Variable content and distribution of arabinogalactan proteins in banana (Musa spp.) under low temperature stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26074928
PubMed Central
PMC4444754
DOI
10.3389/fpls.2015.00353
Knihovny.cz E-zdroje
- Klíčová slova
- abiotic stress, arabinogalactan proteins, banana (Musa spp.), immuno-labeling, low temperature stress, plant cell wall, plant-environment interactions, spatial distribution,
- Publikační typ
- časopisecké články MeSH
Information on the spatial distribution of arabinogalactan proteins (AGPs) in plant organs and tissues during plant reactions to low temperature (LT) is limited. In this study, the extracellular distribution of AGPs in banana leaves and roots, and their changes under LT stress were investigated in two genotypes differing in chilling tolerance, by immuno-techniques using 17 monoclonal antibodies against different AGP epitopes. Changes in total classical AGPs in banana leaves were also tested. The results showed that AGP epitopes recognized by JIM4, JIM14, JIM16, and CCRC-M32 antibodies were primarily distributed in leaf veins, while those recognized by JIM8, JIM13, JIM15, and PN16.4B4 antibodies exhibited predominant sclerenchymal localization. Epitopes recognized by LM2, LM14, and MAC207 antibodies were distributed in both epidermal and mesophyll cells. Both genotypes accumulated classical AGPs in leaves under LT treatment, and the chilling tolerant genotype contained higher classical AGPs at each temperature treatment. The abundance of JIM4 and JIM16 epitopes in the chilling-sensitive genotype decreased slightly after LT treatment, and this trend was opposite for the tolerant one. LT induced accumulation of LM2- and LM14-immunoreactive AGPs in the tolerant genotype compared to the sensitive one, especially in phloem and mesophyll cells. These epitopes thus might play important roles in banana LT tolerance. Different AGP components also showed differential distribution patterns in banana roots. In general, banana roots started to accumulate AGPs under LT treatment earlier than leaves. The levels of AGPs recognized by MAC207 and JIM13 antibodies in the control roots of the tolerant genotype were higher than in the chilling sensitive one. Furthermore, the chilling tolerant genotype showed high immuno-reactivity against JIM13 antibody. These results indicate that several AGPs are likely involved in banana tolerance to chilling injury.
Zobrazit více v PubMed
Blanco-Ulate B., Morales-Cruz A., Amrine K. C. H., Labavitch J. M., Powell A. L. T., Cantu D. (2014). Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls duringinfections of different hosts. Front. Plant Sci. 5:435. 10.3389/fpls.2014.00435 PubMed DOI PMC
Blumenkrantz N., Asboe-Hansen G. (1973). New method for quantitative determination of uronic acids. Anal. Biochem. 54, 484–489. 10.1016/0003-2697(73)90377-1 PubMed DOI
Bradley D. J., Wood E. A., Larkins A. P., Galfre G., Butcher G. W., Brewin N. J. (1988). Isolation of monoclonal antibodies reacting with peribacteroid membranes and other components of pea root nodules containing Rhizobium leguminosarum. Planta 173, 149–160. 10.1007/BF00403006 PubMed DOI
Chen J. Z., Xu C. X., Liang L. F. (1999). Effect of low temperature on protein and proline in banana (Musa spp.) leaves [in Chinese with an English abstract]. J. South China Agri. Univ. 20, 54–58.
