MassSpecBlocks: a web-based tool to create building blocks and sequences of nonribosomal peptides and polyketides for tandem mass spectra analysis

. 2021 Jul 07 ; 13 (1) : 51. [epub] 20210707

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34233741

Grantová podpora
21-17044S Grantová Agentura České Republiky

Odkazy

PubMed 34233741
PubMed Central PMC8265115
DOI 10.1186/s13321-021-00530-2
PII: 10.1186/s13321-021-00530-2
Knihovny.cz E-zdroje

Nonribosomal peptides and polyketides are natural products commonly synthesized by microorganisms. They are widely used in medicine, agriculture, environmental protection, and other fields. The structures of natural products are often analyzed by high-resolution tandem mass spectrometry, which becomes more popular with its increasing availability. However, the characterization of nonribosomal peptides and polyketides from tandem mass spectra is a nontrivial task because they are composed of many uncommon building blocks in addition to proteinogenic amino acids. Moreover, many of them have cyclic and branch-cyclic structures. Here, we introduce MassSpecBlocks - an open-source and web-based tool that converts the input chemical structures in SMILES format into sequences of building blocks. The structures can be searched in public databases PubChem, ChemSpider, ChEBI, NP Atlas, COCONUT, and Norine and edited in a user-friendly graphical interface. Although MassSpecBlocks can serve as a stand-alone database, our primary goal was to enable easy construction of custom sequence and building block databases, which can be used to annotate mass spectra in CycloBranch software. CycloBranch is an open-source, cross-platform, and stand-alone tool that we recently released for annotating spectra of linear, cyclic, branched, and branch-cyclic nonribosomal peptides and polyketide siderophores. The sequences and building blocks created in MassSpecBlocks can be easily exported into a plain text format used by CycloBranch. MassSpecBlocks is available online or can be installed entirely offline. It offers a REST API to cooperate with other tools.

Zobrazit více v PubMed

Strieker M, Tanovic A, Marahiel MA. Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol. 2010;20(2):234–240. doi: 10.1016/j.sbi.2010.01.009. PubMed DOI

Pluhacek T, Lemr K, Ghosh D, Milde D, Novak J, Havlicek V. Characterization of microbial siderophores by mass spectrometry. Mass Spectrom Rev. 2016;35(1):35–47. doi: 10.1002/mas.21461. PubMed DOI

Hider RC, Kong X. Chemistry and biology of siderophores. Nat Prod Rep. 2010;27(5):637–657. doi: 10.1039/b906679a. PubMed DOI

Luptakova D, Pluhacek T, Petrik M, Novak J, Palyzova A, Sokolova L, Skriba A, Sediva B, Lemr K, Havlicek V. Non-invasive and invasive diagnoses of aspergillosis in a rat model by mass spectrometry. Sci Rep. 2017;7(1):16523. doi: 10.1038/s41598-017-16648-z. PubMed DOI PMC

Dobias R, Havlicek V. Microbial siderophores: markers of infectious diseases. In: Das S, Dash HR, editors. Microbial and natural macromolecules. UK: Academic Press; 2021. pp. 57–72.

Novak J, Lemr K, Schug KA, Havlicek V. CycloBranch: De Novo sequencing of nonribosomal peptides from accurate product ion mass spectra. J Am Soc Mass Spectrom. 2015;26(10):1780–1786. doi: 10.1007/s13361-015-1211-1. PubMed DOI

Novak J, Sokolova L, Lemr K, Pluhacek T, Palyzova A, Havlicek V. Batch-processing of imaging or liquid-chromatography mass spectrometry datasets and De Novo sequencing of polyketide siderophores. BBA Proteins Proteom. 2017;1865(7):768–775. doi: 10.1016/j.bbapap.2016.12.003. PubMed DOI

Prichystal J, Schug KA, Lemr K, Novak J, Havlicek V. Structural analysis of natural products. Anal Chem. 2016;88(21):10338–10346. doi: 10.1021/acs.analchem.6b02386. PubMed DOI

Paizs B, Suhai S. Fragmentation pathways of protonated peptides. Mass Spectrom Rev. 2005;24(4):508–548. doi: 10.1002/mas.20024. PubMed DOI

Van Santen, J.A., Jacob, G., Singh, A.L., Aniebok, V., Balunas, M.J., Bunsko, D., Neto, F.C., Castaño-Espriu, L., Chang, C., Clark, T.N., Cleary Little, J.L., Delgadillo, D.A., Dorrestein, P.C., Duncan, K.R., Egan, J.M., Galey, M.M., Haeckl, F.P.J., Hua, A., Hughes, A.H., Iskakova, D., Khadilkar, A., Lee, J.-H., Lee, S., Legrow, N., Liu, D.Y., Macho, J.M., McCaughey, C.S., Medema, M.H., Neupane, R.P., O’Donnell, T.J., Paula, J.S., Sanchez, L.M., Shaikh, A.F., Soldatou, S., Terlouw, B.R., Tran, T.A., Valentine, M., Van Der Hooft, J.J.J., Vo, D.A., Wang, M., Wilson, D., Zink, K.E., Linington, R.G.: The natural products atlas: an open access knowledge base for microbial natural products discovery. ACS Central Sci. 5(11), 1824–1833 (2019). 10.1021/acscentsci.9b00806 PubMed PMC

