Genome-Wide Identification of Banana Csl Gene Family and Their Different Responses to Low Temperature between Chilling-Sensitive and Tolerant Cultivars
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2018YFD1000300
National Key Research and Development Program of China
2018B020202005
Key Research and Development Program of Guangdong Province for Modern Plant Breeding
2020KJ109
Guangdong Province Special Fund for Modern Agriculture Industry Technology Innovation Teams
CARS-31-04
Earmarked Fund for Modern Agro-industry Technology Research System
CZ.02.1.01/0.0/16_019/0000827
European Regional Development Fund (ERDF) for the project "Plants as a tool for sustainable development"
PubMed
33435621
PubMed Central
PMC7827608
DOI
10.3390/plants10010122
PII: plants10010122
Knihovny.cz E-zdroje
- Klíčová slova
- banana (Musa spp.), cellulose synthase-like genes, genome-wide identification, hemicellulose, low temperature stress,
- Publikační typ
- časopisecké články MeSH
The cell wall plays an important role in responses to various stresses. The cellulose synthase-like gene (Csl) family has been reported to be involved in the biosynthesis of the hemicellulose backbone. However, little information is available on their involvement in plant tolerance to low-temperature (LT) stress. In this study, a total of 42 Csls were identified in Musa acuminata and clustered into six subfamilies (CslA, CslC, CslD, CslE, CslG, and CslH) according to phylogenetic relationships. The genomic features of MaCsl genes were characterized to identify gene structures, conserved motifs and the distribution among chromosomes. A phylogenetic tree was constructed to show the diversity in these genes. Different changes in hemicellulose content between chilling-tolerant and chilling-sensitive banana cultivars under LT were observed, suggesting that certain types of hemicellulose are involved in LT stress tolerance in banana. Thus, the expression patterns of MaCsl genes in both cultivars after LT treatment were investigated by RNA sequencing (RNA-Seq) technique followed by quantitative real-time PCR (qPCR) validation. The results indicated that MaCslA4/12, MaCslD4 and MaCslE2 are promising candidates determining the chilling tolerance of banana. Our results provide the first genome-wide characterization of the MaCsls in banana, and open the door for further functional studies.
Institute of Biotechnology Guangxi Academy of Agricultural Sciences Nanning 530007 China
Institute of Fruit Tree Research Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
Zobrazit více v PubMed
Hu H., Zhang R., Dong S., Li Y., Fan C., Wang Y., Xia T., Chen P., Wang L., Feng S., et al. AtCslD3 and GtCslD3 mediate root growth and cell elongation downstream of the ethylene response pathway in Arabidopsis. J. Exp. Bot. 2018;69:1065–1080. doi: 10.1093/jxb/erx470. PubMed DOI PMC
Hunter C.T., Kirienko D.H., Sylvester A.W., Peter G.F., McCarty D.R., Koch K.E. Cellulose synthase-like D1 is integral to normal cell division, expansion, and leaf development in maize. Plant Physiol. 2012;158:708–724. doi: 10.1104/pp.111.188466. PubMed DOI PMC
Hyles J., Vautrin S., Pettolino F., MacMillan C., Stachurski Z., Breen J., Berges H., Wicker T., Spielmeyer W. Repeat-length variation in a wheat cellulose synthase-like gene is associated with altered tiller number and stem cell wall composition. J. Exp. Bot. 2017;68:1519–1529. doi: 10.1093/jxb/erx051. PubMed DOI PMC
