Human iPSC-Derived Neural Models for Studying Alzheimer's Disease: from Neural Stem Cells to Cerebral Organoids

. 2022 Feb ; 18 (2) : 792-820. [epub] 20220202

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35107767
Odkazy

PubMed 35107767
PubMed Central PMC8930932
DOI 10.1007/s12015-021-10254-3
PII: 10.1007/s12015-021-10254-3
Knihovny.cz E-zdroje

During the past two decades, induced pluripotent stem cells (iPSCs) have been widely used to study mechanisms of human neural development, disease modeling, and drug discovery in vitro. Especially in the field of Alzheimer's disease (AD), where this treatment is lacking, tremendous effort has been put into the investigation of molecular mechanisms behind this disease using induced pluripotent stem cell-based models. Numerous of these studies have found either novel regulatory mechanisms that could be exploited to develop relevant drugs for AD treatment or have already tested small molecules on in vitro cultures, directly demonstrating their effect on amelioration of AD-associated pathology. This review thus summarizes currently used differentiation strategies of induced pluripotent stem cells towards neuronal and glial cell types and cerebral organoids and their utilization in modeling AD and potential drug discovery.

Zobrazit více v PubMed

Briscoe J, Novitch BG. Regulatory pathways linking progenitor patterning, cell fates and neurogenesis in the ventral neural tube. Philosophical Transactions of the Royal Society B: Biological Sciences. 2008;363(1489):57–70. doi: 10.1098/rstb.2006.2012. PubMed DOI PMC

Tiberi L, Vanderhaeghen P, van den Ameele J. Cortical neurogenesis and morphogens: Diversity of cues, sources and functions. Current Opinion in Cell Biology. 2012;24(2):269–276. doi: 10.1016/j.ceb.2012.01.010. PubMed DOI

Lowery LA, Sive H. Strategies of vertebrate neurulation and a re-evaluation of teleost neural tube formation. Mechanisms of Development. 2004;121(10):1189–1197. doi: 10.1016/j.mod.2004.04.022. PubMed DOI

Brüstle O, McKay RD. Neuronal progenitors as tools for cell replacement in the nervous system. Current opinion in neurobiology. 1996;6(5):688–695. doi: 10.1016/S0959-4388(96)80104-8. PubMed DOI

Gage, F. H. (2000). Mammalian neural stem cells. Science (New York, N.Y.), 287(5457), 1433–1438. PubMed

Temple S. The development of neural stem cells. Nature. 2001;414(6859):112–117. doi: 10.1038/35102174. PubMed DOI

Kelava I, Lancaster MA. Dishing out mini-brains: Current progress and future prospects in brain organoid research. Developmental Biology. 2016;420(2):199–209. doi: 10.1016/j.ydbio.2016.06.037. PubMed DOI PMC

Spemann H. Embryonic development and induction. London, H. Milford, Oxford University Press; 1938.

Saxén L. Two-gradient hypothesis of primary embryonic induction. Medical Biology. 1978;56(6):293–298. PubMed

Smith WC, Harland RM. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell. 1992;70(5):829–840. doi: 10.1016/0092-8674(92)90316-5. PubMed DOI

Hemmati-Brivanlou A, Kelly OG, Melton DA. Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell. 1994;77(2):283–295. doi: 10.1016/0092-8674(94)90320-4. PubMed DOI

Sasai Y, Lu B, Steinbeisser H, De Robertis EM. Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature. 1995;376(6538):333–336. doi: 10.1038/376333a0. PubMed DOI

Muñoz-Sanjuán I, Brivanlou AH. Neural induction, the default model and embryonic stem cells. Nature Reviews Neuroscience. 2002;3(4):271–280. doi: 10.1038/nrn786. PubMed DOI

Bain G, Ray WJ, Yao M, Gottlieb DI. Retinoic acid promotes neural and represses mesodermal gene expression in mouse embryonic stem cells in culture. Biochemical and biophysical research communications. 1996;223(3):691–694. doi: 10.1006/bbrc.1996.0957. PubMed DOI

Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mechanisms of development. 1996;59(1):89–102. doi: 10.1016/0925-4773(96)00572-2. PubMed DOI

Kawasaki, H., Mizuseki, K., Nishikawa, S., Kaneko, S., Kuwana, Y., Nakanishi, S., … Sasai, Y. (2000). Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron, 28(1), 31–40. PubMed

Bohaciakova, D., Hruska-Plochan, M., Tsunemoto, R., Gifford, W. D., Driscoll, S. P., Glenn, T. D., … Marsala, M. (2019). A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors. Stem Cell Research & Therapy, 10(1), 83. 10.1186/s13287-019-1163-7 PubMed PMC

Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes & development. 2008;22(2):152–165. doi: 10.1101/gad.1616208. PubMed DOI PMC

Koch P, Opitz T, Steinbeck JA, Ladewig J, Brüstle O. A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(9):3225–3230. doi: 10.1073/pnas.0808387106. PubMed DOI PMC

Zhang SC, Wernig M, Duncan ID, Brüstle O, Thomson JA. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature biotechnology. 2001;19(12):1129–1133. doi: 10.1038/nbt1201-1129. PubMed DOI

Fedorova, V., Vanova, T., Elrefae, L., Pospisil, J., Petrasova, M., Kolajova, V., … Bohaciakova, D. (2019). Differentiation of neural rosettes from human pluripotent stem cells in vitro is sequentially regulated on a molecular level and accomplished by the mechanism reminiscent of secondary neurulation. Stem Cell Research, 40, 101563. 10.1016/j.scr.2019.101563 PubMed

Grabiec M, Hříbková H, Vařecha M, Střítecká D, Hampl A, Dvořák P, Sun Y-M. Stage-specific roles of FGF2 signaling in human neural development. Stem Cell Research. 2016;17(2):330–341. doi: 10.1016/j.scr.2016.08.012. PubMed DOI

Hříbková, H., Grabiec, M., Klemová, D., Slaninová, I., & Sun, Y.-M. (2018). Calcium signaling mediates five types of cell morphological changes to form neural rosettes. Journal of Cell Science, 131(3). 10.1242/jcs.206896 PubMed

Falk, A., Koch, P., Kesavan, J., Takashima, Y., Ladewig, J., Alexander, M., … Brüstle, O. (2012). Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PloS One, 7(1), e29597. 10.1371/journal.pone.0029597 PubMed PMC

Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature biotechnology. 2009;27(3):275–280. doi: 10.1038/nbt.1529. PubMed DOI PMC

Gerrard L, Rodgers L, Cui W. Differentiation of human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signaling. Stem cells (Dayton, Ohio) 2005;23(9):1234–1241. doi: 10.1634/stemcells.2005-0110. PubMed DOI

Pruszak J, Sonntag K-C, Aung MH, Sanchez-Pernaute R, Isacson O. Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations. Stem cells (Dayton, Ohio) 2007;25(9):2257–2268. doi: 10.1634/stemcells.2006-0744. PubMed DOI PMC

Yuan, S. H., Martin, J., Elia, J., Flippin, J., Paramban, R. I., Hefferan, M. P., … Carson, C. T. (2011). Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells. PloS one, 6(3), e17540. 10.1371/journal.pone.0017540 PubMed PMC

Kim, J., Efe, J. A., Zhu, S., Talantova, M., Yuan, X., Wang, S., … Ding, S. (2011). Direct reprogramming of mouse fibroblasts to neural progenitors. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7838–7843. 10.1073/pnas.1103113108 PubMed PMC

Thier, M., Wörsdörfer, P., Lakes, Y. B., Gorris, R., Herms, S., Opitz, T., … Edenhofer, F. (2012). Direct Conversion of Fibroblasts into Stably Expandable Neural Stem Cells. Cell Stem Cell, 10(4), 473–479. 10.1016/j.stem.2012.03.003. PubMed

Sheng, C., Zheng, Q., Wu, J., Xu, Z., Wang, L., Li, W., … Zhou, Q. (2012). Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors. Cell Research, 22(1), 208–218. 10.1038/cr.2011.175. PubMed PMC

Lujan E, Chanda S, Ahlenius H, Südhof TC, Wernig M. Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(7):2527–2532. doi: 10.1073/pnas.1121003109. PubMed DOI PMC

Ring, K. L., Tong, L. M., Balestra, M. E., Javier, R., Andrews-Zwilling, Y., Li, G., … Huang, Y. (2012). Direct Reprogramming of Mouse and Human Fibroblasts into Multipotent Neural Stem Cells with a Single Factor. Cell Stem Cell, 11(1), 100–109. 10.1016/j.stem.2012.05.018. PubMed PMC

Giorgetti, A., Marchetto, M. C. N., Li, M., Yu, D., Fazzina, R., Mu, Y., … Belmonte, J. C. I. (2012). Cord blood-derived neuronal cells by ectopic expression of Sox2 and c-Myc. Proceedings of the National Academy of Sciences, 109(31), 12556–12561. 10.1073/pnas.1209523109. PubMed PMC

Zhang, T., Ke, W., Zhou, X., Qian, Y., Feng, S., Wang, R., … Jing, N. (2019). Human Neural Stem Cells Reinforce Hippocampal Synaptic Network and Rescue Cognitive Deficits in a Mouse Model of Alzheimer’s Disease. Stem Cell Reports, 13(6), 1022–1037. 10.1016/j.stemcr.2019.10.012. PubMed PMC

Sheng, C., Jungverdorben, J., Wiethoff, H., Lin, Q., Flitsch, L. J., Eckert, D., … Brüstle, O. (2018). A stably self-renewing adult blood-derived induced neural stem cell exhibiting patternability and epigenetic rejuvenation. Nature Communications, 9(1), 4047. 10.1038/s41467-018-06398-5. PubMed PMC

Borghese, L., Dolezalova, D., Opitz, T., Haupt, S., Leinhaas, A., Steinfarz, B., … Brüstle, O. (2010). Inhibition of notch signaling in human embryonic stem cell-derived neural stem cells delays G1/S phase transition and accelerates neuronal differentiation in vitro and in vivo. Stem cells (Dayton, Ohio), 28(5), 955–964. 10.1002/stem.408 PubMed

