The SORL1 p.Y1816C variant causes impaired endosomal dimerization and autosomal dominant Alzheimer's disease
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
73305095007
ZonMw (Netherlands Organisation for Health Research and Development)
LSHM20106
Health-Holland
NNF20OC0064162
Novo Nordisk Fonden (NNF)
ADSF-21-831378-C
Alzheimer's Association (AA)
3101-00065B
Independent Research Fund Denmark
733050512
ZonMw (Netherlands Organisation for Health Research and Development)
NU22J-08-00075
Czech Research Council
LX22NPO5107
MEYS
T-PEP-23-969313
Rainwater Charitable Foundation (RCF)
T-PEP-23-969313
Alzheimer's Association (AA)
PubMed
39226352
PubMed Central
PMC11406263
DOI
10.1073/pnas.2408262121
Knihovny.cz E-zdroje
- Klíčová slova
- 3Fn-domain, SORL1-associated Alzheimer’s disease, SORLA, dimerization, retromer,
- MeSH
- Alzheimerova nemoc * genetika metabolismus patologie MeSH
- endozomy * metabolismus MeSH
- HEK293 buňky MeSH
- lidé středního věku MeSH
- lidé MeSH
- membránové transportní proteiny * genetika metabolismus MeSH
- missense mutace MeSH
- multimerizace proteinu MeSH
- proteiny související s LDL-receptory * genetika metabolismus MeSH
- rodokmen * MeSH
- senioři MeSH
- transport proteinů MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- membránové transportní proteiny * MeSH
- proteiny související s LDL-receptory * MeSH
- SORL1 protein, human MeSH Prohlížeč
Truncating genetic variants of SORL1, encoding the endosome recycling receptor SORLA, have been accepted as causal of Alzheimer's disease (AD). However, most genetic variants observed in SORL1 are missense variants, for which it is complicated to determine the pathogenicity level because carriers come from pedigrees too small to be informative for penetrance estimations. Here, we describe three unrelated families in which the SORL1 coding missense variant rs772677709, that leads to a p.Y1816C substitution, segregates with Alzheimer's disease. Further, we investigate the effect of SORLA p.Y1816C on receptor maturation, cellular localization, and trafficking in cell-based assays. Under physiological circumstances, SORLA dimerizes within the endosome, allowing retromer-dependent trafficking from the endosome to the cell surface, where the luminal part is shed into the extracellular space (sSORLA). Our results showed that the p.Y1816C mutant impairs SORLA homodimerization in the endosome, leading to decreased trafficking to the cell surface and less sSORLA shedding. These trafficking defects of the mutant receptor can be rescued by the expression of the SORLA 3Fn-minireceptor. Finally, we find that iPSC-derived neurons with the engineered p.Y1816C mutation have enlarged endosomes, a defining cytopathology of AD. Our studies provide genetic as well as functional evidence that the SORL1 p.Y1816C variant is causal for AD. The partial penetrance of the mutation suggests this mutation should be considered in clinical genetic screening of multiplex early-onset AD families.
Department of Biomedical Sciences University of Antwerp 2000 Antwerp Belgium
Department of Biomedicine Aarhus University Aarhus C DK8000 Denmark
Department of Histology and Embryology Faculty of Medicine Brno 62500 Czech Republic
International Clinical Research Center St Anne's Faculty Hospital Brno 60200 Brno Czech Republic
Neurodegenerative Brain Diseases Group VIB Center for Molecular Neurology VIB 2000 Antwerp Belgium
Zobrazit více v PubMed
Cacace R., 2022 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 18, 700–789 (2022). PubMed
Cacace R., Sleegers K., Van Broeckhoven C., Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement. 12, 733–748 (2016). PubMed
Kwart D., et al. , A large panel of isogenic APP and PSEN1 mutant human iPSC neurons reveals shared endosomal abnormalities mediated by APP beta-CTFs, not abeta. Neuron 104, 256–270.e5 (2019). PubMed
Nixon R. A., Endosome function and dysfunction in Alzheimer’s disease and other neurodegenerative diseases. Neurobiol. Aging 26, 373–382 (2005). PubMed
Nixon R. A., Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer’s disease: Inseparable partners in a multifactorial disease. FASEB J. 31, 2729–2743 (2017). PubMed PMC