Li N., Han X., Xu S., Li C., Wei X., Liu Y., Zhang R., Tang X., Zhou J., Huang Z. Glycoside hydrolase family 39 #-xylosidase of sphingomonas showing salt/ethanol/trypsin tolerance, low-pH/low-temperature activity, and transxylosylation activity. J. Agric. Food Chem. 2018;66:9465–9472. doi: 10.1021/acs.jafc.8b03327. PubMed DOI
Yu L., Shi D., Li J., Kong Y., Yu Y., Chai G., Hu R., Wang J., Hahn M.G., Zhou G. Cellulose synthase-like A2, a glucomannan synthase, is involved in maintaining adherent mucilage structure in Arabidopsis seed. Plant Physiol. 2014;164:1842–1856. doi: 10.1104/pp.114.236596. PubMed DOI PMC
Peng X., Pang H., Abbas M., Yan X., Dai X., Li Y., Li Q. Characterization of cellulose synthase-like D (CslD) family revealed the involvement of PtrCslD5 in root hair formation in Populus trichocarpa. Sci. Rep. 2019;9 doi: 10.1038/s41598-018-36529-3. PubMed DOI PMC
Ma L., Jiang S., Lin G., Cai J., Ye X., Chen H., Li M., Li H., Takáč T., Šamaj J., et al. Wound-induced pectin methylesterases enhance banana (Musa spp. AAA) susceptibility to Fusarium oxysporum f. sp. cubense. J. Exp. Bot. 2013;64:2219–2229. doi: 10.1093/jxb/ert088. PubMed DOI PMC
Niu Y., Hu B., Li X., Chen H., Takáč T., Šamaj J., Xu C. Comparative digital gene expression analysis of tissue-cultured plantlets of highly resistant and susceptible banana cultivars in response to Fusarium oxysporum. Int. J. Mol. Sci. 2018;19:350. doi: 10.3390/ijms19020350. PubMed DOI PMC
Yan Y., Takáč T., Li X., Chen H., Wang Y., Xu E., Xie L., Su Z., Šamaj J., Xu C. Variable content and distribution of arabinogalactan proteins in banana (Musa spp.) under low temperature stress. Front. Plant Sci. 2015;6 doi: 10.3389/fpls.2015.00353. PubMed DOI PMC
Meng J., Hu B., Yi G., Li X., Chen H., Wang Y., Yuan W., Xing Y., Sheng Q., Su Z., et al. Genome-wide analyses of banana fasciclin-like AGP genes and their differential expression under low-temperature stress in chilling sensitive and tolerant cultivars. Plant Cell Rep. 2020;39:693–708. doi: 10.1007/s00299-020-02524-0. PubMed DOI
Richmond T.A., Somerville C.R. The cellulose synthase superfamily. Plant Physiol. 2000;124:495–498. doi: 10.1104/pp.124.2.495. PubMed DOI PMC
Lombard V., Golaconda Ramulu H., Drula E., Coutinho P.M., Henrissat B. The carbohydrate-active enzymes database (CAZy) Nucleic Acids Res. 2014;42:D490–D495. doi: 10.1093/nar/gkt1178. PubMed DOI PMC
Hazen S.P., Scott-Craig J.S., Walton J.D. Cellulose synthase-like genes of rice. Plant Physiol. 2002;128:336–340. doi: 10.1104/pp.010875. PubMed DOI PMC
Farrokhi N., Burton R.A., Brownfield L., Hrmova M., Wilson S.M., Bacic A., Fincher G.B. Plant cell wall biosynthesis: Genetic, biochemical and functional genomics approaches to the identification of key genes. Plant Biotechnol. J. 2006;4:145–167. doi: 10.1111/j.1467-7652.2005.00169.x. PubMed DOI
Little A., Schwerdt J.G., Shirley N.J., Khor S.F., Neumann K., O’ Donovan L.A., Lahnstein J., Collins H.M., Henderson M., Fincher G.B., et al. Revised phylogeny of the cellulose synthase gene superfamily: Insights into cell wall evolution. Plant Physiol. 2018;177:1124–1141. doi: 10.1104/pp.17.01718. PubMed DOI PMC
Dhugga K.S., Barreiro R., Whitten B., Stecca K., Hazebroek J., Randhawa G.S., Dolan M., Kinney A.J., Tomes D., Nichols S., et al. Guar seed β-mannan synthase is a member of the cellulose synthase super gene family. Science. 2004;303:363–366. doi: 10.1126/science.1090908. PubMed DOI
Goubet F., Barton C.J., Mortimer J.C., Yu X., Zhang Z., Miles G.P., Richens J., Liepman A.H., Seffen K., Dupree P. Cell wall glucomannan in Arabidopsis is synthesised by CslA glycosyltransferases, and influences the progression of embryogenesis. Plant J. 2009;60:527–538. doi: 10.1111/j.1365-313X.2009.03977.x. PubMed DOI
Liepman A.H., Wilkerson C.G., Keegstra K. Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc. Natl. Acad. Sci. USA. 2005;102:2221–2226. doi: 10.1073/pnas.0409179102. PubMed DOI PMC
He C., Zhang J., Liu X., Zeng S., Wu K., Yu Z., Wang X., Teixeira da Silva J.A., Lin Z., Duan J. Identification of genes involved in biosynthesis of mannan polysaccharides in Dendrobium officinale by RNA-seq analysis. Plant Mol. Biol. 2015;88:219–231. doi: 10.1007/s11103-015-0316-z. PubMed DOI
Dwivany F.M., Yulia D., Burton R.A., Shirley N.J., Wilson S.M., Fincher G.B., Bacic A., Newbigin E., Doblin M.S. The Cellulose-synthase like C (CslC) family of barley includes members that are integral membrane proteins targeted to the plasma membrane. Mol. Plant. 2009;2:1025–1039. doi: 10.1093/mp/ssp064. PubMed DOI
Cocuron J.C., Lerouxel O., Drakakaki G., Alonso A.P., Liepman A.H., Keegstra K., Raikhel N., Wilkerson C.G. A gene from the cellulose synthase-like C family encodes a beta-1,4 glucan synthase. Proc. Natl. Acad. Sci. USA. 2007;104:8550–8555. doi: 10.1073/pnas.0703133104. PubMed DOI PMC
Kim S., Chandrasekar B., Rea A.C., Danhof L., Zemelis-Durfee S., Thrower N., Shepard Z.S., Pauly M., Brandizzi F., Keegstra K. The synthesis of xyloglucan, an abundant plant cell wall polysaccharide, requires CslC function. Proc. Natl. Acad. Sci. USA. 2020;117:20316–20324. doi: 10.1073/pnas.2007245117. PubMed DOI PMC
Verhertbruggen Y., Yin L., Oikawa A., Scheller H.V. Mannan synthase activity in the CslD family. Plant Signal. Behav. 2015;6:1620–1623. doi: 10.4161/psb.6.10.17989. PubMed DOI PMC
Dhugga K.S. Biosynthesis of non-cellulosic polysaccharides of plant cell walls. Phytochemistry. 2012;74:8–19. doi: 10.1016/j.phytochem.2011.10.003. PubMed DOI
Park S., Szumlanski A.L., Gu F., Guo F., Nielsen E. A role for CslD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells. Nat. Cell Biol. 2011;13:973–980. doi: 10.1038/ncb2294. PubMed DOI
Yin L., Verhertbruggen Y., Oikawa A., Manisseri C., Knierim B., Prak L., Jensen J.K., Knox J.P., Auer M., Willats W.G.T., et al. The cooperative activities of CslD2, CslD3, and CslD5 are required for normal Arabidopsis development. Mol. Plant. 2011;4:1024–1037. doi: 10.1093/mp/ssr026. PubMed DOI
Yang J., Bak G., Burgin T., Barnes W.J., Mayes H.B., Peña M.J., Urbanowicz B.R., Nielsen E. Biochemical and genetic analysis identify CslD3 as a beta-1,4-glucan synthase that functions during plant cell wall synthesis. Plant Cell. 2020;32:1749–1767. doi: 10.1105/tpc.19.00637. PubMed DOI PMC
Bernal A.J., Jensen J.K., Harholt J., Sørensen S., Moller I., Blaukopf C., Johansen B., De Lotto R., Pauly M., Scheller H.V., et al. Disruption of AtCslD5 results in reduced growth, reduced xylan and homogalacturonan synthase activity and altered xylan occurrence in Arabidopsis. Plant J. 2007;52:791–802. doi: 10.1111/j.1365-313X.2007.03281.x. PubMed DOI
Danilova T.V., Friebe B., Gill B.S., Poland J., Jackson E. Development of a complete set of wheat–barley group-7 robertsonian translocation chromosomes conferring an increased content of β-glucan. Theor. Appl. Genet. 2017;131:377–388. doi: 10.1007/s00122-017-3008-z. PubMed DOI
