Comparative Digital Gene Expression Analysis of Tissue-Cultured Plantlets of Highly Resistant and Susceptible Banana Cultivarsin Response to Fusarium oxysporum
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29364855
PubMed Central
PMC5855572
DOI
10.3390/ijms19020350
PII: ijms19020350
Knihovny.cz E-zdroje
- Klíčová slova
- DGE, GO annotation, KEGG pathways, Venn diagram, banana Fusarium wilt, resistance genes,
- MeSH
- anotace sekvence MeSH
- banánovník genetika mikrobiologie MeSH
- fluorescenční protilátková technika MeSH
- Fusarium * MeSH
- genová ontologie MeSH
- kořeny rostlin genetika MeSH
- náchylnost k nemoci MeSH
- nemoci rostlin genetika mikrobiologie MeSH
- odolnost vůči nemocem MeSH
- polymerázová řetězová reakce MeSH
- regulace genové exprese u rostlin * MeSH
- stanovení celkové genové exprese MeSH
- transkriptom * MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is one of the most destructive soil-borne diseases. In this study, young tissue-cultured plantlets of banana (Musa spp. AAA) cultivars differing in Foc susceptibility were used to reveal their differential responses to this pathogen using digital gene expression (DGE). Data were evaluated by various bioinformatic tools (Venn diagrams, gene ontology (GO) annotation and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses) and immunofluorescence labelling method to support the identification of gene candidates determining the resistance of banana against Foc. Interestingly, we have identified MaWRKY50 as an important gene involved in both constitutive and induced resistance. We also identified new genes involved in the resistance of banana to Foc, including several other transcription factors (TFs), pathogenesis-related (PR) genes and some genes related to the plant cell wall biosynthesis or degradation (e.g., pectinesterases, β-glucosidases, xyloglucan endotransglucosylase/hydrolase and endoglucanase). The resistant banana cultivar shows activation of PR-3 and PR-4 genes as well as formation of different constitutive cell barriers to restrict spreading of the pathogen. These data suggest new mechanisms of banana resistance to Foc.
College of Horticulture South China Agricultural University Guangzhou 510642 China
Institute of Biotechnology Guangxi Academy of Agricultural Sciences Nanning 530007 China
Zobrazit více v PubMed
FAOSTAT. [(accessed on 20 January 2018)]; Available online: http://www.fao.org/faostat/en/#data/QC/visualize.
Hwang S.C., Ko W.H. Cavendish banana cultivars resistant to Fusarium wilt acquired through somaclonal variation in Taiwan. Plant Dis. 2004;88:580–588. doi: 10.1094/PDIS.2004.88.6.580. PubMed DOI
Ploetz R.C. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology. 2006;96:653–656. doi: 10.1094/PHYTO-96-0653. PubMed DOI
Pegg K.G., Moore N.Y., Bentiey S. Fusarium wilt of banana in Australia: A review. Aust. J. Agric. Res. 1996;47:637–650. doi: 10.1071/AR9960637. DOI
Swarupa V., Ravishankar K.V., Rekha A. Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana. Planta. 2014;239:735–751. doi: 10.1007/s00425-013-2024-8. PubMed DOI
Li C.Y., Chen S., Zuo C.W., Sun Q.M., Ye Q., Yi G.J., Huang B.H. The use of GFP-transformed isolates to study infection of banana with Fusarium oxysporum f. sp. cubense race 4. Eur. J. Plant Pathol. 2011;131:327–340. doi: 10.1007/s10658-011-9811-5. DOI
Ma L., Jiang S., Lin G., Cai J., Ye X., Chen H., Li M., Li H., Takác T., Samaj J., et al. Wound-induced pectin methylesterases enhance banana (Musa spp. AAA) susceptibility to Fusarium oxysporum f. sp. cubense. J. Exp. Bot. 2013;64:2219–2229. doi: 10.1093/jxb/ert088. PubMed DOI PMC