Rogaeva E., et al. , The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat. Genet. 39, 168–177 (2007). PubMed PMC
Raghavan N. S., et al. , Whole-exome sequencing in 20,197 persons for rare variants in Alzheimer’s disease. Ann. Clin. Transl. Neurol. 5, 832–842 (2018). PubMed PMC
Xiromerisiou G., et al. , SORL1 mutation in a Greek family with Parkinson’s disease and dementia. Ann. Clin. Transl. Neurol. 8, 1961–1969 (2021). PubMed PMC
Benussi L., et al. , Investigating the endo-lysosomal system in major neurocognitive disorders due to Alzheimer’s Disease, frontotemporal lobar degeneration and lewy body disease: Evidence for SORL1 as a cross-disease gene. Int. J. Mol. Sci. 22, 13633 (2021). PubMed PMC
Verheijen J., et al. , A comprehensive study of the genetic impact of rare variants in SORL1 in European early-onset Alzheimer’s disease. Acta Neuropathol. 132, 213–224 (2016). PubMed PMC
Holstege H., et al. , Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer’s disease. Nat. Genet. 54, 1786–1794 (2022). PubMed PMC
Andersen O. M., et al. , SorLA/LR11, a neuronal sorting receptor that regulates processing of the amyloid precursor protein. Proc. Natl. Acad. Sci. U.S.A. 102, 13461–13466 (2005). PubMed PMC
Knupp A., et al. , Depletion of the AD risk gene SORL1 selectively impairs neuronal endosomal traffic independent of amyloidogenic APP processing. Cell Rep. 31, 107719 (2020). PubMed PMC
Hung C., et al. , SORL1 deficiency in human excitatory neurons causes APP-dependent defects in the endolysosome-autophagy network. Cell Rep. 35, 109259 (2021). PubMed PMC
Andersen O. M., et al. , A genetically modified minipig model for Alzheimer’s disease with SORL1 haploinsufficiency. Cell Rep. Med. 3, 100740 (2022), 10.1016/j.xcrm.2022.100740. PubMed DOI PMC
Fazeli E., et al. , A familial missense variant in the Alzheimer’s disease gene SORL1 impairs its maturation and endosomal sorting. Acta Neuropathol 147, 20 (2024). PubMed PMC
Fazeli E., Fazeli E., Fojtik P., Holstege H., Andersen O. M., Functional characterization of SORL1 variants in cell-based assays to investigate variant pathogenicity. Phil. Trans. R. Soc. B 379, 20220377 (2024). PubMed PMC
Simoes S., et al. , Alzheimer’s vulnerable brain region relies on a distinct retromer core dedicated to endosomal recycling. Cell Rep 37, 110182 (2021). PubMed PMC
Mishra S., et al. , The Alzheimer’s gene SORL1 is a regulator of endosomal traffic and recycling in human neurons. Cell. Mol. Life Sci. 79, 162 (2022). PubMed PMC
Mehmedbasic A., et al. , SorLA complement-type repeat domains protect the amyloid precursor protein against processing. J. Biol. Chem. 290, 3359–3376 (2015). PubMed PMC
Andersen O. M., Rudolph I. M., Willnow T. E., Risk factor SORL1: From genetic association to functional validation in Alzheimer’s disease. Acta Neuropathol 132, 653–665 (2016). PubMed PMC
Hermey G., Sjogaard S. S., Petersen C. M., Nykjær A., Gliemann J., Tumour necrosis factor a-converting enzyme mediates ectodomain shedding of Vps10p-domain receptor family members. Biochem. J. 395, 285–293 (2006). PubMed PMC
Christensen S. K., et al. , Endosomal trafficking is required for glycosylation and normal maturationof the Alzheimer’s-associated protein sorLA. bioRxiv [Preprint] (2020). 10.1101/2020.07.12.199885 (Accessed 2 July 2024). DOI
Rovelet-Lecrux A., et al. , Impaired SorLA maturation and trafficking as a new mechanism for SORL1 missense variants in Alzheimer disease. Acta Neuropathol. Commun. 9, 196 (2021). PubMed PMC
Young J. E., Holstege H., Andersen O. M., Petsko G. A., Small S. A., On the causal role of retromer-dependent endosomal recycling in Alzheimer’s disease. Nat. Cell. Biol. 25, 1394–1397 (2023). PubMed PMC
Fjorback A. W., et al. , Retromer binds the FANSHY sorting motif in sorLA to regulate amyloid precursor protein sorting and processing. J. Neurosci. 32, 1467–1480 (2012). PubMed PMC
Jensen A. M. G., et al. , Dimerization of the Alzheimer’s disease pathogenic receptor SORLA regulates its association with retromer Proc. Natl. Acad. Sci. U.S.A. 120, e2212180120 (2023). PubMed PMC