Sorokina M, Merseburger P, Rajan K, Yirik MA, Steinbeck C. COCONUT online: collection of open natural products database. J Cheminformatics. 2021;13(1):2. doi: 10.1186/s13321-020-00478-9. PubMed DOI PMC

Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2018;47(D1):1102–1109. doi: 10.1093/nar/gky1033. PubMed DOI PMC

Royal Society of Chemistry: ChemSpider (2021). https://www.chemspider.com/. Accessed 12 Apr 2021

Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. ChEBI in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res. 2016;44(D1):1214–1219. doi: 10.1093/nar/gkv1031. PubMed DOI PMC

Ibrahim A, Yang L, Johnston C, Liu X, Ma B, Magarvey NA. Dereplicating nonribosomal peptides using an informatic search algorithm for natural products (iSNAP) discovery. Proc Natl Acad Sci U S A. 2012;109(47):19196–19201. doi: 10.1073/pnas.1206376109. PubMed DOI PMC

Ibrahim, A., et al.: iSNAP Analogue Search (2021). https://magarveylab.ca/analogue/. Accessed 12 Apr 2021

Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci. 1988;28(1):31–36. doi: 10.1021/ci00057a005. DOI

James, C.A.: OpenSMILES specification (2021). http://opensmiles.org/opensmiles.html. Accessed 12 Apr 2021

Mohimani H, Gurevich A, Mikheenko A, Garg N, Nothias L-F, Ninomiya A, Takada K, Dorrestein PC, Pevzner PA. Dereplication of peptidic natural products through database search of mass spectra. Nat Chem Biol. 2017;13(1):30–37. doi: 10.1038/nchembio.2219. PubMed DOI PMC

Wang, M., et al.: GNPS (2021). https://gnps.ucsd.edu/. Accessed 12 Apr 2021

Mohimani H, Gurevich A, Shlemov A, Mikheenko A, Korobeynikov A, Cao L, Shcherbin E, Nothias L-F, Dorrestein PC, Pevzner PA. Dereplication of microbial metabolites through database search of mass spectra. Nat Commun. 2018;9(1):4035. doi: 10.1038/s41467-018-06082-8. PubMed DOI PMC

Gurevich A, Mikheenko A, Shlemov A, Korobeynikov A, Mohimani H, Pevzner PA. Increased diversity of peptidic natural products revealed by modification-tolerant database search of mass spectra. Nat Microbiol. 2018;3(3):319–327. doi: 10.1038/s41564-017-0094-2. PubMed DOI PMC

Ricart E, Pupin M, Müller M, Lisacek F. Automatic annotation and dereplication of tandem mass spectra of peptidic natural products. Anal Chem. 2020;92(24):15862–15871. doi: 10.1021/acs.analchem.0c03208. PubMed DOI

Caboche S, Pupin M, Leclere V, Fontaine A, Jacques P, Kucherov G. NORINE: a database of nonribosomal peptides. Nucleic Acids Res. 2008;36(suppl 1):326–331. doi: 10.1093/nar/gkm792. PubMed DOI PMC

Flissi A, Ricart E, Campart C, Chevalier M, Dufresne Y, Michalik J, Jacques P, Flahaut C, Lisacek F, Leclere V, Pupin M. Norine: update of the nonribosomal peptide resource. Nucleic Acids Res. 2019;48(D1):465–469. doi: 10.1093/nar/gkz1000. PubMed DOI PMC

Flissi A, Dufresne Y, Michalik J, Tonon L, Janot S, Noe L, Jacques P, Leclere V, Pupin M. Norine, the knowledgebase dedicated to non-ribosomal peptides, is now open to crowdsourcing. Nucleic Acids Res. 2016;44(D1):1113–1118. doi: 10.1093/nar/gkv1143. PubMed DOI PMC

Dufresne Y, Noe L, Leclere V, Pupin M. Smiles2Monomers: a link between chemical and biological structures for polymers. J Cheminformatics. 2015;7(1):62. doi: 10.1186/s13321-015-0111-5. PubMed DOI PMC

Ricart E, Leclere V, Flissi A, Mueller M, Pupin M, Lisacek F. RBAN: Retro-biosynthetic analysis of nonribosomal peptides. J Cheminformatics. 2019;11(1):13. doi: 10.1186/s13321-019-0335-x. PubMed DOI PMC

Novak, J.: CycloBranch (2021). https://ms.biomed.cas.cz/cyclobranch/. Accessed 12 Apr 2021

Novak, J.: CycloBranch on GitHub (2021). https://github.com/novak-jiri/cyclobranch/. Accessed 12 Apr 2021

