Comparison of cryofixation and aldehyde fixation for plant actin immunocytochemistry: aldehydes do not destroy F-actin
Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
11095070
DOI
10.1023/a:1004171431449
Knihovny.cz E-zdroje
- MeSH
- aktiny analýza MeSH
- aldehydy * MeSH
- fixace tkání metody MeSH
- fluorescenční protilátková technika metody MeSH
- kryoprezervace * MeSH
- rostlinné buňky * MeSH
- rostliny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- aktiny MeSH
- aldehydy * MeSH
For walled plant cells, the immunolocalization of actin microfilaments, also known as F-actin, has proved to be much trickier than that of microtubules. These difficulties are commonly attributed to the high sensitivity of F-actin to aldehyde fixatives. Therefore, most plant studies have been accomplished using fluorescent phallotoxins in fresh tissues. Nevertheless, concerns regarding the questionable ability of phallotoxins to bind the whole complement of F-actin necessitate further optimization of actin immunofluorescence methods. We have compared two procedures: (1) formaldehyde fixation and (2) rapid freezing and freeze substitution (cryofixation), both followed by embedding in low-melting polyester wax. Actin immunofluorescence in sections of garden cress (Lepidium sativum L.) root gave similar results with both methods. The compatibility of aldehydes with actin immunodetection was further confirmed by the freeze-shattering technique that does not require embedding after aldehyde fixation. It appears that rather than aldehyde fixation, some further steps in the procedures used for actin visualization are critical for preserving F-actin. Wax embedding, combined with formaldehyde fixation, has proved to be also suitable for the detection of a wide range of other antigens.
Zobrazit více v PubMed
Plant J. 1999 Aug;19(4):481-8 PubMed
Microsc Res Tech. 1999 Oct 1;47(1):3-17 PubMed
Plant Cell Physiol. 1996 Oct;37(7):1013-21 PubMed
Plant Physiol. 1997 Apr;113(4):1447-55 PubMed
Planta. 1993;191:231-7 PubMed
Protoplasma. 1997;196(3-4):212-23 PubMed
Plant Physiol. 1996 Oct;112(2):455-461 PubMed
Nature. 1957 Jun 29;179(4574):1345 PubMed
J Cell Sci. 1992 Apr;101 ( Pt 4):731-43 PubMed
Planta. 1992 Jun;187(3):405-13 PubMed
Planta. 1989 Jan;177(1):47-57 PubMed
J Cell Biol. 1987 Jul;105(1):387-95 PubMed
Cell Motil Cytoskeleton. 1989;12(4):216-24 PubMed
Proc Natl Acad Sci U S A. 1987 Aug;84(15):5262-6 PubMed
J Cell Biol. 1987 Apr;104(4):995-1004 PubMed
J Cell Biol. 1987 Nov;105(5):2157-66 PubMed
Am J Med Technol. 1967 Sep-Oct;33(5):394-6 PubMed
J Cell Biol. 1981 Aug;90(2):459-66 PubMed
J Immunol Methods. 1981;43(3):349-50 PubMed
J Cell Sci. 1995 Nov;108 ( Pt 11):3397-403 PubMed
J Microsc. 1996 May;182(Pt 2):149-61 PubMed
Histochem J. 1996 May;28(5):353-60 PubMed
Cell Motil Cytoskeleton. 1997;36(1):55-67 PubMed
J Histochem Cytochem. 1997 Jan;45(1):89-95 PubMed
Eur J Cell Biol. 1997 Feb;72(2):113-21 PubMed
Cytobios. 1996;87(349):71-8 PubMed
J Microsc. 1997 Aug;187(Pt 2):77-84 PubMed
J Microsc. 1997 Oct;188(Pt 1):51-61 PubMed
Plant J. 1997 Nov;12(5):1035-43 PubMed
Planta. 1998 May;205(1):39-50 PubMed
Plant J. 1998 Nov;16(3):393-401 PubMed
Eur J Cell Biol. 1998 Dec;77(4):303-12 PubMed