Kirkeby, A., Grealish, S., Wolf, D. A., Nelander, J., Wood, J., Lundblad, M., … Parmar, M. (2012). Generation of Regionally Specified Neural Progenitors and Functional Neurons from Human Embryonic Stem Cells under Defined Conditions. Cell Reports, 1(6), 703–714. 10.1016/j.celrep.2012.04.009 PubMed

Kriks, S., Shim, J.-W., Piao, J., Ganat, Y. M., Wakeman, D. R., Xie, Z., … Studer, L. (2011). Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature, 480(7378), 547–551. 10.1038/nature10648 PubMed PMC

Strano A, Tuck E, Stubbs VE, Livesey FJ. Variable outcomes in neural differentiation of human PSCs arise from intrinsic differences in developmental signaling pathways. Cell Reports. 2020;31(10):107732. doi: 10.1016/j.celrep.2020.107732. PubMed DOI PMC

Tcw, J., Wang, M., Pimenova, A. A., Bowles, K. R., Hartley, B. J., Lacin, E., … Brennand, K. J. (2017). An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells. Stem Cell Reports, 9(2), 600–614. 10.1016/j.stemcr.2017.06.018 PubMed PMC

Jana M, Jana A, Pal U, Pahan K. A Simplified Method for Isolating Highly Purified Neurons, Oligodendrocytes, Astrocytes, and Microglia from the Same Human Fetal Brain Tissue. Neurochemical Research. 2007;32(12):2015–2022. doi: 10.1007/s11064-007-9340-y. PubMed DOI PMC

Hu, W., Qiu, B., Guan, W., Wang, Q., Wang, M., Li, W., … Pei, G. (2015). Direct Conversion of Normal and Alzheimer’s Disease Human Fibroblasts into Neuronal Cells by Small Molecules. Cell Stem Cell, 17(2), 204–212. 10.1016/j.stem.2015.07.006 PubMed

Pang, Z. P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D. R., Yang, T. Q., … Wernig, M. (2011). Induction of human neuronal cells by defined transcription factors. Nature, 476(7359), 220–223. 10.1038/nature10202 PubMed PMC

Zhang, Y., Pak, C., Han, Y., Ahlenius, H., Zhang, Z., Chanda, S., … Südhof, T. C. (2013). Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells. Neuron, 78(5), 785–798. 10.1016/j.neuron.2013.05.029 PubMed PMC

Flitsch LJ, Laupman KE, Brüstle O. Transcription Factor-Based Fate Specification and Forward Programming for Neural Regeneration. Frontiers in Cellular Neuroscience. 2020;14:121. doi: 10.3389/fncel.2020.00121. PubMed DOI PMC

Yang, N., Chanda, S., Marro, S., Ng, Y.-H., Janas, J. A., Haag, D., … Wernig, M. (2017). Generation of pure GABAergic neurons by transcription factor programming. Nature Methods, 14(6), 621–628. 10.1038/nmeth.4291 PubMed PMC

Nehme, R., Zuccaro, E., Ghosh, S. D., Li, C., Sherwood, J. L., Pietilainen, O., … Eggan, K. (2018). Combining NGN2 Programming with Developmental Patterning Generates Human Excitatory Neurons with NMDAR-Mediated Synaptic Transmission. Cell Reports, 23(8), 2509–2523. 10.1016/j.celrep.2018.04.066 PubMed PMC

Wang, C., Ward, M. E., Chen, R., Liu, K., Tracy, T. E., Chen, X., … Gan, L. (2017). Scalable Production of iPSC-Derived Human Neurons to Identify Tau-Lowering Compounds by High-Content Screening. Stem Cell Reports, 9(4), 1221–1233. 10.1016/j.stemcr.2017.08.019 PubMed PMC

Binder DK, Scharfman HE. Mini Review. Growth Factors. 2004;22(3):123–131. doi: 10.1080/08977190410001723308. PubMed DOI PMC

Cintrón-Colón AF, Almeida-Alves G, Boynton AM, Spitsbergen JM. GDNF synthesis, signaling, and retrograde transport in motor neurons. Cell and Tissue Research. 2020;382(1):47–56. doi: 10.1007/s00441-020-03287-6. PubMed DOI PMC

Lepski, G. P., Jannes, C. E., Nikkhah, G., & Bischofberger, J. (2013). cAMP promotes the differentiation of neural progenitor cells in vitro via modulation of voltage-gated calcium channels. Frontiers in Cellular Neuroscience, 7. 10.3389/fncel.2013.00155 PubMed PMC

Jang S, Cho H-H, Cho Y-B, Park J-S, Jeong H-S. Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biology. 2010;11(1):25. doi: 10.1186/1471-2121-11-25. PubMed DOI PMC

Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cellular and Molecular Life Sciences. 2015;72(8):1559–1576. doi: 10.1007/s00018-014-1815-9. PubMed DOI PMC

Busskamp, V., Lewis, N. E., Guye, P., Ng, A. H., Shipman, S. L., Byrne, S. M., … Church, G. M. (2014). Rapid neurogenesis through transcriptional activation in human stem cells. Molecular Systems Biology, 10(11), 760. 10.15252/msb.20145508 PubMed PMC

Kim, Y., Park, J., & Choi, Y. K. (2019). The Role of Astrocytes in the Central Nervous System Focused on BK Channel and Heme Oxygenase Metabolites: A Review. Antioxidants, 8(5). 10.3390/antiox8050121 PubMed PMC

Li, K., Li, J., Zheng, J., & Qin, S. (2019). Reactive Astrocytes in Neurodegenerative Diseases. Aging and Disease, 10(3), 664–675. 10.14336/AD.2018.0720 PubMed PMC

Byun, J. S., Lee, C. O., Oh, M., Cha, D., Kim, W.-K., Oh, K.-J., … Han, B.-S. (2020). Rapid differentiation of astrocytes from human embryonic stem cells. Neuroscience Letters, 716, 134681. 10.1016/j.neulet.2019.134681 PubMed

Janssen, K., Bahnassawy, L., Kiefer, C., Korffmann, J., Terstappen, G. C., Lakics, V., … Reinhardt, P. (2019). Generating Human iPSC-Derived Astrocytes with Chemically Defined Medium for In vitro Disease Modeling. In C.-F. Mandenius & J. A. Ross (Eds.), Cell-Based Assays Using iPSCs for Drug Development and Testing (Vol. 1994, pp. 31–39). New York, NY: Springer New York. 10.1007/978-1-4939-9477-9_3 PubMed

Raman, S., Srinivasan, G., Brookhouser, N., Nguyen, T., Henson, T., Morgan, D., … Brafman, D. A. (2020). A Defined and Scalable Peptide-Based Platform for the Generation of Human Pluripotent Stem Cell-Derived Astrocytes. ACS biomaterials science & engineering, 6(6), 3477–3490. 10.1021/acsbiomaterials.0c00067 PubMed PMC

Shaltouki A, Peng J, Liu Q, Rao MS, Zeng X. Efficient Generation of Astrocytes from Human Pluripotent Stem Cells in Defined Conditions. STEM CELLS. 2013;31(5):941–952. doi: 10.1002/stem.1334. PubMed DOI

Haidet-Phillips, A. M., Hester, M. E., Miranda, C. J., Meyer, K., Braun, L., Frakes, A., … Kaspar, B. K. (2011). Astrocytes from Familial and Sporadic ALS Patients are Toxic to Motor Neurons. Nature biotechnology, 29(9), 824–828. 10.1038/nbt.1957 PubMed PMC

Krencik R, Weick JP, Liu Y, Zhang Z-J, Zhang S-C. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nature Biotechnology. 2011;29(6):528–534. doi: 10.1038/nbt.1877. PubMed DOI PMC

McGivern JV, Patitucci TN, Nord JA, Barabas M-EA, Stucky CL, Ebert AD. Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production: Dysfunctional SMA Astrocytes. Glia. 2013;61(9):1418–1428. doi: 10.1002/glia.22522. PubMed DOI PMC

Serio, A., Bilican, B., Barmada, S. J., Ando, D. M., Zhao, C., Siller, R., … Chandran, S. (2013). Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. Proceedings of the National Academy of Sciences of the United States of America, 110(12), 4697–4702. 10.1073/pnas.1300398110 PubMed PMC

Jiang, P., Chen, C., Wang, R., Chechneva, O. V., Chung, S.-H., Rao, M. S., … Deng, W. (2013). hESC-derived Olig2 + progenitors generate a subtype of astroglia with protective effects against ischaemic brain injury. Nature Communications, 4(1), 2196. 10.1038/ncomms3196 PubMed PMC

Chen, H., Qian, K., Chen, W., Hu, B., Blackbourn, L. W., Du, Z., … Zhang, S.-C. (2015). Human-derived neural progenitors functionally replace astrocytes in adult mice. Journal of Clinical Investigation, 125(3), 1033–1042. 10.1172/JCI69097 PubMed PMC

Chaboub LS, Deneen B. Astrocyte form and function in the developing central nervous system. Seminars in Pediatric Neurology. 2013;20(4):230–235. doi: 10.1016/j.spen.2013.10.003. PubMed DOI PMC

Canals, I., Ginisty, A., Quist, E., Timmerman, R., Fritze, J., Miskinyte, G., … Ahlenius, H. (2018). Rapid and efficient induction of functional astrocytes from human pluripotent stem cells. Nature Methods, 15(9), 693–696. 10.1038/s41592-018-0103-2 PubMed

Li, X., Tao, Y., Bradley, R., Du, Z., Tao, Y., Kong, L., … Zhang, S.-C. (2018). Fast Generation of Functional Subtype Astrocytes from Human Pluripotent Stem Cells. Stem Cell Reports, 11(4), 998–1008. 10.1016/j.stemcr.2018.08.019 PubMed PMC

