The SORL1 p.Y1816C variant causes impaired endosomal dimerization and autosomal dominant Alzheimer's disease

. 2024 Sep 10 ; 121 (37) : e2408262121. [epub] 20240903

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39226352

Grantová podpora
73305095007 ZonMw (Netherlands Organisation for Health Research and Development)
LSHM20106 Health-Holland
NNF20OC0064162 Novo Nordisk Fonden (NNF)
ADSF-21-831378-C Alzheimer's Association (AA)
3101-00065B Independent Research Fund Denmark
733050512 ZonMw (Netherlands Organisation for Health Research and Development)
NU22J-08-00075 Czech Research Council
LX22NPO5107 MEYS
T-PEP-23-969313 Rainwater Charitable Foundation (RCF)
T-PEP-23-969313 Alzheimer's Association (AA)

Truncating genetic variants of SORL1, encoding the endosome recycling receptor SORLA, have been accepted as causal of Alzheimer's disease (AD). However, most genetic variants observed in SORL1 are missense variants, for which it is complicated to determine the pathogenicity level because carriers come from pedigrees too small to be informative for penetrance estimations. Here, we describe three unrelated families in which the SORL1 coding missense variant rs772677709, that leads to a p.Y1816C substitution, segregates with Alzheimer's disease. Further, we investigate the effect of SORLA p.Y1816C on receptor maturation, cellular localization, and trafficking in cell-based assays. Under physiological circumstances, SORLA dimerizes within the endosome, allowing retromer-dependent trafficking from the endosome to the cell surface, where the luminal part is shed into the extracellular space (sSORLA). Our results showed that the p.Y1816C mutant impairs SORLA homodimerization in the endosome, leading to decreased trafficking to the cell surface and less sSORLA shedding. These trafficking defects of the mutant receptor can be rescued by the expression of the SORLA 3Fn-minireceptor. Finally, we find that iPSC-derived neurons with the engineered p.Y1816C mutation have enlarged endosomes, a defining cytopathology of AD. Our studies provide genetic as well as functional evidence that the SORL1 p.Y1816C variant is causal for AD. The partial penetrance of the mutation suggests this mutation should be considered in clinical genetic screening of multiplex early-onset AD families.

Zobrazit více v PubMed

Cacace R., 2022 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 18, 700–789 (2022). PubMed

Cacace R., Sleegers K., Van Broeckhoven C., Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement. 12, 733–748 (2016). PubMed

Kwart D., et al. , A large panel of isogenic APP and PSEN1 mutant human iPSC neurons reveals shared endosomal abnormalities mediated by APP beta-CTFs, not abeta. Neuron 104, 256–270.e5 (2019). PubMed

Nixon R. A., Endosome function and dysfunction in Alzheimer’s disease and other neurodegenerative diseases. Neurobiol. Aging 26, 373–382 (2005). PubMed

Nixon R. A., Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer’s disease: Inseparable partners in a multifactorial disease. FASEB J. 31, 2729–2743 (2017). PubMed PMC

Rogaeva E., et al. , The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat. Genet. 39, 168–177 (2007). PubMed PMC

Raghavan N. S., et al. , Whole-exome sequencing in 20,197 persons for rare variants in Alzheimer’s disease. Ann. Clin. Transl. Neurol. 5, 832–842 (2018). PubMed PMC

Xiromerisiou G., et al. , SORL1 mutation in a Greek family with Parkinson’s disease and dementia. Ann. Clin. Transl. Neurol. 8, 1961–1969 (2021). PubMed PMC

Benussi L., et al. , Investigating the endo-lysosomal system in major neurocognitive disorders due to Alzheimer’s Disease, frontotemporal lobar degeneration and lewy body disease: Evidence for SORL1 as a cross-disease gene. Int. J. Mol. Sci. 22, 13633 (2021). PubMed PMC

Verheijen J., et al. , A comprehensive study of the genetic impact of rare variants in SORL1 in European early-onset Alzheimer’s disease. Acta Neuropathol. 132, 213–224 (2016). PubMed PMC

Holstege H., et al. , Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer’s disease. Nat. Genet. 54, 1786–1794 (2022). PubMed PMC