Wu Y.L., Fan W., Li X., Chen H.B., Takac T., Samajova O., Fabrice M.R., Xie L., Ma J., Samaj J., et al. Expression and distribution of extensins and AGPs in susceptible and resistant banana cultivars in response to wounding and Fusarium oxysporum. Sci. Rep. 2017;7:42400. doi: 10.1038/srep42400. PubMed DOI PMC
Wu Y., Yi G., Peng X., Huang B., Liu E., Zhang J. Systemic acquired resistance in Cavendish banana induced by infection with an incompatible strain of Fusarium oxysporum f. sp. cubense. J. Plant Physiol. 2013;170:1039–1046. doi: 10.1016/j.jplph.2013.02.011. PubMed DOI
Mahdavi F., Sariah M., Maziah M. Expression of rice thaumatin-like protein gene in transgenic banana plants enhances resistance to Fusarium wilt. Appl. Biochem. Biotechnol. 2012;166:1008–1019. doi: 10.1007/s12010-011-9489-3. PubMed DOI
Endah R., Beyene G., Kiggundu A., van den Berg N., Schlüter U., Kunert K., Chikwamba R. Elicitor and Fusarium-induced expression of NPR1-like genes in banana. Plant Physiol. Biochem. 2008;46:1007–1014. doi: 10.1016/j.plaphy.2008.06.007. PubMed DOI
Luo J.Y., Pan X.L., Peng T.C., Chen Y.Y., Zhao H., Mu L., Peng Y., He R., Tang H. DNA methylation patterns of banana leaves in response to Fusarium oxysporum f. sp. cubense tropical race 4. J. Integr. Agric. 2016;15:2736–2744. doi: 10.1016/S2095-3119(16)61495-8. DOI
Guo Y., Qiu C.S., Long S.H., Chen P., Hao D.M., Preisner M., Wang H., Wang Y.F. Digital gene expression profiling of flax (Linumusitatissimum L.) stem peel identifies genes enriched in fiber-bearing phloem tissue. Gene. 2017;626:32–40. doi: 10.1016/j.gene.2017.05.002. PubMed DOI
Li Q.Q., Niu Z.B., Bao Y.G., Tian Q.J., Wang H.G., Kong L.R., Feng D.S. Transcriptome analysis of genes related to resistance against powdery mildew in wheat-Thinopyrum alien addition disomic line germplasm SN6306. Gene. 2016;590:5–17. doi: 10.1016/j.gene.2016.06.005. PubMed DOI
Cao K., Li H.Y., Wang Q., Zhao P., Zhu G.Y., Fang W.C., Chen C.W., Wang X.W., Wang L. Comparative transcriptome analysis of genes involved in the response of resistant and susceptible peach cultivars to nematode infection. Sci. Hortic. 2017;215:20–27. doi: 10.1016/j.scienta.2016.11.054. DOI
Wang Z., Zhang J.B., Jia C.H., Liu J.H., Li Y.Q., Yin X.M., Xu B.Y., Jin Z.Q. De novo characterization of the banana root transcriptome and analysis of gene expression under Fusarium oxysporum f. sp. cubense tropical race 4 infection. BMC Genom. 2012;13:65 PubMed PMC
Li C., Shao J., Wang Y., Li W., Guo D., Yan B., Xia Y., Peng M. Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. cubense. BMC Genom. 2013;14:851. doi: 10.1186/1471-2164-14-851. PubMed DOI PMC
Li C.Y., Deng G.M., Yang J., Viljoen A., Jin Y., Kuang R.B., Zuo C.W., Lv Z.C., Yang Q.S., Sheng O., et al. Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genom. 2012;13:374 PubMed PMC
Bai T.T., Xie W.B., Zhou P.P., Wu Z.L., Xiao W.C., Zhou L., Sun J., Ruan X.L., Li H.P., Zhang Z.G. Transcriptome and expression profile analysis of highly resistant and susceptible banana roots challenged with Fusarium oxysporum f. sp. cubense tropical race 4. PLoS ONE. 2013;8:e73945. doi: 10.1371/journal.pone.0073945. PubMed DOI PMC
D’Hont A., Denoeud F., Aury J.M., Baurens F.C., Carreel F., Garsmeur O., Noei B., Bocs S., Droc G., Rouard M., et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature. 2012;488:213–217. doi: 10.1038/nature11241. PubMed DOI
Smith M.K., Whiley A.W., Searle C., Langdon P.W., Schaffer B., Pegg K.G. Micropropagated bananas are more susceptible to Fusarium wilt than plants grown from conventional material. Aust. J. Agric. Res. 1998;49:1133–1139.