Tchieu, J., Calder, E. L., Guttikonda, S. R., Gutzwiller, E. M., Aromolaran, K. A., Steinbeck, J. A., … Studer, L. (2019). NFIA is a gliogenic switch enabling rapid derivation of functional human astrocytes from pluripotent stem cells. Nature Biotechnology, 37(3), 267–275. 10.1038/s41587-019-0035-0 PubMed PMC

Santos, R., Vadodaria, K. C., Jaeger, B. N., Mei, A., Lefcochilos-Fogelquist, S., Mendes, A. P. D., … Gage, F. H. (2017). Differentiation of Inflammation-Responsive Astrocytes from Glial Progenitors Generated from Human Induced Pluripotent Stem Cells. Stem Cell Reports, 8(6), 1757–1769. 10.1016/j.stemcr.2017.05.011 PubMed PMC

Oksanen, M., Petersen, A. J., Naumenko, N., Puttonen, K., Lehtonen, Š., Gubert Olivé, M., … Koistinaho, J. (2017). PSEN1 Mutant iPSC-Derived Model Reveals Severe Astrocyte Pathology in Alzheimer’s Disease. Stem Cell Reports, 9(6), 1885–1897. 10.1016/j.stemcr.2017.10.016 PubMed PMC

Zhao, J., Davis, M. D., Martens, Y. A., Shinohara, M., Graff-Radford, N. R., Younkin, S. G., … Bu, G. (2017). APOE ε4/ε4 diminishes neurotrophic function of human iPSC-derived astrocytes. Human Molecular Genetics, 26(14), 2690–2700. 10.1093/hmg/ddx155 PubMed PMC

Zhou B, Zuo Y-X, Jiang R-T. Astrocyte morphology: Diversity, plasticity, and role in neurological diseases. CNS Neuroscience & Therapeutics. 2019;25(6):665–673. doi: 10.1111/cns.13123. PubMed DOI PMC

Ren B, Dunaevsky A. Modeling Neurodevelopmental and Neuropsychiatric Diseases with Astrocytes Derived from Human-Induced Pluripotent Stem Cells. International Journal of Molecular Sciences. 2021;22(4):1692. doi: 10.3390/ijms22041692. PubMed DOI PMC

Bonaguidi MA, McGuire T, Hu M, Kan L, Samanta J, Kessler JA. LIF and BMP signaling generate separate and discrete types of GFAP-expressing cells. Development. 2005;132(24):5503–5514. doi: 10.1242/dev.02166. PubMed DOI

Koblar, S. A., Turnley, A. M., Classon, B. J., Reid, K. L., Ware, C. B., Cheema, S. S., … Bartlett, P. F. (1998). Neural precursor differentiation into astrocytes requires signaling through the leukemia inhibitory factor receptor. Proceedings of the National Academy of Sciences, 95(6), 3178–3181. 10.1073/pnas.95.6.3178 PubMed PMC

Sakry, D., Neitz, A., Singh, J., Frischknecht, R., Marongiu, D., Binamé, F., … Mittmann, T. (2014). Oligodendrocyte Precursor Cells Modulate the Neuronal Network by Activity-Dependent Ectodomain Cleavage of Glial NG2. PLoS Biology, 12(11), e1001993. 10.1371/journal.pbio.1001993 PubMed PMC

Kuhn, S., Gritti, L., Crooks, D., & Dombrowski, Y. (2019). Oligodendrocytes in Development, Myelin Generation and Beyond. Cells, 8(11), 1424. 10.3390/cells8111424 PubMed PMC

Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia. 2005;49(3):385–396. doi: 10.1002/glia.20127. PubMed DOI

Izrael, M., Zhang, P., Kaufman, R., Shinder, V., Ella, R., Amit, M., … Revel, M. (2007). Human oligodendrocytes derived from embryonic stem cells: Effect of noggin on phenotypic differentiation in vitro and on myelination in vivo. Molecular and Cellular Neuroscience, 34(3), 310–323. 10.1016/j.mcn.2006.11.008 PubMed

Hsieh J, Aimone JB, Kaspar BK, Kuwabara T, Nakashima K, Gage FH. IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. The Journal of Cell Biology. 2004;164(1):111–122. doi: 10.1083/jcb.200308101. PubMed DOI PMC

Gil, J.-E., Woo, D.-H., Shim, J.-H., Kim, S.-E., You, H.-J., Park, S.-H., … Kim, J.-H. (2009). Vitronectin promotes oligodendrocyte differentiation during neurogenesis of human embryonic stem cells. FEBS Letters, 583(3), 561–567. 10.1016/j.febslet.2008.12.061 PubMed

Kang S-M, Cho MS, Seo H, Yoon CJ, Oh SK, Choi YM, Kim D-W. Efficient induction of oligodendrocytes from human embryonic stem cells. Stem Cells. 2007;25(2):419–424. doi: 10.1634/stemcells.2005-0482. PubMed DOI

Piao, J., Major, T., Auyeung, G., Policarpio, E., Menon, J., Droms, L., … Tabar, V. (2015). Human embryonic stem cell-derived oligodendrocyte progenitors remyelinate the brain and rescue behavioral deficits following radiation. Cell Stem Cell, 16(2), 198–210. 10.1016/j.stem.2015.01.004 PubMed PMC

Sundberg M, Skottman H, Suuronen R, Narkilahti S. Production and isolation of NG2+ oligodendrocyte precursors from human embryonic stem cells in defined serum-free medium. Stem Cell Research. 2010;5(2):91–103. doi: 10.1016/j.scr.2010.04.005. PubMed DOI

Wang, S., Bates, J., Li, X., Schanz, S., Chandler-Militello, D., Levine, C., … Goldman, S. A. (2013). Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell, 12(2), 252–264. 10.1016/j.stem.2012.12.002 PubMed PMC

Li P, Li M, Tang X, Wang S, Zhang YA, Chen Z. Accelerated generation of oligodendrocyte progenitor cells from human induced pluripotent stem cells by forced expression of Sox10 and Olig2. Science China Life Sciences. 2016;59(11):1131–1138. doi: 10.1007/s11427-016-0165-3. PubMed DOI

Maire CL, Buchet D, Kerninon C, Deboux C, Baron-Van Evercooren A, Nait-Oumesmar B. Directing human neural stem/precursor cells into oligodendrocytes by overexpression of Olig2 transcription factor. Journal of Neuroscience Research. 2009;87(15):3438–3446. doi: 10.1002/jnr.22194. PubMed DOI

Pawlowski M, Ortmann D, Bertero A, Tavares JM, Pedersen RA, Vallier L, Kotter MRN. Inducible and deterministic forward programming of human Pluripotent stem cells into neurons, skeletal myocytes, and oligodendrocytes. Stem Cell Reports. 2017;8(4):803–812. doi: 10.1016/j.stemcr.2017.02.016. PubMed DOI PMC

Wang J, Pol SU, Haberman AK, Wang C, O’Bara MA, Sim FJ. Transcription factor induction of human oligodendrocyte progenitor fate and differentiation. Proceedings of the National Academy of Sciences. 2014;111(28):E2885–E2894. doi: 10.1073/pnas.1408295111. PubMed DOI PMC

García-León, J. A., Kumar, M., Boon, R., Chau, D., One, J., Wolfs, E., … Verfaillie, C. M. (2018). SOX10 Single Transcription Factor-Based Fast and Efficient Generation of Oligodendrocytes from Human Pluripotent Stem Cells. Stem Cell Reports, 10(2), 655–672. 10.1016/j.stemcr.2017.12.014 PubMed PMC

Madhavan, M., Nevin, Z. S., Shick, H. E., Garrison, E., Clarkson-Paredes, C., Karl, M., … Tesar, P. J. (2018). Induction of myelinating oligodendrocytes in human cortical spheroids. Nature Methods, 15(9), 700–706. 10.1038/s41592-018-0081-4 PubMed PMC

McKinnon RD, Matsui T, Dubois-Dalcq M, Aaronsont SA. FGF modulates the PDGF-driven pathway of oligodendrocyte development. Neuron. 1990;5(5):603–614. doi: 10.1016/0896-6273(90)90215-2. PubMed DOI

Baron, W., Shattil, S. J., & ffrench-Constant, C. (2002). The oligodendrocyte precursor mitogen PDGF stimulates proliferation by activation of αvβ3 integrins. The EMBO Journal, 21(8), 1957–1966. 10.1093/emboj/21.8.1957 PubMed PMC

Baron W, Metz B, Bansal R, Hoekstra D, de Vries H. PDGF and FGF-2 Signaling in oligodendrocyte progenitor cells: regulation of proliferation and differentiation by multiple intracellular signaling pathways. Molecular and Cellular Neuroscience. 2000;15(3):314–329. doi: 10.1006/mcne.1999.0827. PubMed DOI

Yang, J., Cheng, X., Qi, J., Xie, B., Zhao, X., Zheng, K., … Qiu, M. (2017). EGF Enhances Oligodendrogenesis from Glial Progenitor Cells. Frontiers in Molecular Neuroscience, 10. 10.3389/fnmol.2017.00106 PubMed PMC

Laouarem, Y., & Traiffort, E. (2018). Developmental and Repairing Production of Myelin: The Role of Hedgehog Signaling. Frontiers in Cellular Neuroscience, 12. 10.3389/fncel.2018.00305 PubMed PMC

Dai, Z.-M., Sun, S., Wang, C., Huang, H., Hu, X., Zhang, Z., … Qiu, M. (2014). Stage-Specific Regulation of Oligodendrocyte Development by Wnt/β-Catenin Signaling. Journal of Neuroscience, 34(25), 8467–8473. 10.1523/JNEUROSCI.0311-14.2014 PubMed PMC

Shi B, Ding J, Liu Y, Zhuang X, Zhuang X, Chen X, Fu C. ERK1/2 pathway-mediated differentiation of IGF-1-transfected spinal cord-derived neural stem Cells into oligodendrocytes. PLoS ONE. 2014;9(8):e106038. doi: 10.1371/journal.pone.0106038. PubMed DOI PMC