Andersen O. M., et al. , SorLA/LR11, a neuronal sorting receptor that regulates processing of the amyloid precursor protein. Proc. Natl. Acad. Sci. U.S.A. 102, 13461–13466 (2005). PubMed PMC

Knupp A., et al. , Depletion of the AD risk gene SORL1 selectively impairs neuronal endosomal traffic independent of amyloidogenic APP processing. Cell Rep. 31, 107719 (2020). PubMed PMC

Hung C., et al. , SORL1 deficiency in human excitatory neurons causes APP-dependent defects in the endolysosome-autophagy network. Cell Rep. 35, 109259 (2021). PubMed PMC

Andersen O. M., et al. , A genetically modified minipig model for Alzheimer’s disease with SORL1 haploinsufficiency. Cell Rep. Med. 3, 100740 (2022), 10.1016/j.xcrm.2022.100740. PubMed DOI PMC

Fazeli E., et al. , A familial missense variant in the Alzheimer’s disease gene SORL1 impairs its maturation and endosomal sorting. Acta Neuropathol 147, 20 (2024). PubMed PMC

Fazeli E., Fazeli E., Fojtik P., Holstege H., Andersen O. M., Functional characterization of SORL1 variants in cell-based assays to investigate variant pathogenicity. Phil. Trans. R. Soc. B 379, 20220377 (2024). PubMed PMC

Simoes S., et al. , Alzheimer’s vulnerable brain region relies on a distinct retromer core dedicated to endosomal recycling. Cell Rep 37, 110182 (2021). PubMed PMC

Mishra S., et al. , The Alzheimer’s gene SORL1 is a regulator of endosomal traffic and recycling in human neurons. Cell. Mol. Life Sci. 79, 162 (2022). PubMed PMC

Mehmedbasic A., et al. , SorLA complement-type repeat domains protect the amyloid precursor protein against processing. J. Biol. Chem. 290, 3359–3376 (2015). PubMed PMC

Andersen O. M., Rudolph I. M., Willnow T. E., Risk factor SORL1: From genetic association to functional validation in Alzheimer’s disease. Acta Neuropathol 132, 653–665 (2016). PubMed PMC

Hermey G., Sjogaard S. S., Petersen C. M., Nykjær A., Gliemann J., Tumour necrosis factor a-converting enzyme mediates ectodomain shedding of Vps10p-domain receptor family members. Biochem. J. 395, 285–293 (2006). PubMed PMC

Christensen S. K., et al. , Endosomal trafficking is required for glycosylation and normal maturationof the Alzheimer’s-associated protein sorLA. bioRxiv [Preprint] (2020). 10.1101/2020.07.12.199885 (Accessed 2 July 2024). DOI

Rovelet-Lecrux A., et al. , Impaired SorLA maturation and trafficking as a new mechanism for SORL1 missense variants in Alzheimer disease. Acta Neuropathol. Commun. 9, 196 (2021). PubMed PMC

Young J. E., Holstege H., Andersen O. M., Petsko G. A., Small S. A., On the causal role of retromer-dependent endosomal recycling in Alzheimer’s disease. Nat. Cell. Biol. 25, 1394–1397 (2023). PubMed PMC

Fjorback A. W., et al. , Retromer binds the FANSHY sorting motif in sorLA to regulate amyloid precursor protein sorting and processing. J. Neurosci. 32, 1467–1480 (2012). PubMed PMC

Jensen A. M. G., et al. , Dimerization of the Alzheimer’s disease pathogenic receptor SORLA regulates its association with retromer Proc. Natl. Acad. Sci. U.S.A. 120, e2212180120 (2023). PubMed PMC

Leloup N., et al. , Low pH-induced conformational change and dimerization of sortilin triggers endocytosed ligand release. Nat. Commun. 8, 1708 (2017). PubMed PMC

Zhang X., et al. , Cryo-EM structures reveal distinct apo conformations of sortilin-related receptor SORLA. Biochem. Biophys. Res. Commun. 600, 75–79 (2022). PubMed