Chen K. M., Wu G. L., Wang Y. H., Tian C. T., Šamaj J., Baluška F., et al. . (2008). The block of intracellular calcium release affects the pollen tube development of Picea wilsonii by changing the deposition of cell wall components. Protoplasma 233, 39–49. 10.1007/s00709-008-0310-2 PubMed DOI
Chinnusamy V., Zhu J. H., Zhu J. K. (2007). Cold stress regulation of gene expression in plants. Trends Plant Sci. 12, 444–451. 10.1016/j.tplants.2007.07.002 PubMed DOI
Clarke A. E., Anderson R. L., Stone B. A. (1979). Form and function of arabinogalactans and arabinogalactan proteins. Phytochemistry 18, 521–540. 10.1016/S0031-9422(00)84255-7 DOI
Deepak S., Shailasree S., Kini R. K., Hause B., Shetty S. H., Mithöfer A. (2007). Role of hydroxyproline-rich glycoproteins in resistance of pearl millet against downy mildew pathogen Sclerospora graminicola. Planta 226, 323–333. 10.1007/s00425-007-0484-4 PubMed DOI
Eder M., Lütz-Meindl U. (2008). Pectin-like carbohydrates in the green alga Micrasterias characterized by cytochemical analysis and energy filtering TEM. J. Microsc. 231, 201–214. 10.1111/j.1365-2818.2008.02036.x PubMed DOI
Ellis C., Turner J. G. (2001). The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13, 1025–1033. 10.1105/tpc.13.5.1025 PubMed DOI PMC
Ellis M., Egelund J., Schultz C. J., Bacic A. (2010). Arabinogalactan-proteins: key regulators at the cell surface? Plant Physiol. 153, 403–419. 10.1104/pp.110.156000 PubMed DOI PMC
Garaeva L. D., Pozdeeva S. A., Timofeeva O. A., Khokhlova L. P. (2006). Cell-wall lectins during winter wheat cold hardening. Russ. J. Plant Physiol. 53, 746–750. 10.1134/S1021443706060033 DOI
Gong S. Y., Huang G. Q., Sun X., Li P., Zhao L. L., Zhang D. J., et al. . (2012). GhAGP31, a cotton non-classical arabinogalactan protein, is involved in response to cold stress during early seedling development. Plant Biol. 14, 447–457. 10.1111/j.1438-8677.2011.00518.x PubMed DOI
Gothandam K. M., Nalini E., Karthikeyan S., Shin J. S. (2010). OsPRP3, a flower specific proline-rich protein of rice, determines extracellular matrix structure of floral organs and its overexpression confers cold-tolerance. Plant Mol. Biol. 72, 125–135. 10.1007/s11103-009-9557-z PubMed DOI
Hijazi M., Velasquez S. M., Jamet E., Estevez J. M., Albenne C. (2014). An update on post-translational modifications of hydroxyproline-rich glycoproteins: toward a model highlighting their contribution to plant cell wall architecture Front. Plant Sci. 5:395. 10.3389/fpls.2014.00395 PubMed DOI PMC
Huang X., Ji Z., Li P. (1982). Study on the injury symptoms and physiological quota of banana and an effective measure for cold injury protection [in Chinese with an English abstract]. J. South China Agric. Univ. 3, 1–12.
Kim J. Y., Kim W. Y., Kwak K. J., Oh S. H., Han Y. S., Kang H. (2010). Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. J. Exp. Bot. 61, 2317–2325. 10.1093/jxb/erq058 PubMed DOI PMC
Knoch E., Dilokpimol A., Geshi N. (2014). Arabinogalactan proteins: focus on carbohydrate active enzymes. Front. Plant Sci. 5:198. 10.3389/fpls.2014.00198 PubMed DOI PMC
Knox J. P. (2008). Revealing the structural and functional diversity of plant cell walls. Curr. Opin. Plant Biol. 11, 308–313. 10.1016/j.pbi.2008.03.001 PubMed DOI
Knox J. P., Linstead P. J., Peart J., Cooper C., Roberts S. K. (1991). Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. Plant J. 1, 317–326. 10.1046/j.1365-313X.1991.t01-9-00999.x PubMed DOI
Kozbial P. Z., Jerzrnanowski A., Shirsat A. H., Kacperska A. (1998). Transient freezing regulates expression of extension-type genes in winter oilseed rape. Physiol. Plantarum 103, 264–270. 10.1034/j.1399-3054.1998.1030214.x DOI
Kubacka-Zêbalska M., Kacperska A. (1999). Low temperature induced modifications of cell wall content and polysaccharide composition in leaves of winter oilseed rape (Brassica napus L. var. oleifera L.). Plant Sci. 148, 59–67. 10.1016/S0168-9452(99)00122-3 DOI
Lamport D. T. A. (1965). The protein component of primary cell walls. Adv. Bot. Res. 2, 151–218. 10.1016/S0065-2296(08)60251-7 DOI
Lamport D. T., Várnai P. (2013). Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. New Phytol. 197, 58–64. 10.1111/nph.12005 PubMed DOI
Losada J. M., Herrero M. (2014). Glycoprotein composition along the pistil of Malus x domestica and the modulation of pollen tube growth. BMC Plant Biol. 14:1. 10.1186/1471-2229-14-1 PubMed DOI PMC
Louve R., Rayon C., Domon J. M., Rusterucci C., Fournet F., Leaustic A., et al. . (2011). Major changes in the cell wall during silique development in Arabidopsis thaliana. Phytochemistry 72, 59–67. 10.1016/j.phytochem.2010.10.008 PubMed DOI
Lucau-Danila A., Toitot C., Goulas E., Blervacq A. S., Hot D., Bahrman N., et al. . (2012). Transcriptome analysis in pea allows to distinguish chilling and acclimation mechanisms. Plant Physiol. Biochem. 58, 236–244. 10.1016/j.plaphy.2012.07.012 PubMed DOI
Ma H., Zhao J. (2010). Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). J. Exp. Bot. 61, 2647–2668. 10.1093/jxb/erq104 PubMed DOI PMC
Ma L., Jiang S., Lin G. M., Cai J. H., Ye X. X., Chen H. B., et al. . (2013). Wound-induced pectin methylesterases enhance banana (Musa spp. AAA) susceptibility to Fusarium oxysporum f. sp. cubense. J. Exp. Bot. 64, 2219–2229. 10.1093/jxb/ert088 PubMed DOI PMC
Ma L., Xie L., Lin G., Jiang S., Chen H., Li H., et al. (2012). Histological changes and differences in activities of some antioxidant enzymes and hydrogen peroxide content during somatic embryogenesis of Musa AAA cv. Yueyoukang 1. Sci. Hortic. 144, 87–92. 10.1016/j.scienta.2012.06.039 DOI
McCabe P. F., Valentine T. A., Forsberg L. S., Pennell R. I. (1997). Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot. Plant Cell 9, 2225–2241. 10.1105/tpc.9.12.2225 PubMed DOI PMC
Moller I., Marcus S. E., Haeger A., Verhertbruggen Y., Verhoef R., Schols H., et al. . (2008). High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles. Glycoconj. J. 25, 37–48. 10.1007/s10719-007-9059-7 PubMed DOI PMC
Nguema-Ona E., Vicré-Gibouin M., Cannesan M. A., Driouich A. (2013). Arabinogalactan proteins in root-microbe interactions. Trends Plant Sci. 18, 440–449. 10.1016/j.tplants.2013.03.006 PubMed DOI
Norman P. M., Wingate V. P. M., Fitter M. S., Lamb C. J. (1986). Monoclonal antibodies to plant plasma-membrane antigens. Planta 167, 452–459. 10.1007/BF00391220 PubMed DOI
Pan X., Yang X., Lin G. M., Zou R., Chen H. B., Šamaj J., et al. . (2011). Ultrastructural changes and the distribution of arabinogalactan proteins during somatic embryogenesis of banana (Musa spp. AAA). Physiol. Plantarum 142, 372–389. 10.1111/j.1399-3054.2011.01478.x PubMed DOI
Pattathil S., Avci U., Baldwin D., Swennes A. G., McGill J. A., Popper Z., et al. . (2010). A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiol. 153, 514–525. 10.1104/pp.109.151985 PubMed DOI PMC
Pennell R. I., Janniche L., Kjellbom P., Scofield G. N., Peart J. M., Roberts K. (1991). Developmental regulation of a plasma membrane arabinogalactan protein epitope in oilseed rape flowers. Plant Cell 3, 1317–1326. 10.1105/tpc.3.12.1317 PubMed DOI PMC
Šamaj J., Baluska F., Bobak M., Volkmann D. (1999a). Extracellular matrix surface network of embryogenic units of friable maize callus contains arabinogalactan-proteins recognized by monoclonal antibody JIM4. Plant Cell Rep. 18, 369–374. 10.1007/s002990050588 DOI
Šamaj J., Baluška F., Volkmann D. (1998). Cell specific expression of two arabinogalactan-protein epitopes recognized by monoclonal antibodies JIM8 and JIM13 in maize roots. Protoplasma 204, 1–12. 10.1007/BF01282288 DOI
Šamaj J., Ensikat H. J., Baluska F., Knox J. P., Barthlott W., Volkmann D. (1999b). Immunogold localization of plant surface arabinogalactan-proteins using glycerol liquid substitution and scanning electron microscopy. J. Microsc. 193, 150–157. 10.1046/j.1365-2818.1999.00441.x PubMed DOI
Šamaj J., Salaj T., Matúsová R., Salaj J., Takáč T., Šamajová O., et al. . (2008). Arabinogalactan-protein epitope Gal4 is differentially regulated and localized in cell lines of hybrid fir (Abies alba x Abies cephalonica) with different embryogenic and regeneration potential. Plant Cell Rep. 27, 221–229. 10.1007/s00299-007-0429-1 PubMed DOI
Santi S., DeMarco F., Polizzotto R., Grisan S., Musetti R. (2013). Recovery from stolbur disease in grapevine involves changes in sugar transport and metabolism. Front. Plant Sci. 4:171. 10.3389/fpls.2013.00171 PubMed DOI PMC
Sasidharan R., Voesenek L. A., Pierik R. (2011). Cell wall modifying proteins mediate plant acclimatization to biotic and abiotic stresses. Crit. Rev. Plant Sci. 30, 548–562. 10.1080/07352689.2011.615706 DOI
Seifert G. J., Roberts K. (2007). The biology of arabinogalactan proteins. Annu. Rev. Plant Biol. 58, 137–161. 10.1146/annurev.arplant.58.032806.103801 PubMed DOI
Shetty N. P., Jensen J. D., Knudsen A., Finnie C., Geshi N., Blennow A., et al. . (2009). Effects of β-1, 3-glucan from Septoria tritici on structural defence responses in wheat. J. Exp. Bot. 60, 4287–4300. 10.1093/jxb/erp269 PubMed DOI
Shmueli E. (1960). Chilling and frost damage in banana leaves. Bull. Res. Counc. Isr. 8, 225–238.
Showalter A. M. (1993). Structure and function of plant cell wall proteins. Plant Cell 5, 9–23. 10.1105/tpc.5.1.9 PubMed DOI PMC
Showalter A. M., Keppler B., Lichtenberg J., Gu D., Welch L. R. (2010). A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol. 153, 485–513. 10.1104/pp.110.156554 PubMed DOI PMC
Simon U. K., Bauer R., Rioux D., Simard M., Oberwinkler F. (2005). The intercellular biotrophic leaf pathogen Cymadothea trifolii locally degrades pectins, but not cellulose or xyloglucan in cell walls of Trifolium repens. New Phytol. 165, 243–260. 10.1111/j.1469-8137.2004.01233.x PubMed DOI
Smallwood M., Beven A., Donovan N., Neill S. J., Peart J., Roberts K., et al. (1994). Localization of cell wall proteins in relation to the developmental anatomy of the carrot root apex. Plant J. 5, 237–246. 10.1046/j.1365-313X.1994.05020237.x DOI
Smallwood M., Yates E. A., Willats W. G. T., Martin H., Knox J. P. (1996). Immunochemical comparison of membrane-associated and secreted arabinogalactan-proteins in rice and carrot. Planta 198, 452–459. 10.1007/BF00620063 DOI
Solecka D., Zebrowski J., Kacperska A. (2008). Are pectins involved in cold acclimation and de-acclimation of winter oil-seed rape plants? Ann. Bot. 101, 521–530. 10.1093/aob/mcm329 PubMed DOI PMC
Sommer-Knudsen J., Bacic A., Clarke A. E. (1998). Hydroxyproline-rich plant glycoproteins. Phytochemistry 47, 483–497. 10.1016/S0031-9422(97)00724-3 DOI
Takáč T., Luxová M., Gašparíková O. (2003). Cold induced changes in antioxidant enzymes activity in roots and leaves of two maize cultivars. Biologia 58, 875–880.
Tan L., Showalter A., Egelund J., Hernandez-Sanchez A., Doblin M., Bacic A. (2012). Arabinogalactan-proteins and the research challenges for these enigmatic plant cell surface proteoglycans. Front. Plant Sci. 3:140. 10.3389/fpls.2012.00140 PubMed DOI PMC
Theocharis A., Clément C., Barka E. A. (2012). Physiological and molecular changes in plants grown at low temperatures. Planta 235, 1091–1105. 10.1007/s00425-012-1641-y PubMed DOI
Turner D. W., Lahav E. (1983). The growth of banana plants in relation to temperature. Aust. J. Plant Physiol. 10, 43–53. 10.1071/PP9830043 DOI
VandenBosch K. A., Bradley D. J., Knox J. P., Perotto S., Butcher G. W., Brewin N. J. (1989). Common components of the infection thread matrix and the intercellular space identified by immunocytochemical analysis of pea nodules and uninfected roots. EMBO J. 8, 335–342. PubMed PMC
Voigt C. A. (2014). Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Front. Plant Sci. 5:168. 10.3389/fpls.2014.00168 PubMed DOI PMC
Wang Z., Liang L. (1994). Changes of ascorbic acid and catalase activity of banana leaves during the occurrence of chilling injury [in Chinese with an English abstract]. J. South China Agric. Univ. 15, 71–76.
Willats W. G. T., Limberg G., Bucholt H. C., van Alebeek G. J., Benen J., Christensen T. M. I. E., et al. (2000). Analysis of pectic epitope recognized by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation. Carbohydr. Res. 327, 309–320. 10.1016/S0008-6215(00)00039-2 PubMed DOI
Xie D., Ma L., Šamaj J., Xu C. (2011). Immunohistochemical analysis of cell wall hydroxyproline-rich glycoproteins in the roots of resistant and susceptible wax gourd cultivars in response to Fusarium oxysporum f. sp. Benincasae infection and fusaric acid treatment. Plant Cell Rep. 30, 1555–1569. 10.1007/s00299-011-1069-z PubMed DOI
Xu C. X., Chen J. Z., Liang L. F. (2000). Effects of low temperature on the contents of glycerol, starch and sugars in banana leaves [in Chinese with an English abstract]. J. Fruit Sci. 17, 105–109.
Xu C. X., Takáč T., Burbach C., Menzel D., Šamaj J. (2011a). Developmental localization and the role of hydroxyproline rich glycoproteins during somatic embryogenesis of banana (Musa spp. AAA). BMC Plant Biol. 11:38. 10.1186/1471-2229-11-38 PubMed DOI PMC
Xu C. X., Zhao L., Pan X., Šamaj J. (2011b). Developmental localization and methylesterification of pectin epitopes during somatic embryogenesis of banana (Musa spp. AAA). PLoS ONE 6:e22992. 10.1371/journal.pone.0022992 PubMed DOI PMC
Yang Q. S., Wu J. H., Li C. Y., Wei Y. R., Sheng O., Hu C. H., et al. . (2012). Quantitative proteomic analysis reveals that antioxidation mechanisms contribute to cold tolerance in plantain (Musa paradisiaca L.; ABB group) seedlings. Mol. Cell Proteomics 11, 1853–1869. 10.1074/mcp.M112.022079 PubMed DOI PMC
Yates E. A., Valdor J. F., Haslam S. M., Morris H. R., Dell A., Mackie W. (1996). Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies. Glycobiology 6, 131–139. 10.1093/glycob/6.2.131 PubMed DOI
Zhang X. L., Ren Y. J., Zhao J. (2008). Roles of extensins in cotyledon primordium formation and shoot apical meristem activity in Nicotiana tabacum. J. Exp. Bot. 59, 4045–4058. 10.1093/jxb/ern245 PubMed DOI PMC
Zhang Y., Schläppi M. (2007). Cold responsive EARLI1 type HyPRPs improve freezing survival of yeast cells and form higher order complexes in plants. Planta 227, 233–243. 10.1007/s00425-007-0611-2 PubMed DOI