Burton R.A., Wilson S.M., Hrmova M., Harvey A.J., Shirley N.J., Medhurst A., Stone B.A., Newbigin E.J., Bacic A., Fincher G.B. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-β-d-glucans. Science. 2006;311:1940–1942. doi: 10.1126/science.1122975. PubMed DOI
Doblin M.S., Pettolino F.A., Wilson S.M., Campbell R., Burton R.A., Fincher G.B., Newbigin E., Bacic A. A barley cellulose synthase-like CslH gene mediates (1,3;1,4)-beta-D-glucan synthesis in transgenic Arabidopsis. Proc. Natl. Acad. Sci. USA. 2009;106:5996–6001. doi: 10.1073/pnas.0902019106. PubMed DOI PMC
Vega-Sánchez M.E., Verhertbruggen Y., Christensen U., Chen X., Sharma V., Varanasi P., Jobling S.A., Talbot M., White R.G., Joo M., et al. Loss of cellulose synthase-like F6 function affects mixed-linkage glucan deposition, cell wall mechanical properties, and defense responses in vegetative tissues of rice. Plant Physiol. 2012;159:56–69. doi: 10.1104/pp.112.195495. PubMed DOI PMC
Little A., Lahnstein J., Jeffery D.W., Khor S.F., Schwerdt J.G., Shirley N.J., Hooi M., Xing X., Burton R.A., Bulone V. A novel (1,4)-β-linked glucoxylan is synthesized by members of the cellulose synthase-like F gene family in land plants. ACS Cent. Sci. 2019;5:73–84. doi: 10.1021/acscentsci.8b00568. PubMed DOI PMC
Scheible W.R., Pauly M. Glycosyltransferases and cell wall biosynthesis: Novel players and insights. Curr. Opin. Plant Biol. 2004;7:285–295. doi: 10.1016/j.pbi.2004.03.006. PubMed DOI
Zhu J., Lee B., Dellinger M., Cui X., Zhang C., Wu S., Nothnagel E.A., Zhu J. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis. Plant J. 2010;63:128–140. doi: 10.1111/j.1365-313X.2010.04227.x. PubMed DOI PMC
Bagheri R., Bashir H., Ahmad J., Iqbal M., Qureshi M.I. Spinach (Spinacia oleracea L.) modulates its proteome differentially in response to salinity, cadmium and their combination stress. Plant Physiol. Bioch. 2015;97:235–245. doi: 10.1016/j.plaphy.2015.10.012. PubMed DOI
Camacho-Cristóbal J.J., Herrera-Rodríguez M.B., Beato V.M., Rexach J., Navarro-Gochicoa M.T., Maldonado J.M., González-Fontes A. The expression of several cell wall-related genes in Arabidopsis roots is down-regulated under boron deficiency. Environ. Exp. Bot. 2008;63:351–358. doi: 10.1016/j.envexpbot.2007.12.004. DOI
İşkil R., Surgun-Acar Y. Expression analysis of cell wall assembly and remodelling-related genes in Arabidopsis roots subjected to boron stress and brassinosteroid at different developmental stages. Acta Bot. Bras. 2018;32:546–554. doi: 10.1590/0102-33062018abb0023. DOI
Xiao Y., Wu X., Liu D., Yao J., Liang G., Song H., Ismail A.M., Luo J., Zhang Z. Cell wall polysaccharide-mediated cadmium tolerance between two Arabidopsis thaliana ecotypes. Front. Plant Sci. 2020;11:473. doi: 10.3389/fpls.2020.00473. PubMed DOI PMC
Aditya J., Lewis J., Shirley N.J., Tan H., Fincher M.H.B., Burton R.A., Mather D.E., Tucker M.R. The dynamics of cereal cyst nematode infection differ between susceptible and resistant barley cultivars and lead to changes in (1,3;1,4)-β-glucan levels and HvCslF gene transcript abundance. New Phytol. 2015;207:135–147. doi: 10.1111/nph.13349. PubMed DOI
Douchkov D., Lueck S., Hensel G., Kumlehn J., Rajaraman J., Johrde A., Doblin M.S., Beahan C.T., Kopischke M., Fuchs R., et al. The barley (Hordeum vulgare) cellulose synthase-like D2 gene (HvCslD2) mediates penetration resistance to host-adapted and nonhost isolates of the powdery mildew fungus. New Phytol. 2016;212:421–433. doi: 10.1111/nph.14065. PubMed DOI
Domon J., Baldwin L., Acket S., Caudeville E., Arnoult S., Zub H., Gillet F., Lejeune-Hénaut I., Brancourt-Hulmel M., Pelloux J., et al. Cell wall compositional modifications of Miscanthus ecotypes in response to cold acclimation. Phytochemistry. 2013;85:51–61. doi: 10.1016/j.phytochem.2012.09.001. PubMed DOI
Le Gall H., Philippe F., Domon J., Gillet F., Pelloux J., Rayon C. Cell wall metabolism in response to abiotic stress. Plants. 2015;4:112–166. doi: 10.3390/plants4010112. PubMed DOI PMC
Le M.Q., Pagter M., Hincha D.K. Global changes in gene expression, assayed by microarray hybridization and quantitative RT-PCR, during acclimation of three Arabidopsis thaliana accessions to sub-zero temperatures after cold acclimation. Plant Mol. Biol. 2015;87:1–15. doi: 10.1007/s11103-014-0256-z. PubMed DOI
Yang Q., Gao J., He W., Dou T., Ding L., Wu J., Li C., Peng X., Zhang S., Yi G. Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. BMC Genom. 2015;16 doi: 10.1186/s12864-015-1551-z. PubMed DOI PMC
Pradhan S.K., Pandit E., Nayak D.K., Behera L., Mohapatra T. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis. BMC Plant Biol. 2019;19 doi: 10.1186/s12870-019-1922-8. PubMed DOI PMC
Panter P.E., Kent O., Dale M., Smith S.J., Skipsey M., Thorlby G., Cummins I., Ramsay N., Begum R.A., Sanhueza D., et al. MUR1-mediated cell-wall fucosylation is required for freezing tolerance in Arabidopsis thaliana. New Phytol. 2019;224:1518–1531. doi: 10.1111/nph.16209. PubMed DOI PMC
Takahashi D., Johnson K.L., Hao P., Tuong T., Erban A., Sampathkumar A., Bacic A., Livingston D.P., Kopka J., Kuroha T., et al. Cell wall modification by the xyloglucan endotransglucosylase/hydrolase XTH19 influences freezing tolerance after cold and sub-zero acclimation. Plant Cell Environ. 2020 doi: 10.1111/pce.13953. PubMed DOI
Djerbi S., Lindskog M., Arvestad L., Sterky F., Teeri T.T. The genome sequence of black cottonwood (Populus trichocarpa) reveals 18 conserved cellulose synthase (CesA) genes. Planta. 2005;221:739–746. doi: 10.1007/s00425-005-1498-4. PubMed DOI
Suzuki S., Li L., Sun Y., Chiang V.L. The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiol. 2006;142:1233–1245. doi: 10.1104/pp.106.086678. PubMed DOI PMC
Roberts A.W., Bushoven J.T. The cellulose synthase (CesA) gene superfamily of the moss Physcomitrella patens. Plant Mol. Biol. 2007;63:207–219. doi: 10.1007/s11103-006-9083-1. PubMed DOI
Appenzeller L., Doblin M., Barreiro R., Wang H., Niu X., Kollipara K., Carrigan L., Tomes D., Chapman M., Dhugga K.S. Cellulose synthesis in maize: Isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose. 2004;11:287–299. doi: 10.1023/B:CELL.0000046417.84715.27. DOI
Li Y., Cheng X., Fu Y., Wu Q., Guo Y., Peng J., Zhang W., He B. A genome-wide analysis of the cellulose synthase-like (Csl) gene family in maize. Biol. Plantarum. 2019;63:721–732. doi: 10.32615/bp.2019.081. DOI
Burton R.A., Shirley N.J., King B.J., Harvey A.J., Fincher G.B. The CesA gene family of barley quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol. 2004;134:224–236. doi: 10.1104/pp.103.032904. PubMed DOI PMC
Nairn C.J., Haselkorn T. Three loblolly pine CesA genes expressed in developing xylem are orthologous to secondary cell wall CesA genes of angiosperms. New Phytol. 2005;166:907–915. doi: 10.1111/j.1469-8137.2005.01372.x. PubMed DOI