Dugas JC, Ibrahim A, Barres BA. The T3-induced gene KLF9 regulates oligodendrocyte differentiation and myelin regeneration. Molecular and Cellular Neuroscience. 2012;50(1):45–57. doi: 10.1016/j.mcn.2012.03.007. PubMed DOI PMC

Hubler, Z., Allimuthu, D., Bederman, I., Elitt, M. S., Madhavan, M., Allan, K. C., … Adams, D. J. (2018). Accumulation of 8,9-unsaturated sterols drives oligodendrocyte formation and remyelination. Nature, 560(7718), 372–376. 10.1038/s41586-018-0360-3 PubMed PMC

Ehrlich, M., Mozafari, S., Glatza, M., Starost, L., Velychko, S., Hallmann, A.-L., … Kuhlmann, T. (2017). Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proceedings of the National Academy of Sciences, 114(11), E2243–E2252. 10.1073/pnas.1614412114 PubMed PMC

Liu Z, Hu X, Cai J, Liu B, Peng X, Wegner M, Qiu M. Induction of oligodendrocyte differentiation by Olig2 and Sox10: Evidence for reciprocal interactions and dosage-dependent mechanisms. Developmental Biology. 2007;302(2):683–693. doi: 10.1016/j.ydbio.2006.10.007. PubMed DOI

Finzsch M, Stolt CC, Lommes P, Wegner M. Sox9 and Sox10 influence survival and migration of oligodendrocyte precursors in the spinal cord by regulating PDGF receptor α expression. Development. 2008;135(4):637–646. doi: 10.1242/dev.010454. PubMed DOI

Pozniak CD, Langseth AJ, Dijkgraaf GJP, Choe Y, Werb Z, Pleasure SJ. Sox10 directs neural stem cells toward the oligodendrocyte lineage by decreasing Suppressor of Fused expression. Proceedings of the National Academy of Sciences. 2010;107(50):21795–21800. doi: 10.1073/pnas.1016485107. PubMed DOI PMC

Stolt, C. C., Rehberg, S., Ader, M., Lommes, P., Riethmacher, D., Schachner, M., … Wegner, M. (2002). Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes & Development, 16(2), 165–170. 10.1101/gad.215802 PubMed PMC

Nayak D, Roth TL, McGavern DB. Microglia Development and Function. Annual Review of Immunology. 2014;32(1):367–402. doi: 10.1146/annurev-immunol-032713-120240. PubMed DOI PMC

Kierdorf K, Prinz M. Microglia in steady state. Journal of Clinical Investigation. 2017;127(9):3201–3209. doi: 10.1172/JCI90602. PubMed DOI PMC

Muffat, J., Li, Y., Yuan, B., Mitalipova, M., Omer, A., Corcoran, S., … Jaenisch, R. (2016). Efficient derivation of microglia-like cells from human pluripotent stem cells. Nature Medicine, 22(11), 1358–1367. 10.1038/nm.4189 PubMed PMC

Speicher AM, Wiendl H, Meuth SG, Pawlowski M. Generating microglia from human pluripotent stem cells: Novel in vitro models for the study of neurodegeneration. Molecular Neurodegeneration. 2019;14(1):46. doi: 10.1186/s13024-019-0347-z. PubMed DOI PMC

Haenseler, W., Sansom, S. N., Buchrieser, J., Newey, S. E., Moore, C. S., Nicholls, F. J., … Cowley, S. A. (2017). A highly efficient human pluripotent stem cell microglia model displays a neuronal-co-culture-specific expression profile and inflammatory response. Stem Cell Reports, 8(6), 1727–1742. 10.1016/j.stemcr.2017.05.017 PubMed PMC

Abud, E. M., Ramirez, R. N., Martinez, E. S., Healy, L. M., Nguyen, C. H. H., Newman, S. A., … Blurton-Jones, M. (2017). iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron, 94(2), 278-293.e9. 10.1016/j.neuron.2017.03.042 PubMed PMC

Douvaras, P., Sun, B., Wang, M., Kruglikov, I., Lallos, G., Zimmer, M., … Fossati, V. (2017). Directed Differentiation of Human Pluripotent Stem Cells to Microglia. Stem Cell Reports, 8(6), 1516–1524. 10.1016/j.stemcr.2017.04.023 PubMed PMC

Pandya, H., Shen, M. J., Ichikawa, D. M., Sedlock, A. B., Choi, Y., Johnson, K. R., … Park, J. K. (2017). Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nature Neuroscience, 20(5), 753–759. 10.1038/nn.4534 PubMed PMC

Takata, K., Kozaki, T., Lee, C. Z. W., Thion, M. S., Otsuka, M., Lim, S., … Ginhoux, F. (2017). Induced-pluripotent-stem-cell-derived primitive macrophages provide a platform for modeling tissue-resident macrophage differentiation and function. Immunity, 47(1), 183-198.e6. 10.1016/j.immuni.2017.06.017 PubMed

Kierdorf, K., Erny, D., Goldmann, T., Sander, V., Schulz, C., Perdiguero, E. G., … Prinz, M. (2013). Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nature Neuroscience, 16(3), 273–280. 10.1038/nn.3318 PubMed

Smith, L. T., Hohaus, S., Gonzalez, D. A., Dziennis, S. E., & Tenen, D. G. (1996). PU.1 (Spi-1) and C/EBP alpha regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells. Blood, 88(4), 1234–1247. PubMed

Zhang, D. E., Hetherington, C. J., Chen, H. M., & Tenen, D. G. (1994). The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Molecular and Cellular Biology, 14(1), 373–381. 10.1128/mcb.14.1.373 PubMed PMC

Kurotaki, D., Yamamoto, M., Nishiyama, A., Uno, K., Ban, T., Ichino, M., … Tamura, T. (2014). IRF8 inhibits C/EBPα activity to restrain mononuclear phagocyte progenitors from differentiating into neutrophils. Nature Communications, 5(1), 4978. 10.1038/ncomms5978 PubMed

Satoh, J., Asahina, N., Kitano, S., & Kino, Y. (2014). A Comprehensive Profile of ChIP-Seq-Based PU.1/Spi1 Target Genes in Microglia. Gene Regulation and Systems Biology, 8, GRSB.S19711. 10.4137/GRSB.S19711 PubMed PMC

Wei, S., Nandi, S., Chitu, V., Yeung, Y.-G., Yu, W., Huang, M., … Stanley, E. R. (2010). Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. Journal of Leukocyte Biology, 88(3), 495–505. 10.1189/jlb.1209822 PubMed PMC

Terashima, T., Nakae, Y., Katagi, M., Okano, J., Suzuki, Y., & Kojima, H. (2018). Stem cell factor induces polarization of microglia to the neuroprotective phenotype in vitro. Heliyon, 4(10). 10.1016/j.heliyon.2018.e00837 PubMed PMC

Zhang SC, Fedoroff S. Modulation of microglia by stem cell factor. Journal of Neuroscience Research. 1998;53(1):29–37. doi: 10.1002/(SICI)1097-4547(19980701)53:1<29::AID-JNR4>3.0.CO;2-L. PubMed DOI

Horvath S. DNA methylation age of human tissues and cell types. Genome Biology. 2013;14(10):R115. doi: 10.1186/gb-2013-14-10-r115. PubMed DOI PMC

Suhr, S. T., Chang, E. A., Rodriguez, R. M., Wang, K., Ross, P. J., Beyhan, Z., … Cibelli, J. B. (2009). Telomere Dynamics in Human Cells Reprogrammed to Pluripotency. PLoS ONE, 4(12), e8124. 10.1371/journal.pone.0008124 PubMed PMC

Suhr, S. T., Chang, E. A., Tjong, J., Alcasid, N., Perkins, G. A., Goissis, M. D., … Cibelli, J. B. (2010). Mitochondrial Rejuvenation After Induced Pluripotency. PLoS ONE, 5(11), e14095. 10.1371/journal.pone.0014095 PubMed PMC

Mertens J, Marchetto MC, Bardy C, Gage FH. Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nature Reviews Neuroscience. 2016;17(7):424–437. doi: 10.1038/nrn.2016.46. PubMed DOI PMC

Mertens J, Reid D, Lau S, Kim Y, Gage FH. Aging in a Dish: IPSC-Derived and Directly Induced Neurons for Studying Brain Aging and Age-Related Neurodegenerative Diseases. Annual Review of Genetics. 2018;52:271–293. doi: 10.1146/annurev-genet-120417-031534. PubMed DOI PMC

Traxler L, Edenhofer F, Mertens J. Next-generation disease modeling with direct conversion: A new path to old neurons. FEBS Letters. 2019;593(23):3316–3337. doi: 10.1002/1873-3468.13678. PubMed DOI PMC

Miller, J. D., Ganat, Y. M., Kishinevsky, S., Bowman, R. L., Liu, B., Tu, E. Y., … Studer, L. (2013). Human iPSC-Based Modeling of Late-Onset Disease via Progerin-Induced Aging. Cell Stem Cell, 13(6), 691–705. 10.1016/j.stem.2013.11.006 PubMed PMC

Vera E, Bosco N, Studer L. Generating Late-Onset Human iPSC-Based Disease Models by Inducing Neuronal Age-Related Phenotypes through Telomerase Manipulation. Cell Reports. 2016;17(4):1184–1192. doi: 10.1016/j.celrep.2016.09.062. PubMed DOI PMC

Nekrasov, E. D., Vigont, V. A., Klyushnikov, S. A., Lebedeva, O. S., Vassina, E. M., Bogomazova, A. N., … Kiselev, S. L. (2016). Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons. Molecular Neurodegeneration, 11(1), 27. 10.1186/s13024-016-0092-5 PubMed PMC

Petersen GF, Strappe PM. Generation of diverse neural cell types through direct conversion. World Journal of Stem Cells. 2016;8(2):32–46. doi: 10.4252/wjsc.v8.i2.32. PubMed DOI PMC

Marro, S., Pang, Z. P., Yang, N., Tsai, M.-C., Qu, K., Chang, H. Y., … Wernig, M. (2011). Direct Lineage Conversion of Terminally Differentiated Hepatocytes to Functional Neurons. Cell Stem Cell, 9(4), 374–382. 10.1016/j.stem.2011.09.002 PubMed PMC

Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA, Ding S. Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell. 2011;9(2):113–118. doi: 10.1016/j.stem.2011.07.002. PubMed DOI PMC

Huh, C. J., Zhang, B., Victor, M. B., Dahiya, S., Batista, L. F., Horvath, S., & Yoo, A. S. (2016). Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts. eLife, 5, e18648. 10.7554/eLife.18648 PubMed PMC

Yoo, A. S., Sun, A. X., Li, L., Shcheglovitov, A., Portmann, T., Li, Y., … Crabtree, G. R. (2011). MicroRNA-mediated conversion of human fibroblasts to neurons. Nature, 476(7359), 228–231. 10.1038/nature10323 PubMed PMC

Mertens, J., Paquola, A. C. M., Ku, M., Hatch, E., Böhnke, L., Ladjevardi, S., … Gage, F. H. (2015). Directly Reprogrammed Human Neurons Retain Aging-Associated Transcriptomic Signatures and Reveal Age-Related Nucleocytoplasmic Defects. Cell Stem Cell, 17(6), 705–718. 10.1016/j.stem.2015.09.001 PubMed PMC

Luo, C., Lee, Q. Y., Wapinski, O., Castanon, R., Nery, J. R., Mall, M., … Ecker, J. R. (2019). Global DNA methylation remodeling during direct reprogramming of fibroblasts to neurons. eLife, 8, e40197. 10.7554/eLife.40197 PubMed PMC

Lancaster, M. A., Renner, M., Martin, C.-A., Wenzel, D., Bicknell, L. S., Hurles, M. E., … Knoblich, J. A. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501(7467). 10.1038/nature12517 PubMed PMC

Koo, B., Choi, B., Park, H., & Yoon, K.-J. (2019). Past, Present, and Future of Brain Organoid Technology. Molecules and Cells, 42(9), 617–627. 10.14348/molcells.2019.0162 PubMed PMC

Qian, X., Song, H., & Ming, G.-L. (2019). Brain organoids: advances, applications and challenges. Development (Cambridge, England), 146(8). 10.1242/dev.166074 PubMed PMC

Paşca, A. M., Sloan, S. A., Clarke, L. E., Tian, Y., Makinson, C. D., Huber, N., … Paşca, S. P. (2015). Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nature Methods, 12(7), 671–678. 10.1038/nmeth.3415 PubMed PMC

Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Reports. 2015;10(4):537–550. doi: 10.1016/j.celrep.2014.12.051. PubMed DOI

Sakaguchi, H., Kadoshima, T., Soen, M., Narii, N., Ishida, Y., Ohgushi, M., … Sasai, Y. (2015). Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nature Communications, 6, 8896. 10.1038/ncomms9896 PubMed PMC

Jo, J., Xiao, Y., Sun, A. X., Cukuroglu, E., Tran, H.-D., Göke, J., … Ng, H.-H. (2016). Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons. Cell Stem Cell, 19(2), 248–257. 10.1016/j.stem.2016.07.005 PubMed PMC

Rossetti AC, Koch P, Ladewig J. Drug discovery in psychopharmacology: From 2D models to cerebral organoids. Dialogues in Clinical Neuroscience. 2019;21(2):203–224. doi: 10.31887/DCNS.2019.21.2/jladewig. PubMed DOI PMC

Linkous, A., Balamatsias, D., Snuderl, M., Edwards, L., Miyaguchi, K., Milner, T., … Fine, H. A. (2019). Modeling Patient-Derived Glioblastoma with Cerebral Organoids. Cell Reports, 26(12), 3203-3211.e5. 10.1016/j.celrep.2019.02.063 PubMed PMC

Yagi, T., Ito, D., Okada, Y., Akamatsu, W., Nihei, Y., Yoshizaki, T., … Suzuki, N. (2011). Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Human Molecular Genetics, 20(23), 4530–4539. 10.1093/hmg/ddr394 PubMed

Hossini, A. M., Megges, M., Prigione, A., Lichtner, B., Toliat, M. R., Wruck, W., … Adjaye, J. (2015). Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer’s disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics, 16(1), 84. 10.1186/s12864-015-1262-5 PubMed PMC

Young, J. E., Boulanger-Weill, J., Williams, D. A., Woodruff, G., Buen, F., Revilla, A. C., … Goldstein, L. S. B. (2015). Elucidating molecular phenotypes caused by the SORL1 Alzheimer’s disease genetic risk factor using human induced pluripotent stem cells. Cell Stem Cell, 16(4), 373–385. 10.1016/j.stem.2015.02.004 PubMed PMC

Knupp, A., Mishra, S., Martinez, R., Braggin, J. E., Szabo, M., Kinoshita, C., … Young, J. E. (2020). Depletion of the AD Risk Gene SORL1 Selectively Impairs Neuronal Endosomal Traffic Independent of Amyloidogenic APP Processing. Cell reports, 31(9), 107719. 10.1016/j.celrep.2020.107719 PubMed PMC

Dawkins E, Small DH. Insights into the physiological function of the β-amyloid precursor protein: Beyond Alzheimer’s disease. Journal of Neurochemistry. 2014;129(5):756–769. doi: 10.1111/jnc.12675. PubMed DOI PMC

De Strooper B, Karran E. The Cellular Phase of Alzheimer’s Disease. Cell. 2016;164(4):603–615. doi: 10.1016/j.cell.2015.12.056. PubMed DOI

Camara H, De-Souza EA. β-Amyloid Accumulation Slows Earlier than Expected in Preclinical Alzheimer’s Disease Patients. Journal of Neuroscience. 2018;38(43):9123–9125. doi: 10.1523/JNEUROSCI.1592-18.2018. PubMed DOI PMC

Mah, N., Seltmann, S., Aran, B., Steeg, R., Dewender, J., Bultjer, N., … Kurtz, A. (2020). Access to stem cell data and registration of pluripotent cell lines: The Human Pluripotent Stem Cell Registry (hPSCreg). Stem Cell Research, 47, 101887. 10.1016/j.scr.2020.101887 PubMed

Raska, J., Klimova, H., Sheardova, K., Fedorova, V., Hribkova, H., Pospisilova, V., … Bohaciakova, D. (2021). Generation of three human iPSC lines from patients with a spontaneous late-onset Alzheimer’s disease and three sex- and age-matched healthy controls. Stem Cell Research, 53, 102378. 10.1016/j.scr.2021.102378 PubMed

Raska, J., Hribkova, H., Klimova, H., Fedorova, V., Barak, M., Barta, T., … Bohaciakova, D. (2021). Generation of six human iPSC lines from patients with a familial Alzheimer’s disease (n = 3) and sex- and age-matched healthy controls (n = 3). Stem Cell Research, 53, 102379. 10.1016/j.scr.2021.102379 PubMed

D’Souza GX, Rose SE, Knupp A, Nicholson DA, Keene CD, Young JE. The application of in vitro-derived human neurons in neurodegenerative disease modeling. Journal of Neuroscience Research. 2020 doi: 10.1002/jnr.24615. PubMed DOI PMC

de Leeuw, S., & Tackenberg, C. (2019). Alzheimer’s in a dish – induced pluripotent stem cell-based disease modeling. Translational Neurodegeneration, 8. 10.1186/s40035-019-0161-0 PubMed PMC

Penney, J., Ralvenius, W. T., & Tsai, L.-H. (2020). Modeling Alzheimer’s disease with iPSC-derived brain cells. Molecular Psychiatry, 25(1), 148–167. 10.1038/s41380-019-0468-3 PubMed PMC

Poon A, Zhang Y, Chandrasekaran A, Phanthong P, Schmid B, Nielsen TT, Freude KK. Modeling neurodegenerative diseases with patient-derived induced pluripotent cells: Possibilities and challenges. New Biotechnology. 2017;39:190–198. doi: 10.1016/j.nbt.2017.05.009. PubMed DOI

Riemens RJM, Kenis G, van den Beucken T. Human-induced pluripotent stem cells as a model for studying sporadic Alzheimer’s disease. Neurobiology of Learning and Memory. 2020;175:107318. doi: 10.1016/j.nlm.2020.107318. PubMed DOI

Rowland HA, Hooper NM, Kellett KAB. Modelling Sporadic Alzheimer’s Disease Using Induced Pluripotent Stem Cells. Neurochemical Research. 2018;43(12):2179–2198. doi: 10.1007/s11064-018-2663-z. PubMed DOI PMC

Sullivan SE, Young-Pearse TL. Induced pluripotent stem cells as a discovery tool for Alzheimer׳s disease. Brain Research. 2017;1656:98–106. doi: 10.1016/j.brainres.2015.10.005. PubMed DOI PMC

Tcw J. Human iPSC application in Alzheimer’s disease and Tau-related neurodegenerative diseases. Neuroscience Letters. 2019;699:31–40. doi: 10.1016/j.neulet.2019.01.043. PubMed DOI

Jones VC, Atkinson-Dell R, Verkhratsky A, Mohamet L. Aberrant iPSC-derived human astrocytes in Alzheimer’s disease. Cell Death & Disease. 2017;8(3):e2696–e2696. doi: 10.1038/cddis.2017.89. PubMed DOI PMC

Koch, P., Tamboli, I. Y., Mertens, J., Wunderlich, P., Ladewig, J., Stüber, K., … Walter, J. (2012). Presenilin-1 L166P mutant human pluripotent stem cell–derived neurons exhibit partial loss of γ-secretase activity in endogenous Amyloid-β generation. The American Journal of Pathology, 180(6), 2404–2416. 10.1016/j.ajpath.2012.02.012 PubMed

Meyer, K., Feldman, H. M., Lu, T., Drake, D., Lim, E. T., Ling, K.-H., … Yankner, B. A. (2019). REST and Neural Gene Network Dysregulation in iPSC Models of Alzheimer’s Disease. Cell Reports, 26(5), 1112-1127.e9. 10.1016/j.celrep.2019.01.023 PubMed PMC

Paquet, D., Kwart, D., Chen, A., Sproul, A., Jacob, S., Teo, S., … Tessier-Lavigne, M. (2016). Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature, 533(7601), 125–129. 10.1038/nature17664 PubMed

Sproul, A. A., Jacob, S., Pre, D., Kim, S. H., Nestor, M. W., Navarro-Sobrino, M., … Noggle, S. A. (2014). Characterization and Molecular Profiling of PSEN1 Familial Alzheimer’s Disease iPSC-Derived Neural Progenitors. PLOS ONE, 9(1), e84547. 10.1371/journal.pone.0084547 PubMed PMC

Yang, J., Zhao, H., Ma, Y., Shi, G., Song, J., Tang, Y., … Le, W. (2017). Early pathogenic event of Alzheimer’s disease documented in iPSCs from patients with PSEN1 mutations. Oncotarget, 8(5), 7900–7913. 10.18632/oncotarget.13776 PubMed PMC

Pansri, P., Phanthong, P., Suthprasertporn, N., Kitiyanant, Y., Tubsuwan, A., Dinnyes, A., … Kitiyanant, N. (2021). Brain-derived neurotrophic factor increases cell number of neural progenitor cells derived from human induced pluripotent stem cells. PeerJ, 9, e11388. 10.7717/peerj.11388 PubMed PMC

Gunhanlar, N., Shpak, G., van der Kroeg, M., Gouty-Colomer, L. A., Munshi, S. T., Lendemeijer, B., … Kushner, S. A. (2018). A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells. Molecular Psychiatry, 23(5), 1336–1344. 10.1038/mp.2017.56 PubMed PMC

Sun, A. X., Yuan, Q., Tan, S., Xiao, Y., Wang, D., Khoo, A. T. T., … Je, H. S. (2016). Direct Induction and Functional Maturation of Forebrain GABAergic Neurons from Human Pluripotent Stem Cells. Cell Reports, 16(7), 1942–1953. 10.1016/j.celrep.2016.07.035 PubMed

Duan L, Bhattacharyya BJ, Belmadani A, Pan L, Miller RJ, Kessler JA. Stem cell derived basal forebrain cholinergic neurons from Alzheimer’s disease patients are more susceptible to cell death. Molecular Neurodegeneration. 2014;9(1):3. doi: 10.1186/1750-1326-9-3. PubMed DOI PMC

Ortiz-Virumbrales, M., Moreno, C. L., Kruglikov, I., Marazuela, P., Sproul, A., Jacob, S., … Gandy, S. (2017). CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2N141Ineurons. Acta Neuropathologica Communications, 5(1), 77. 10.1186/s40478-017-0475-z PubMed PMC

Mertens, J., Herdy, J. R., Traxler, L., Schafer, S. T., Schlachetzki, J. C. M., Böhnke, L., … Gage, F. H. (2021). Age-dependent instability of mature neuronal fate in induced neurons from Alzheimer’s patients. Cell Stem Cell. 10.1016/j.stem.2021.04.004 PubMed PMC

Zhao, J., Fu, Y., Yamazaki, Y., Ren, Y., Davis, M. D., Liu, C.-C., … Bu, G. (2020). APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer’s disease patient iPSC-derived cerebral organoids. Nature Communications, 11(1), 5540. 10.1038/s41467-020-19264-0 PubMed PMC

Hu, N.-W., Corbett, G. T., Moore, S., Klyubin, I., O’Malley, T. T., Walsh, D. M., … Rowan, M. J. (2018). Extracellular Forms of Aβ and Tau from iPSC Models of Alzheimer’s Disease Disrupt Synaptic Plasticity. Cell Reports, 23(7), 1932–1938. 10.1016/j.celrep.2018.04.040 PubMed PMC

Birnbaum, J. H., Wanner, D., Gietl, A. F., Saake, A., Kündig, T. M., Hock, C., … Tackenberg, C. (2018). Oxidative stress and altered mitochondrial protein expression in the absence of amyloid-β and tau pathology in iPSC-derived neurons from sporadic Alzheimer’s disease patients. Stem Cell Research, 27, 121–130. 10.1016/j.scr.2018.01.019 PubMed

Elsworthy, R. J., King, M. C., Grainger, A., Fisher, E., Crowe, J. A., Alqattan, S., … Aldred, S. (2021). Amyloid-β Precursor Protein Processing and Oxidative Stress are Altered in Human iPSC-Derived Neuron and Astrocyte Co-Cultures Carrying Presenillin-1 Gene Mutations Following Spontaneous Differentiation. Molecular and Cellular Neurosciences, 103631. 10.1016/j.mcn.2021.103631 PubMed

Kwart, D., Gregg, A., Scheckel, C., Murphy, E. A., Paquet, D., Duffield, M., … Tessier-Lavigne, M. (2019). A Large Panel of Isogenic APP and PSEN1 Mutant Human iPSC Neurons Reveals Shared Endosomal Abnormalities Mediated by APP β-CTFs, Not Aβ. Neuron, 104(2), 256-270.e5. 10.1016/j.neuron.2019.07.010 PubMed

Martín-Maestro, P., Gargini, R., A Sproul, A., García, E., Antón, L. C., Noggle, S., … García-Escudero, V. (2017). Mitophagy Failure in Fibroblasts and iPSC-Derived Neurons of Alzheimer’s Disease-Associated Presenilin 1 Mutation. Frontiers in Molecular Neuroscience, 10, 291. 10.3389/fnmol.2017.00291 PubMed PMC

Li, L., Roh, J. H., Chang, E. H., Lee, Y., Lee, S., Kim, M., … Song, J. (2018). iPSC Modeling of Presenilin1 Mutation in Alzheimer’s Disease with Cerebellar Ataxia. Experimental Neurobiology, 27(5), 350–364. 10.5607/en.2018.27.5.350 PubMed PMC

Fang, E. F., Hou, Y., Palikaras, K., Adriaanse, B. A., Kerr, J. S., Yang, B., … Bohr, V. A. (2019). Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nature Neuroscience, 22(3), 401–412. 10.1038/s41593-018-0332-9 PubMed PMC

van der Kant, R., Langness, V. F., Herrera, C. M., Williams, D. A., Fong, L. K., Leestemaker, Y., … Goldstein, L. S. B. (2019). Cholesterol Metabolism Is a Druggable Axis that Independently Regulates Tau and Amyloid-β in iPSC-Derived Alzheimer’s Disease Neurons. Cell Stem Cell, 24(3), 363-375.e9. 10.1016/j.stem.2018.12.013 PubMed PMC

Muratore, C. R., Zhou, C., Liao, M., Fernandez, M. A., Taylor, W. M., Lagomarsino, V. N., … Young-Pearse, T. L. (2017). Cell-type Dependent Alzheimer’s Disease Phenotypes: Probing the Biology of Selective Neuronal Vulnerability. Stem Cell Reports, 9(6), 1868–1884. 10.1016/j.stemcr.2017.10.015 PubMed PMC

Israel, M. A., Yuan, S. H., Bardy, C., Reyna, S. M., Mu, Y., Herrera, C., … Goldstein, L. S. B. (2012). Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature, 482(7384), 216–220. 10.1038/nature10821 PubMed PMC

Moore, S., Evans, L. D. B., Andersson, T., Portelius, E., Smith, J., Dias, T. B., … Livesey, F. J. (2015). APP Metabolism Regulates Tau Proteostasis in Human Cerebral Cortex Neurons. Cell Reports, 11(5), 689–696. 10.1016/j.celrep.2015.03.068 PubMed PMC

Muratore, C. R., Rice, H. C., Srikanth, P., Callahan, D. G., Shin, T., Benjamin, L. N. P., … Young-Pearse, T. L. (2014). The familial Alzheimer’s disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Human Molecular Genetics, 23(13), 3523–3536. 10.1093/hmg/ddu064 PubMed PMC

Woodruff, G., Reyna, S. M., Dunlap, M., Van Der Kant, R., Callender, J. A., Young, J. E., … Goldstein, L. S. B. (2016). Defective Transcytosis of APP and Lipoproteins in Human iPSC-Derived Neurons with Familial Alzheimer’s Disease Mutations. Cell Reports, 17(3), 759–773. 10.1016/j.celrep.2016.09.034 PubMed PMC

Chang, C.-Y., Chen, S.-M., Lu, H.-E., Lai, S.-M., Lai, P.-S., Shen, P.-W., … Su, H.-L. (2015). N-butylidenephthalide attenuates Alzheimer’s disease-like cytopathy in Down syndrome induced pluripotent stem cell-derived neurons. Scientific Reports, 5, 8744. 10.1038/srep08744 PubMed PMC

Konttinen, H., Gureviciene, I., Oksanen, M., Grubman, A., Loppi, S., Huuskonen, M. T., … Malm, T. (2019). PPARβ/δ-agonist GW0742 ameliorates dysfunction in fatty acid oxidation in PSEN1ΔE9 astrocytes. Glia, 67(1), 146–159. 10.1002/glia.23534 PubMed PMC

Mahairaki, V., Ryu, J., Peters, A., Chang, Q., Li, T., Park, T. S., … Koliatsos, V. E. (2014). Induced pluripotent stem cells from familial Alzheimer’s disease patients differentiate into mature neurons with amyloidogenic properties. Stem Cells and Development, 23(24), 2996–3010. 10.1089/scd.2013.0511 PubMed PMC

Kondo, T., Asai, M., Tsukita, K., Kutoku, Y., Ohsawa, Y., Sunada, Y., … Inoue, H. (2013). Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell, 12(4), 487–496. 10.1016/j.stem.2013.01.009 PubMed

Oka S, Leon J, Sakumi K, Ide T, Kang D, LaFerla FM, Nakabeppu Y. Human mitochondrial transcriptional factor A breaks the mitochondria-mediated vicious cycle in Alzheimer’s disease. Scientific Reports. 2016;6(1):37889. doi: 10.1038/srep37889. PubMed DOI PMC

Lu, J., Li, Y., Mollinari, C., Garaci, E., & Pei*, D. M. and G. (2019, August 31). Amyloid-β Oligomers-induced Mitochondrial DNA Repair Impairment Contributes to Altered Human Neural Stem Cell Differentiation. Current Alzheimer Research. Retrieved December 30, 2020, from https://www.eurekaselect.com/176056/article PubMed

Nieweg K, Andreyeva A, van Stegen B, Tanriöver G, Gottmann K. Alzheimer’s disease-related amyloid-β induces synaptotoxicity in human iPS cell-derived neurons. Cell Death & Disease. 2015;6:e1709. doi: 10.1038/cddis.2015.72. PubMed DOI PMC

Vazin, T., Ball, K. A., Lu, H., Park, H., Ataeijannati, Y., Head-Gordon, T., … Schaffer, D. V. (2014). Efficient derivation of cortical glutamatergic neurons from human pluripotent stem cells: A model system to study neurotoxicity in Alzheimer’s disease. Neurobiology of Disease, 62, 62–72. 10.1016/j.nbd.2013.09.005 PubMed PMC

Armijo E, Gonzalez C, Shahnawaz M, Flores A, Davis B, Soto C. Increased susceptibility to Aβ toxicity in neuronal cultures derived from familial Alzheimer’s disease (PSEN1-A246E) induced pluripotent stem cells. Neuroscience Letters. 2017;639:74–81. doi: 10.1016/j.neulet.2016.12.060. PubMed DOI

Ochalek, A., Mihalik, B., Avci, H. X., Chandrasekaran, A., Téglási, A., Bock, I., … Dinnyés, A. (2017). Neurons derived from sporadic Alzheimer’s disease iPSCs reveal elevated TAU hyperphosphorylation, increased amyloid levels, and GSK3B activation. Alzheimer’s Research & Therapy, 9(1), 90. 10.1186/s13195-017-0317-z PubMed PMC

Sienski, G., Narayan, P., Bonner, J. M., Kory, N., Boland, S., Arczewska, A. A., … Lindquist, S. (2021). APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Science Translational Medicine, 13(583). 10.1126/scitranslmed.aaz4564 PubMed PMC

Langness VF, van der Kant R, Das U, Wang L, dos Chaves R, S., & Goldstein, L. S. B. Cholesterol-lowering drugs reduce APP processing to Aβ by inducing APP dimerization. Molecular Biology of the Cell. 2020;32(3):247–259. doi: 10.1091/mbc.E20-05-0345. PubMed DOI PMC

Arber, C., Lovejoy, C., Harris, L., Willumsen, N., Alatza, A., Casey, J. M., … Wray, S. (2021). Familial Alzheimer’s Disease Mutations in PSEN1 Lead to Premature Human Stem Cell Neurogenesis. Cell Reports, 34(2), 108615. 10.1016/j.celrep.2020.108615 PubMed PMC

Vijayan VK, Geddes JW, Anderson KJ, Chang-Chui H, Ellis WG, Cotman CW. Astrocyte hypertrophy in the Alzheimer’s disease hippocampal formation. Experimental Neurology. 1991;112(1):72–78. doi: 10.1016/0014-4886(91)90115-s. PubMed DOI

Perez-Nievas BG, Serrano-Pozo A. Deciphering the Astrocyte Reaction in Alzheimer’s Disease. Frontiers in Aging Neuroscience. 2018;10:114. doi: 10.3389/fnagi.2018.00114. PubMed DOI PMC

Ben Haim, L., Carrillo-de Sauvage, M.-A., Ceyzériat, K., & Escartin, C. (2015). Elusive roles for reactive astrocytes in neurodegenerative diseases. Frontiers in Cellular Neuroscience, 9. 10.3389/fncel.2015.00278 PubMed PMC

Griffin, P., Sheehan, P. W., Dimitry, J. M., Guo, C., Kanan, M. F., Lee, J., … Musiek, E. S. (2020). REV-ERBα mediates complement expression and diurnal regulation of microglial synaptic phagocytosis. eLife, 9, e58765. 10.7554/eLife.58765 PubMed PMC

Fong, L. K., Yang, M. M., Dos Santos Chaves, R., Reyna, S. M., Langness, V. F., Woodruff, G., … Goldstein, L. S. B. (2018). Full-length amyloid precursor protein regulates lipoprotein metabolism and amyloid-β clearance in human astrocytes. The Journal of Biological Chemistry, 293(29), 11341–11357. 10.1074/jbc.RA117.000441 PubMed PMC

Lin, Y.-T., Seo, J., Gao, F., Feldman, H. M., Wen, H.-L., Penney, J., … Tsai, L.-H. (2018). APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron, 98(6), 1141-1154.e7. 10.1016/j.neuron.2018.05.008 PubMed PMC

Tognatta R, Miller RH. Contribution of the oligodendrocyte lineage to CNS repair and neurodegenerative pathologies. Neuropharmacology. 2016;110:539–547. doi: 10.1016/j.neuropharm.2016.04.026. PubMed DOI PMC

Nielsen, H. M., Ek, D., Avdic, U., Orbjörn, C., Hansson, O., Veerhuis, R., … The Netherlands Brain Bank. (2013). NG2 cells, a new trail for Alzheimer’s disease mechanisms? Acta Neuropathologica Communications, 1(1), 7. 10.1186/2051-5960-1-7 PubMed PMC

Roher, A. E., Weiss, N., Kokjohn, T. A., Kuo, Y.-M., Kalback, W., Anthony, J., … Beach, T. (2002). Increased Aβ peptides and reduced cholesterol and myelin proteins characterize white matter degeneration in alzheimer’s disease. Biochemistry, 41(37), 11080–11090. 10.1021/bi026173d PubMed

Jantaratnotai N, Ryu JK, Kim SU, McLarnon JG. Amyloid beta peptide-induced corpus callosum damage and glial activation in vivo. NeuroReport. 2003;14(11):1429–1433. doi: 10.1097/00001756-200308060-00005. PubMed DOI

Czepiel, M., Balasubramaniyan, V., Schaafsma, W., Stancic, M., Mikkers, H., Huisman, C., … Copray, S. (2011). Differentiation of induced pluripotent stem cells into functional oligodendrocytes. Glia, 59(6), 882–892. 10.1002/glia.21159 PubMed

Livesey, M. R., Magnani, D., Cleary, E. M., Vasistha, N. A., James, O. T., Selvaraj, B. T., … Chandran, S. (2016). Maturation and electrophysiological properties of human pluripotent stem cell-derived oligodendrocytes. STEM CELLS, 34(4), 1040–1053. 10.1002/stem.2273 PubMed PMC

Wolf SA, Boddeke HWGM, Kettenmann H. Microglia in Physiology and Disease. Annual Review of Physiology. 2017;79(1):619–643. doi: 10.1146/annurev-physiol-022516-034406. PubMed DOI

Stelzmann RA, Schnitzlein HN, Murtagh FR. An english translation of alzheimer’s 1907 paper, “über eine eigenartige erkankung der hirnrinde”. Clinical Anatomy. 1995;8(6):429–431. doi: 10.1002/ca.980080612. PubMed DOI

Graeber MB, Scheithauer BW, Kreutzberg GW. Microglia in brain tumors. Glia. 2002;40(2):252–259. doi: 10.1002/glia.10147. PubMed DOI

Hickman SE, Allison EK, El Khoury J. Microglial Dysfunction and Defective -Amyloid Clearance Pathways in Aging Alzheimer’s Disease Mice. Journal of Neuroscience. 2008;28(33):8354–8360. doi: 10.1523/JNEUROSCI.0616-08.2008. PubMed DOI PMC

Liu Z, Condello C, Schain A, Harb R, Grutzendler J. CX3CR1 in Microglia Regulates Brain Amyloid Deposition through Selective Protofibrillar Amyloid-β Phagocytosis. Journal of Neuroscience. 2010;30(50):17091–17101. doi: 10.1523/JNEUROSCI.4403-10.2010. PubMed DOI PMC

Guillot-Sestier M-V, Town T. Innate immunity in Alzheimer’s disease: A complex affair. CNS & neurological disorders drug targets. 2013;12(5):593–607. doi: 10.2174/1871527311312050008. PubMed DOI PMC

Jonsson, T., Stefansson, H., Steinberg, S., Jonsdottir, I., Jonsson, P. V., Snaedal, J., … Stefansson, K. (2013). Variant of TREM2 Associated with the Risk of Alzheimer’s Disease. New England Journal of Medicine, 368(2), 107–116. 10.1056/NEJMoa1211103 PubMed PMC

Lambert, J. C., Ibrahim-Verbaas, C. A., Harold, D., Naj, A. C., Sims, R., Bellenguez, C., … Amouyel, P. (2013). Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nature Genetics, 45(12), 1452–1458. 10.1038/ng.2802 PubMed PMC

Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. Journal of Cell Biology. 2018;217(2):459–472. doi: 10.1083/jcb.201709069. PubMed DOI PMC

Xu M, Zhang L, Liu G, Jiang N, Zhou W, Zhang Y. Pathological Changes in Alzheimer’s Disease Analyzed Using Induced Pluripotent Stem Cell-Derived Human Microglia-Like Cells. Journal of Alzheimer’s Disease. 2019;67(1):357–368. doi: 10.3233/JAD-180722. PubMed DOI

Claes, C., Daele, J. V. D., Boon, R., Schouteden, S., Colombo, A., Monasor, L. S., … Verfaillie, C. M. (2019). Human stem cell–derived monocytes and microglia-like cells reveal impaired amyloid plaque clearance upon heterozygous or homozygous loss of TREM2. Alzheimer’s & Dementia, 15(3), 453–464. 10.1016/j.jalz.2018.09.006 PubMed

Alić, I., Goh, P. A., Murray, A., Portelius, E., Gkanatsiou, E., Gough, G., … Nižetić, D. (2020). Patient-specific Alzheimer-like pathology in trisomy 21 cerebral organoids reveals BACE2 as a gene dose-sensitive AD suppressor in human brain. Molecular Psychiatry, 1–23. 10.1038/s41380-020-0806-5 PubMed PMC

Gonzalez C, Armijo E, Bravo-Alegria J, Becerra-Calixto A, Mays CE, Soto C. Modeling amyloid beta and tau pathology in human cerebral organoids. Molecular psychiatry. 2018;23(12):2363–2374. doi: 10.1038/s41380-018-0229-8. PubMed DOI PMC

Pavoni, S., Jarray, R., Nassor, F., Guyot, A.-C., Cottin, S., Rontard, J., … Yates, F. (2018). Small-molecule induction of Aβ-42 peptide production in human cerebral organoids to model Alzheimer’s disease associated phenotypes. PLoS ONE, 13(12). 10.1371/journal.pone.0209150 PubMed PMC

Raja WK, Mungenast AE, Lin Y-T, Ko T, Abdurrob F, Seo J, Tsai L-H. Self-Organizing 3D Human Neural Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer’s Disease Phenotypes. PLoS ONE. 2016;11(9):e0161969. doi: 10.1371/journal.pone.0161969. PubMed DOI PMC

Park, J.-C., Jang, S.-Y., Lee, D., Lee, J., Kang, U., Chang, H., … Mook-Jung, I. (2021). A logical network-based drug-screening platform for Alzheimer’s disease representing pathological features of human brain organoids. Nature Communications, 12(1), 280. 10.1038/s41467-020-20440-5 PubMed PMC

Hernández, D., Rooney, L. A., Daniszewski, M., Gulluyan, L., Liang, H. H., Cook, A. L., … Pébay, A. (2021). Culture Variabilities of Human iPSC-Derived Cerebral Organoids Are a Major Issue for the Modelling of Phenotypes Observed in Alzheimer’s Disease. Stem Cell Reviews and Reports. 10.1007/s12015-021-10147-5 PubMed

Choi, S. H., Kim, Y. H., Hebisch, M., Sliwinski, C., Lee, S., D’Avanzo, C., … Kim, D. Y. (2014). A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature, 515(7526), 274–278. 10.1038/nature13800 PubMed PMC

Ormel, P. R., Sá, R. V. de, Bodegraven, E. J. van, Karst, H., Harschnitz, O., Sneeboer, M. A. M., … Pasterkamp, R. J. (2018). Microglia innately develop within cerebral organoids. Nature Communications, 9(1), 1–14. 10.1038/s41467-018-06684-2 PubMed PMC

Quadrato, G., Nguyen, T., Macosko, E. Z., Sherwood, J. L., Min Yang, S., Berger, D. R., … Arlotta, P. (2017). Cell diversity and network dynamics in photosensitive human brain organoids. Nature, 545(7652), 48–53. 10.1038/nature22047 PubMed PMC

Sloan, S. A., Darmanis, S., Huber, N., Khan, T. A., Birey, F., Caneda, C., … Paşca, S. P. (2017). Human Astrocyte Maturation Captured in 3D Cerebral Cortical Spheroids Derived from Pluripotent Stem Cells. Neuron, 95(4), 779-790.e6. 10.1016/j.neuron.2017.07.035 PubMed PMC

Grebenyuk, S., & Ranga, A. (2019). Engineering Organoid Vascularization. Frontiers in Bioengineering and Biotechnology, 7. 10.3389/fbioe.2019.00039 PubMed PMC

Camp, J. G., Badsha, F., Florio, M., Kanton, S., Gerber, T., Wilsch-Bräuninger, M., … Treutlein, B. (2015). Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proceedings of the National Academy of Sciences, 112(51), 15672–15677. 10.1073/pnas.1520760112 PubMed PMC

Shi, Y., Kirwan, P., Smith, J., MacLean, G., Orkin, S. H., & Livesey, F. J. (2012). A Human Stem Cell Model of Early Alzheimer’s Disease Pathology in Down Syndrome. Science Translational Medicine, 4(124), 124ra29–124ra29. 10.1126/scitranslmed.3003771 PubMed PMC

Woodruff, G., Young, J. E., Martinez, F. J., Buen, F., Gore, A., Kinaga, J., … Goldstein, L. S. B. (2013). The Presenilin-1 ΔE9 Mutation Results in Reduced γ-Secretase Activity, but Not Total Loss of PS1 Function, in Isogenic Human Stem Cells. Cell Reports, 5(4), 974–985. 10.1016/j.celrep.2013.10.018 PubMed PMC

Liu, Q., Waltz, S., Woodruff, G., Ouyang, J., Israel, M. A., Herrera, C., … Yuan, S. H. (2014). Effect of potent γ-secretase modulator in human neurons derived from multiple presenilin 1–induced pluripotent stem cell mutant carriers. JAMA neurology, 71(12), 1481–1489. 10.1001/jamaneurol.2014.2482 PubMed PMC

Maloney, J. A., Bainbridge, T., Gustafson, A., Zhang, S., Kyauk, R., Steiner, P., … Atwal, J. K. (2014). Molecular mechanisms of Alzheimer disease protection by the A673T allele of amyloid precursor protein. The Journal of Biological Chemistry, 289(45), 30990–31000. 10.1074/jbc.M114.589069 PubMed PMC

Dashinimaev EB, Artyuhov AS, Bolshakov AP, Vorotelyak EA, Vasiliev AV. Neurons derived from induced pluripotent stem cells of patients with down syndrome reproduce early stages of alzheimer’s disease type pathology in vitro. Journal of Alzheimer’s disease: JAD. 2017;56(2):835–847. doi: 10.3233/JAD-160945. PubMed DOI

Moreno, C. L., Della Guardia, L., Shnyder, V., Ortiz-Virumbrales, M., Kruglikov, I., Zhang, B., … Gandy, S. (2018). iPSC-derived familial Alzheimer’s PSEN2 N141I cholinergic neurons exhibit mutation-dependent molecular pathology corrected by insulin signaling. Molecular Neurodegeneration, 13(1), 33. 10.1186/s13024-018-0265-5 PubMed PMC

Ovchinnikov DA, Korn O, Virshup I, Wells CA, Wolvetang EJ. The impact of app on alzheimer-like pathogenesis and gene expression in down syndrome iPSC-derived neurons. Stem Cell Reports. 2018;11(1):32–42. doi: 10.1016/j.stemcr.2018.05.004. PubMed DOI PMC

Robbins, J. P., Perfect, L., Ribe, E. M., Maresca, M., Dangla-Valls, A., Foster, E. M., … Lovestone, S. (2018). Clusterin Is Required for β-Amyloid Toxicity in Human iPSC-Derived Neurons. Frontiers in Neuroscience, 12, 504. 10.3389/fnins.2018.00504 PubMed PMC

Wang, C., Najm, R., Xu, Q., Jeong, D.-E., Walker, D., Balestra, M. E., … Huang, Y. (2018). Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nature Medicine, 24(5), 647–657. 10.1038/s41591-018-0004-z PubMed PMC

Wezyk, M., Szybinska, A., Wojsiat, J., Szczerba, M., Day, K., Ronnholm, H., … Zekanowski, C. (2018). Overactive BRCA1 affects presenilin 1 in induced pluripotent stem cell-derived neurons in Alzheimer’s disease. Journal of Alzheimer’s disease: JAD, 62(1), 175–202. 10.3233/JAD-170830 PubMed

Chang, K.-H., Lee-Chen, G.-J., Huang, C.-C., Lin, J.-L., Chen, Y.-J., Wei, P.-C., … Chen, C.-M. (2019). Modeling Alzheimer’s disease by induced pluripotent stem cells carrying APP D678H mutation. Molecular Neurobiology, 56(6), 3972–3983. 10.1007/s12035-018-1336-x PubMed PMC

Wadhwani AR, Affaneh A, Van Gulden S, Kessler JA. Neuronal apolipoprotein E4 increases cell death and phosphorylated tau release in alzheimer disease. Annals of Neurology. 2019;85(5):726–739. doi: 10.1002/ana.25455. PubMed DOI PMC

Arber, C., Toombs, J., Lovejoy, C., Ryan, N. S., Paterson, R. W., Willumsen, N., … Wray, S. (2020). Familial Alzheimer’s disease patient-derived neurons reveal distinct mutation-specific effects on amyloid beta. Molecular Psychiatry, 25(11), 2919–2931. 10.1038/s41380-019-0410-8 PubMed PMC

Martins, S., Müller-Schiffmann, A., Erichsen, L., Bohndorf, M., Wruck, W., Sleegers, K., … Adjaye, J. (2020). IPSC-derived neuronal cultures carrying the Alzheimer’s disease associated TREM2 R47H variant enables the construction of an Aβ-induced gene regulatory network. International Journal of Molecular Sciences, 21(12), 4516. 10.3390/ijms21124516 PubMed PMC

Konttinen H, Cabral-da-Silva M, e C., Ohtonen, S., Wojciechowski, S., Shakirzyanova, A., Caligola, S., … Malm, T. PSEN1ΔE9, APPswe, and APOE4 Confer Disparate Phenotypes in Human iPSC-Derived Microglia. Stem Cell Reports. 2019;13(4):669–683. doi: 10.1016/j.stemcr.2019.08.004. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Efficient derivation of functional astrocytes from human induced pluripotent stem cells (hiPSCs)

. 2024 ; 19 (12) : e0313514. [epub] 20241204

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...