Afzal A.Z., Wood A.J., Lightfoot D.A. Plant receptor-like serine threonine kinases: Roles in signaling and plant defense. Mol. Plant Microbe Interact. 2008;21:507–517. doi: 10.1094/MPMI-21-5-0507. PubMed DOI
Mendy B., Wang’ombe M.W., Radakovic Z.S., Holbein J., Ilyas M., Chopra D., Holton N., Zipfel C., Grundler F.M., Siddique S. Arabidopsis leucine-rich repeat receptor-like kinase NILR1 is required for induction of innate immunity to parasitic nematodes. PLoS Pathog. 2017;13:e1006284. doi: 10.1371/journal.ppat.1006284. PubMed DOI PMC
Borassi C., Sede A.R., Mecchia M.A., Salgado Salter J.D., Marzol E., Muschietti J.P., Estevez J.M. An update on cell surface proteins containing extensin-motifs. J. Exp. Bot. 2016;67:477–487. doi: 10.1093/jxb/erv455. PubMed DOI
Jin J.H., Zhang H.X., Tan J.Y., Yan M.J., Li D.W., Khan A., Dong Z.H. A new ethylene-responsive factor CAPTI1 gene of pepper (Capsicum annuum L.) involved in the regulation of defense response to Phytophthora capsici. Front. Plant Sci. 2016;6:1217. doi: 10.3389/fpls.2015.01217. PubMed DOI PMC
Liu L.J., Sonbol F.M., Huot B., Gu Y.N., Withers J., Mwimba M., Yao J., He S.Y., Dong X. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathways to promote effector-triggered immunity. Nat. Commun. 2016;7:13099. doi: 10.1038/ncomms13099. PubMed DOI PMC
Feng H., Duan X., Zhang Q., Li X., Wang B., Huang L., Wang X., Kang Z. The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Mol. Plant Pathol. 2014;15:284–296. doi: 10.1111/mpp.12089. PubMed DOI PMC
Chen N., Wu S., Fu J., Cao B., Lei J., Chen C., Jiang J. Overexpression of the eggplant (Solanummelongena) NAC family transcription factor SmNAC suppresses resistance to bacterial wilt. Sci. Rep. 2016;6:31568. doi: 10.1038/srep31568. PubMed DOI PMC
Pandey S.P., Somssich I.E. The role of WRKY transcription factors in plant immunity. Plant Physiol. 2009;150:1648–1655. doi: 10.1104/pp.109.138990. PubMed DOI PMC
Gao Q.M., Venugopal S., Navarre D., Kachroo A. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiol. 2011;155:464–476. doi: 10.1104/pp.110.166876. PubMed DOI PMC
Thatcher L.F., Powell J.J., Aieken E.A., Kazan K., Manners J.M. The lateral organ boundaries domain transcription factor LBD20 functions in Fusarium wilt susceptibility and jasmonate signaling in Arabidopsis. Plant Physiol. 2012;160:407–418. doi: 10.1104/pp.112.199067. PubMed DOI PMC
Shahnejat-Bushehri S., Nobmann B., Devi Allu A., Balazadeh S. JUB1 suppresses Pseudomonas syringae-induced defense responses through accumulation of DELLA proteins. Plant Signal. Behav. 2016;11:e1181245. doi: 10.1080/15592324.2016.1181245. PubMed DOI PMC
Di X.T., Gomila J., Takken F.L.W. Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum. Mol. Plant Pathol. 2017;18:1024–1035. doi: 10.1111/mpp.12559. PubMed DOI PMC
Yang L., Shi C., Mu X.Y., Liu C., Shi K., Zhu W.J., Yang Q. Cloning and expression of a wild eggplant cytochrome P450 gene, StoCYP77A2, involved in plant resistance to Verticillium dahliae. Plant Biotechnol. Rep. 2015;9:167–177. doi: 10.1007/s11816-015-0355-6. DOI
Sels J., Mathys J., DeConinck B.M., Cammue B.P., DeBolle M.F. Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiol. Biochem. 2008;46:941–950. doi: 10.1016/j.plaphy.2008.06.011. PubMed DOI