Holstege H., et al. , Characterization of pathogenic SORL1 genetic variants for association with Alzheimer’s disease: A clinical interpretation strategy. Eur. J. Hum. Genet. 25, 973–981 (2017). PubMed PMC

Weckx S., et al. , novoSNP, a novel computational tool for sequence variation discovery. Genome Res. 15, 436–442 (2005). PubMed PMC

Bellenguez C., et al. , New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 54, 412–436 (2022). PubMed PMC

Jacobsen L., et al. , Activation and functional characterization of the mosaic receptor SorLA/LR11. J. Biol. Chem. 276, 22788–22796 (2001). PubMed

Spoelgen R., et al. , Interaction of the cytosolic domains of sorLA/LR11 with the amyloid precursor protein (APP) and b-secretase b-site APP-cleaving enzyme. J. Neurosci. 26, 418–428 (2006). PubMed PMC

Al-Akhrass H., et al. , A feed-forward loop between SorLA and HER3 determines heregulin response and neratinib resistance. Oncogene 40, 1300–1317 (2021). PubMed PMC

Fedorova V., et al. , Differentiation of neural rosettes from human pluripotent stem cells in vitro is sequentially regulated on a molecular level and accomplished by the mechanism reminiscent of secondary neurulation. Stem Cell Res. 40, 101563 (2019). PubMed

Fernandopulle M. S., et al. , Transcription Factor-Mediated Differentiation of Human iPSCs into Neurons. Curr. Protoc. Cell Biol. 79, e51 (2018). PubMed PMC

Andersen O. M., et al. , Relying on the relationship with known disease-causing variants in homologous proteins to predict pathogenicity of SORL1 variants in Alzheimer’s disease. bioRxiv [Preprint] (2023), https://doi.org/10.1101/2023.02.27/524103 (Accessed 2 July 2024). DOI

Hemmingsen J. M., Gernert K. M., Richardson J. S., Richardson D. C., The tyrosine corner: A feature of most Greek key beta-barrel proteins. Protein Sci. 3, 1927–1937 (1994). PubMed PMC

Mishra S., et al. , Pharmacologic stabilization of retromer rescues endosomal pathology induced by defects in the Alzheimer’s gene sorl1. bioRxiv [Preprint] (2022), 10.1101/2022.07.31.502217 (Accessed 2 July 2024). PubMed DOI PMC

Hamill S. J., Cota E., Chothia C., Clarke J., Conservation of folding and stability within a protein family: The tyrosine corner as an evolutionary cul-de-sac. J. Mol. Biol. 295, 641–649 (2000). PubMed

Beenken A., et al. , Structures of LRP2 reveal a molecular machine for endocytosis. Cell 186, 821–836.e3 (2023). PubMed PMC

Souma T., et al. , Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity. J. Clin. Invest. 126, 2575–2587 (2016). PubMed PMC

van der Lee S. J., et al. , The effect of APOE and other common genetic variants on the onset of Alzheimer’s disease and dementia: A community-based cohort study. Lancet Neurol. 17, 434–444 (2018). PubMed

Louwersheimer E., et al. , Rare genetic variant in SORL1 may increase penetrance of Alzheimer’s disease in a family with several generations of APOE-varepsilon4 homozygosity. J. Alzheimers Dis. 56, 63–74 (2017). PubMed PMC

Schramm C., et al. , Penetrance estimation of Alzheimer disease in SORL1 loss-of-function variant carriers using a family-based strategy and stratification by APOE genotypes. Genome Med. 14, 69 (2022). PubMed PMC

de Rojas I., et al. , Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores. Nat. Commun. 12, 3417 (2021). PubMed PMC

Motazedi E., et al. , Using polygenic hazard scores to predict age at onset of Alzheimer’s disease in nordic populations. J. Alzheimers Dis. 88, 1533–1544 (2022). PubMed PMC

Desikan R. S., et al. , Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score. PLoS Med. 14, e1002258 (2017). PubMed PMC

Qiao M., et al. , Polygenic risk score penetrance & recurrence risk in familial Alzheimer disease. Ann. Clin. Transl. Neurol. 10, 744–756 (2023), 10.1002/acn3.51757. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace