doc. Accessed 14 Jun 2021
Weininger D, Weininger A, Weininger JL. SMILES. 2. Algorithm for generation of unique SMILES notation. J Chem Inf Comput Sci. 1989;29(2):97–101. doi: 10.1021/ci00062a008. DOI
Pavlaskova K, Nedved J, Kuzma M, Zabka M, Sulc M, Sklenar J, Novak P, Benada O, Kofronova O, Hajduch M, Derrick PJ, Lemr K, Jegorov A, Havlicek V. Characterization of pseudacyclins A-E, a suite of cyclic peptides produced by Pseudallescheria boydii. J Nat Prod. 2010;73(6):1027–1032. doi: 10.1021/np900472c. PubMed DOI
Rácz A, Bajusz D, Héberger K. Life beyond the Tanimoto coefficient: Similarity measures for interaction fingerprints. J Cheminformatics. 2018 doi: 10.1186/s13321-018-0302-y. PubMed DOI PMC
Privratsky, J., Novak, J.: MassSpecBlocks - Video Tutorial (2021). https://ms.biomed.cas.cz/msb/msb-tutorial.mp4. Accessed 19 Jun 2021
Jegorov A, Paizs B, Zabka M, Kuzma M, Havlicek V, Giannakopulos AE, Derrick PJ. Profiling of cyclic hexadepsipeptides roseotoxins synthesized in vitro and in vivo: A combined tandem mass spectrometry and quantum chemical study. Eur J Mass Spectrom. 2003;9(2):105–116. doi: 10.1255/ejms.531. PubMed DOI
Pluhacek T, Skriba A, Novak J, Luptakova D, Havlicek V. Analysis of microbial siderophores by mass spectrometry. Methods Mol Biol. 2019;1996:131–153. doi: 10.1007/978-1-4939-9488-5_12. PubMed DOI