Song X., Xu L., Yu J., Tian P., Hu X. Genome-wide characterization of the cellulose synthase gene superfamily in Solanum lycopersicum. Gene. 2018;688:71–83. doi: 10.1016/j.gene.2018.11.039. PubMed DOI
Cao S., Cheng H., Zhang J., Aslam M., Yan M., Hu A., Lin L., Ojolo S.P., Zhao H., Priyadarshani S., et al. Genome-wide identification, expression pattern analysis and evolution of the Ces/Csl gene superfamily in pineapple (Ananas comosus) Plants. 2019;8:275. doi: 10.3390/plants8080275. PubMed DOI PMC
Kaur S., Dhugga K.S., Beech R., Singh J. Genome-wide analysis of the cellulose synthase-like (Csl) gene family in bread wheat (Triticum aestivum L.) BMC Plant Biol. 2017;17:193. doi: 10.1186/s12870-017-1142-z. PubMed DOI PMC
Li G., Liu X., Liang Y., Zhang Y., Cheng X., Cai Y. Genome-wide characterization of the cellulose synthase gene superfamily in Pyrus bretschneideri and reveal its potential role in stone cell formation. Funct. Integr. Genomic. 2020;20:723–738. doi: 10.1007/s10142-020-00747-8. PubMed DOI
Perrier X., De Langhe E., Donohue M., Lentfer C., Vrydaghs L., Bakry F., Carreel F., Hippolyte I., Horry J.P., Jenny C., et al. Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc. Natl. Acad. Sci. USA. 2011;108:11311–11318. doi: 10.1073/pnas.1102001108. PubMed DOI PMC
FAOSTAT. [(accessed on 6 March 2020)];2020 Available online: https://www.fao.org/faostat/en/#data/QC/visualize.
Pauly M., Gille S., Liu L., Mansoori N., de Souza A., Schultink A., Xiong G. Hemicellulose biosynthesis. Planta. 2013;238:627–642. doi: 10.1007/s00425-013-1921-1. PubMed DOI
Yin Y., Huang J., Xu Y. The cellulose synthase superfamily in fully sequenced plants and algae. BMC Plant Biol. 2009;9:99. doi: 10.1186/1471-2229-9-99. PubMed DOI PMC
Holland N., Holland D., Helentjaris T., Dhugga K.S., Xoconostle-Cazares B., Delmer D.P. A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol. 2000;123:1313–1324. doi: 10.1104/pp.123.4.1313. PubMed DOI PMC
Wang L., Guo K., Li Y., Tu Y., Hu H., Wang B., Cui X., Peng L. Expression profiling and integrative analysis of the CesA/Csl superfamily in rice. BMC Plant Biol. 2010;10:282. doi: 10.1186/1471-2229-10-282. PubMed DOI PMC
Cai C., Li Q., Duan C., Chen D., Liu J. Bioinformatics and expression analysis on Csl gene family in Dendrobium catenatum [in Chinese with English abstract] GAB. 2019;38:2159–2166. doi: 10.13417/j.gab.038.002159. DOI
Burton R.A., Collins H.M., Kibble N.A., Smith J.A., Shirley N.J., Jobling S.A., Henderson M., Singh R.R., Pettolino F., Wilson S.M., et al. Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-beta-D-glucans and alters their fine structure. Plant Biotechnol. J. 2011;9:117–135. doi: 10.1111/j.1467-7652.2010.00532.x. PubMed DOI
Yin Y., Johns M.A., Cao H., Rupani M. A survey of plant and algal genomes and transcriptomes reveals new insights into the evolution and function of the cellulose synthase superfamily. BMC Genom. 2014;15:260. doi: 10.1186/1471-2164-15-260. PubMed DOI PMC
Carpita N.C., McCann M.C. The maize mixed-linkage (1→3),(1→4)-β-D-glucan polysaccharide is synthesized at the golgi membrane. Plant Physiol. 2010;153:1362–1371. doi: 10.1104/pp.110.156158. PubMed DOI PMC
Kubacka-Zębalska M., Kacperska A. Low temperature-induced modifications of cell wall content and polysaccharide composition in leaves of winter oilseed rape (Brassica napus L. Var. Oleifera L.) Plant Sci. 1999;148:59–67. doi: 10.1016/s0168-9452(99)00122-3. DOI
Weiser R.L., Wallner S.J., Waddell J.W. Cell wall and extensin mRNA changes during cold acclimation of pea seedlings. Plant Physiol. 1990;93:1021–1026. doi: 10.1104/pp.93.3.1021. PubMed DOI PMC