Novak J, Skriba A, Havlicek V. CycloBranch 2: molecular formula annotations applied to imzml data sets in bimodal fusion and LC-MS data files. Anal Chem. 2020;92(10):6844–6849. doi: 10.1021/acs.analchem.0c00170. PubMed DOI

Behsaz B, Mohimani H, Gurevich A, Prjibelski A, Fisher M, Vargas F, Smarr L, Dorrestein PC, Mylne JS, Pevzner PA. De Novo peptide sequencing reveals many cyclopeptides in the human gut and other environments. Cell Syst. 2020;10(1):99–108. doi: 10.1016/j.cels.2019.11.007. PubMed DOI

Mohimani H, Pevzner PA. Dereplication, sequencing and identification of peptidic natural products: From genome mining to peptidogenomics to spectral networks. Nat Prod Rep. 2016;33(1):73–86. doi: 10.1039/c5np00050e. PubMed DOI PMC

Privratsky, J.: MassSpecBlocks: Database of Sequences and Building Blocks of Microbial Metabolites for Mass Spectra Analysis. Master’s Thesis, Czech Technical University in Prague, Faculty of Information Technology (2021). https://github.com/privrja/MassSpecBlocks/blob/main/text/MassSpecBlocks.pdf. Accessed 1 May 2021

Privratsky, J.: MassSpecBlocks on GitHub (2021). https://github.com/privrja/MassSpecBlocks. Accessed 12 Apr 2021

Facebook Inc.: React (2021). https://reactjs.org/. Accessed 12 Apr 2021

OpenJS Foundation: Node.js (2021). https://nodejs.org/. Accessed 12 Apr 2021

Kim S, Thiessen PA, Bolton EE, Bryant SH. PUG-SOAP and PUG-REST: web services for programmatic access to chemical information in PubChem. Nucleic Acids Res. 2015;43(W1):605–611. doi: 10.1093/nar/gkv396. PubMed DOI PMC

Royal Society of Chemistry: APIs (2021). https://developer.rsc.org/apis. Accessed 12 Apr 2021

Van Santen, J.A., et al.: NP Atlas API (2021). https://www.npatlas.org/api/v1/docs. Accessed 17 Jun 2021

EMBL EBI: ChEBI Web Services (2021). https://www.ebi.ac.uk/chebi/webServices.do. Accessed 12 Apr 2021

Probst D, Reymond J-L. SmilesDrawer: parsing and drawing SMILES-encoded molecular structures using client-side javascript. J Chem Inf Model. 2018;58(1):1–7. doi: 10.1021/acs.jcim.7b00425. PubMed DOI

Bienfait B, Ertl P. JSME: a free molecule editor in JavaScript. J Cheminformatics. 2013;5(1):24. doi: 10.1186/1758-2946-5-24. PubMed DOI PMC

Oracle Corporation and/or its affiliates: MySQL™ (2021). https://www.mysql.com/. Accessed 12 Apr 2021

Symfony SAS: Symfony™ (2021). https://symfony.com/. Accessed 12 Apr 2021

Privratsky, J.: MassSpecBlocks—REST API Documentation (2021). https://ms.biomed.cas.cz/msb-backend/public/index.php/rest/doc. Accessed 14 Jun 2021

Weininger D, Weininger A, Weininger JL. SMILES. 2. Algorithm for generation of unique SMILES notation. J Chem Inf Comput Sci. 1989;29(2):97–101. doi: 10.1021/ci00062a008. DOI

Pavlaskova K, Nedved J, Kuzma M, Zabka M, Sulc M, Sklenar J, Novak P, Benada O, Kofronova O, Hajduch M, Derrick PJ, Lemr K, Jegorov A, Havlicek V. Characterization of pseudacyclins A-E, a suite of cyclic peptides produced by Pseudallescheria boydii. J Nat Prod. 2010;73(6):1027–1032. doi: 10.1021/np900472c. PubMed DOI

Rácz A, Bajusz D, Héberger K. Life beyond the Tanimoto coefficient: Similarity measures for interaction fingerprints. J Cheminformatics. 2018 doi: 10.1186/s13321-018-0302-y. PubMed DOI PMC

Privratsky, J., Novak, J.: MassSpecBlocks - Video Tutorial (2021). https://ms.biomed.cas.cz/msb/msb-tutorial.mp4. Accessed 19 Jun 2021

Jegorov A, Paizs B, Zabka M, Kuzma M, Havlicek V, Giannakopulos AE, Derrick PJ. Profiling of cyclic hexadepsipeptides roseotoxins synthesized in vitro and in vivo: A combined tandem mass spectrometry and quantum chemical study. Eur J Mass Spectrom. 2003;9(2):105–116. doi: 10.1255/ejms.531. PubMed DOI

Pluhacek T, Skriba A, Novak J, Luptakova D, Havlicek V. Analysis of microbial siderophores by mass spectrometry. Methods Mol Biol. 2019;1996:131–153. doi: 10.1007/978-1-4939-9488-5_12. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...