Leloup N., et al. , Low pH-induced conformational change and dimerization of sortilin triggers endocytosed ligand release. Nat. Commun. 8, 1708 (2017). PubMed PMC
Zhang X., et al. , Cryo-EM structures reveal distinct apo conformations of sortilin-related receptor SORLA. Biochem. Biophys. Res. Commun. 600, 75–79 (2022). PubMed
Holstege H., et al. , Characterization of pathogenic SORL1 genetic variants for association with Alzheimer’s disease: A clinical interpretation strategy. Eur. J. Hum. Genet. 25, 973–981 (2017). PubMed PMC
Weckx S., et al. , novoSNP, a novel computational tool for sequence variation discovery. Genome Res. 15, 436–442 (2005). PubMed PMC
Bellenguez C., et al. , New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 54, 412–436 (2022). PubMed PMC
Jacobsen L., et al. , Activation and functional characterization of the mosaic receptor SorLA/LR11. J. Biol. Chem. 276, 22788–22796 (2001). PubMed
Spoelgen R., et al. , Interaction of the cytosolic domains of sorLA/LR11 with the amyloid precursor protein (APP) and b-secretase b-site APP-cleaving enzyme. J. Neurosci. 26, 418–428 (2006). PubMed PMC
Al-Akhrass H., et al. , A feed-forward loop between SorLA and HER3 determines heregulin response and neratinib resistance. Oncogene 40, 1300–1317 (2021). PubMed PMC
Fedorova V., et al. , Differentiation of neural rosettes from human pluripotent stem cells in vitro is sequentially regulated on a molecular level and accomplished by the mechanism reminiscent of secondary neurulation. Stem Cell Res. 40, 101563 (2019). PubMed
Fernandopulle M. S., et al. , Transcription Factor-Mediated Differentiation of Human iPSCs into Neurons. Curr. Protoc. Cell Biol. 79, e51 (2018). PubMed PMC
Andersen O. M., et al. , Relying on the relationship with known disease-causing variants in homologous proteins to predict pathogenicity of SORL1 variants in Alzheimer’s disease. bioRxiv [Preprint] (2023), https://doi.org/10.1101/2023.02.27/524103 (Accessed 2 July 2024). DOI
Hemmingsen J. M., Gernert K. M., Richardson J. S., Richardson D. C., The tyrosine corner: A feature of most Greek key beta-barrel proteins. Protein Sci. 3, 1927–1937 (1994). PubMed PMC
Mishra S., et al. , Pharmacologic stabilization of retromer rescues endosomal pathology induced by defects in the Alzheimer’s gene sorl1. bioRxiv [Preprint] (2022), 10.1101/2022.07.31.502217 (Accessed 2 July 2024). PubMed DOI PMC
Hamill S. J., Cota E., Chothia C., Clarke J., Conservation of folding and stability within a protein family: The tyrosine corner as an evolutionary cul-de-sac. J. Mol. Biol. 295, 641–649 (2000). PubMed
Beenken A., et al. , Structures of LRP2 reveal a molecular machine for endocytosis. Cell 186, 821–836.e3 (2023). PubMed PMC
Souma T., et al. , Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity. J. Clin. Invest. 126, 2575–2587 (2016). PubMed PMC
van der Lee S. J., et al. , The effect of APOE and other common genetic variants on the onset of Alzheimer’s disease and dementia: A community-based cohort study. Lancet Neurol. 17, 434–444 (2018). PubMed
Louwersheimer E., et al. , Rare genetic variant in SORL1 may increase penetrance of Alzheimer’s disease in a family with several generations of APOE-varepsilon4 homozygosity. J. Alzheimers Dis. 56, 63–74 (2017). PubMed PMC
Schramm C., et al. , Penetrance estimation of Alzheimer disease in SORL1 loss-of-function variant carriers using a family-based strategy and stratification by APOE genotypes. Genome Med. 14, 69 (2022). PubMed PMC
de Rojas I., et al. , Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores. Nat. Commun. 12, 3417 (2021). PubMed PMC
Motazedi E., et al. , Using polygenic hazard scores to predict age at onset of Alzheimer’s disease in nordic populations. J. Alzheimers Dis. 88, 1533–1544 (2022). PubMed PMC
Desikan R. S., et al. , Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score. PLoS Med. 14, e1002258 (2017). PubMed PMC
Qiao M., et al. , Polygenic risk score penetrance & recurrence risk in familial Alzheimer disease. Ann. Clin. Transl. Neurol. 10, 744–756 (2023), 10.1002/acn3.51757. PubMed DOI PMC