Plancot B., Gügi B., Mollet J., Loutelier-Bourhis C., Govind S.R., Lerouge P., Follet-Gueye M., Vicré M., Alfonso C., Nguema-Ona E., et al. Desiccation tolerance in plants: Structural characterization of the cell wall hemicellulosic polysaccharides in three Selaginella species. Carbohyd. Polym. 2019;208:180–190. doi: 10.1016/j.carbpol.2018.12.051. PubMed DOI
Zang D., Wang J., Zhang X., Liu Z., Wang Y. Arabidopsis heat shock transcription factor HSFA7b positively mediates salt stress tolerance by binding to an E-box-like motif to regulate gene expression. J. Exp. Bot. 2019;70:5355–5374. doi: 10.1093/jxb/erz261. PubMed DOI PMC
Budot B.O., Encabo J.R., Ambita I.D.V., Atienza-Grande G.A., Satoh K., Kondoh H., Ulat V.J., Mauleon R., Kikuchi S., Choi I. Suppression of cell wall-related genes associated with stunting of Oryza glaberrima infected with rice tungro spherical virus. Front. Microbiol. 2014;5 doi: 10.3389/fmicb.2014.00026. PubMed DOI PMC
Chowdhury J., Schober M.S., Shirley N.J., Singh R.R., Jacobs A.K., Douchkov D., Schweizer P., Fincher G.B., Burton R.A., Little A. Down-regulation of the glucan synthase-like 6 gene (HvGsl6) in barley leads to decreased callose accumulation and increased cell wall penetration by Blumeria graminis f. sp. hordei. New Phytol. 2016;212:434–443. doi: 10.1111/nph.14086. PubMed DOI
Kesten C., Menna A., Sanchez-Rodriguez C. Regulation of cellulose synthesis in response to stress. Curr. Opin. Plant Biol. 2017;40:106–113. doi: 10.1016/j.pbi.2017.08.010. PubMed DOI
Wang T., McFarlane H.E., Persson S. The impact of abiotic factors on cellulose synthesis. J. Exp. Bot. 2016;67:543–552. doi: 10.1093/jxb/erv488. PubMed DOI
Moore J.P., Nguema-Ona E.E., Vicré-Gibouin M., Sørensen I., Willats W.G.T., Driouich A., Farrant J.M. Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. Planta. 2013;237:739–754. doi: 10.1007/s00425-012-1785-9. PubMed DOI
Huang X., Ji Z., Li P. A study on the injury symptoms and physiological quota of banana and an effective measure for cold injury protection [in Chinese with English abstract] J. South China Agri. Univ. 1982;3:1–12.
Sluiter A.D., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D.W., Crocker D. Determination of Structural Carbohydrates and Lignin in Biomass. NREL; Golden, CO, USA: 2012. [(accessed on 2 April 2020)]. Available online: http://www.nrel.gov/biomass/analytical_procedures.html.
Hu G., Ellberg S., Burton C., Evans C., Satterfield K., Bockelman H. Application of an orcinol-ferric chloride colorimetric assay in barley and wheat accessions for water-extractable and total arabinoxylan. J. Cereal Sci. 2020;93:102962. doi: 10.1016/j.jcs.2020.102962. DOI
Klepikova A.V., Logacheva M.D., Dmitriev S.E., Penin A.A. RNA-seq analysis of an apical meristem time series reveals a critical point in Arabidopsis thaliana flower initiation. BMC Genom. 2015;16 doi: 10.1186/s12864-015-1688-9. PubMed DOI PMC
Chen C., Xia R., Chen H., He Y. TBtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv. 2018;13:1194–1202. doi: 10.1101/289660. DOI
Thompson J.D., Higgins D.G., Gibson T.J. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC
Kumar S., Stecher G., Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Hu B., Jin J., Guo A., Zhang H., Luo J., Gao G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics. 2015;31:1296–1297. doi: 10.1093/bioinformatics/btu817. PubMed DOI PMC