Farrokhi N., Burton R.A., Brownfield L., Hrmova M., Wilson S.M., Bacic A., Fincher G.B. Plant cell wall biosynthesis: Genetic, biochemical and functional genomics approaches to the identification of key genes. Plant Biotechnol. J. 2006;4:145–167. doi: 10.1111/j.1467-7652.2005.00169.x. PubMed DOI
Pusztahelyi T., Holb I.J., Pócsi I. Secondary metabolites in fungus-plant interactions. Front. Plant Sci. 2015;6:573. doi: 10.3389/fpls.2015.00573. PubMed DOI PMC
Bhattacharya A., Khanale V., Char B. Plant circadian rhythm in stress signaling. Ind. J. Plant Physiol. 2017;22:147–155. doi: 10.1007/s40502-017-0299-7. DOI
Wang W., Barnaby J.Y., Tada Y., Li H., Tör M., Caldelari D., Lee D.U., Fu X.D., Dong X. Timing of plant immune responses by a central circadian regulator. Nature. 2011;470:110–114. doi: 10.1038/nature09766. PubMed DOI PMC
Fan G., Dong Y., Deng M., Zhao Z., Niu S., Xu E. Plant-pathogen interaction, circadian rhythm, and hormone-related gene expression provide indicators of phytoplasma infection in Paulownia fortunei. Int. J. Mol. Sci. 2014;15:23141–23162. doi: 10.3390/ijms151223141. PubMed DOI PMC
Seifi H., De Vleesschauwer D., Aziz A., Höfte M. Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: The immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction. Plant Signal. Behav. 2014;9:e27995. doi: 10.4161/psb.27995. PubMed DOI PMC
Brauc S., De Vooght E., Claeys M., Höfte M., Angenon G. Influence of over-expression of cytosolic aspartate amino transferase on amino acid metabolism and defence responses against Botrytis cinerea infection in Arabidopsis thaliana. J. Plant Physiol. 2011;168:1813–1819. doi: 10.1016/j.jplph.2011.05.012. PubMed DOI
Chen H.B., Feng Q.R., Xu C.X., He R.X., Li J.G., Wang Z.H. Screening of banana clones for resistance to Fusarium wilt (Fusarium oxysporum f. sp. cubense) J. South China Agric. Univ. 2006;27:9–12.
Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI
Xu C.X., Takáč T., Burbach C., Menzel D., Šamaj J. Developmental localization and the role of hydroxyproline rich glycoproteins during somatic embryogenesis of banana (Musa spp. AAA) BMC Plant Biol. 2011;11:38. doi: 10.1186/1471-2229-11-38. PubMed DOI PMC
Vitha S., Baluška F., Braun M., Šamaj J., Volkmann D., Barlow P.W. Comparison of cryofixation and aldehyde fixation for plant actin immunocytochemistry: Aldehydes do not destroy F-actin. Histochem. J. 2000;32:457–466. doi: 10.1023/A:1004171431449. PubMed DOI
Marcus S.E., Verhertbruggen Y., Hervé C., Ordaz-Ortiz J.J., Farkas V., Pedersen H.L., Willats W.G.T., Knox J.P. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol. 2008;8:60. doi: 10.1186/1471-2229-8-60. PubMed DOI PMC
Götz S., García-Gómez J.M., Terol J., Williams T.D., Nagaraj S.H., Nueda M.J., Robles M., Talón M., Dopazo J., Conesa A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36:3420–3435. doi: 10.1093/nar/gkn176. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 [Delta] [Delta] CT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Audic S., Claverie J.M. The significance of digital gene expression profiles. Genome Res. 1997;7:986–995. doi: 10.1101/gr.7.10.986. PubMed DOI
Dale J., James A., Paul J.Y., Khanna H., Smith M., Peraza-Echeverria S., Garcia-Bastidas F., Kema G., Waterhouse P., Mengersen K., et al. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat. Commun. 2017;8:1496. doi: 10.1038/s41467-017-01670-6. PubMed DOI PMC