Efficient derivation of functional astrocytes from human induced pluripotent stem cells (hiPSCs)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39630626
PubMed Central
PMC11616838
DOI
10.1371/journal.pone.0313514
PII: PONE-D-24-02575
Knihovny.cz E-zdroje
- MeSH
- akvaporin 4 metabolismus MeSH
- astrocyty * cytologie metabolismus MeSH
- buněčná diferenciace * MeSH
- cytokiny metabolismus MeSH
- gliový fibrilární kyselý protein metabolismus MeSH
- indukované pluripotentní kmenové buňky * cytologie metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- S-100 kalcium vázající protein G, podjednotka beta * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- akvaporin 4 MeSH
- cytokiny MeSH
- gliový fibrilární kyselý protein MeSH
- S-100 kalcium vázající protein G, podjednotka beta * MeSH
- S100B protein, human MeSH Prohlížeč
Astrocytes are specialized glial cell types of the central nervous system (CNS) with remarkably high abundance, morphological and functional diversity. Astrocytes maintain neural metabolic support, synapse regulation, blood-brain barrier integrity and immunological homeostasis through intricate interactions with other cells, including neurons, microglia, pericytes and lymphocytes. Due to their extensive intercellular crosstalks, astrocytes are also implicated in the pathogenesis of CNS disorders, such as ALS (amyotrophic lateral sclerosis), Parkinson's disease and Alzheimer's disease. Despite the critical importance of astrocytes in neurodegeneration and neuroinflammation are recognized, the lack of suitable in vitro systems limits their availability for modeling human brain pathologies. Here, we report the time-efficient, reproducible generation of astrocytes from human induced pluripotent stem cells (hiPSCs). Our hiPSC-derived astrocytes expressed characteristic astrocyte markers, such as GFAP, S100b, ALDH1L1 and AQP4. Furthermore, hiPSC-derived astrocytes displayed spontaneous calcium transients and responded to inflammatory stimuli by the secretion of type A1 and type A2 astrocyte-related cytokines.
BioTalentum Ltd Godollo Hungary
Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
Department of Immunochemistry Diagnostics University Hospital Pilsen Pilsen Czech Republic
Zobrazit více v PubMed
Trudler D, Ghatak S, Lipton SA. Emerging hiPSC Models for Drug Discovery in Neurodegenerative Diseases. Int J Mol Sci. 2021;22(15). Epub 20210730. doi: 10.3390/ijms22158196 ; PubMed Central PMCID: PMC8347370. PubMed DOI PMC
Grekhnev DA, Kaznacheyeva EV, Vigont VA. Patient-Specific iPSCs-Based Models of Neurodegenerative Diseases: Focus on Aberrant Calcium Signaling. Int J Mol Sci. 2022;23(2). Epub 20220106. doi: 10.3390/ijms23020624 ; PubMed Central PMCID: PMC8776084. PubMed DOI PMC
Paik DT, Chandy M, Wu JC. Patient and Disease-Specific Induced Pluripotent Stem Cells for Discovery of Personalized Cardiovascular Drugs and Therapeutics. Pharmacol Rev. 2020;72(1):320–42. doi: 10.1124/pr.116.013003 ; PubMed Central PMCID: PMC6934989. PubMed DOI PMC
Elitt MS, Barbar L, Tesar PJ. Drug screening for human genetic diseases using iPSC models. Hum Mol Genet. 2018;27(R2):R89–R98. doi: 10.1093/hmg/ddy186 ; PubMed Central PMCID: PMC6061782. PubMed DOI PMC
Qu Y. hiPSC-Based Tissue Organoid Regeneration. sine loco: IntechOpen; 2018.
Horanszky A, Shashikadze B, Elkhateib R, Lombardo SD, Lamberto F, Zana M, et al.. Proteomics and disease network associations evaluation of environmentally relevant Bisphenol A concentrations in a human 3D neural stem cell model. Front Cell Dev Biol. 2023;11:1236243. Epub 20230816. doi: 10.3389/fcell.2023.1236243 ; PubMed Central PMCID: PMC10472293. PubMed DOI PMC
Lamberto F, Shashikadze B, Elkhateib R, Lombardo SD, Horanszky A, Balogh A, et al.. Low-dose Bisphenol A exposure alters the functionality and cellular environment in a human cardiomyocyte model. Environ Pollut. 2023;335:122359. Epub 20230809. doi: 10.1016/j.envpol.2023.122359 . PubMed DOI
Du H, Huo Z, Chen Y, Zhao Z, Meng F, Wang X, et al.. Induced Pluripotent Stem Cells and Their Applications in Amyotrophic Lateral Sclerosis. Cells. 2023;12(6). Epub 20230322. doi: 10.3390/cells12060971 ; PubMed Central PMCID: PMC10047679. PubMed DOI PMC
Chandrasekaran A, Dittlau KS, Corsi GI, Haukedal H, Doncheva NT, Ramakrishna S, et al.. Astrocytic reactivity triggered by defective autophagy and metabolic failure causes neurotoxicity in frontotemporal dementia type 3. Stem Cell Reports. 2021;16(11):2736–51. Epub 20211021. doi: 10.1016/j.stemcr.2021.09.013 ; PubMed Central PMCID: PMC8581052. PubMed DOI PMC
Kaye J, Reisine T, Finkbeiner S. Huntington’s disease iPSC models-using human patient cells to understand the pathology caused by expanded CAG repeats. Fac Rev. 2022;11:16. Epub 20220628. doi: 10.12703/r/11-16 ; PubMed Central PMCID: PMC9264339. PubMed DOI PMC
Barak M, Fedorova V, Pospisilova V, Raska J, Vochyanova S, Sedmik J, et al.. Human iPSC-Derived Neural Models for Studying Alzheimer’s Disease: from Neural Stem Cells to Cerebral Organoids. Stem Cell Rev Rep. 2022;18(2):792–820. Epub 20220202. doi: 10.1007/s12015-021-10254-3 ; PubMed Central PMCID: PMC8930932. PubMed DOI PMC
Hu X, Mao C, Fan L, Luo H, Hu Z, Zhang S, et al.. Modeling Parkinson’s Disease Using Induced Pluripotent Stem Cells. Stem Cells Int. 2020;2020:1061470. Epub 20200312. doi: 10.1155/2020/1061470 ; PubMed Central PMCID: PMC7091557. PubMed DOI PMC
Gradisnik L, Velnar T. Astrocytes in the central nervous system and their functions in health and disease: A review. World J Clin Cases. 2023;11(15):3385–94. doi: 10.12998/wjcc.v11.i15.3385 ; PubMed Central PMCID: PMC10294192. PubMed DOI PMC
Robinson C, Apgar C, Shapiro LA. Astrocyte Hypertrophy Contributes to Aberrant Neurogenesis after Traumatic Brain Injury. Neural Plast. 2016;2016:1347987. Epub 20160504. doi: 10.1155/2016/1347987 ; PubMed Central PMCID: PMC4870378. PubMed DOI PMC
Wilhelmsson U, Li L, Pekna M, Berthold CH, Blom S, Eliasson C, et al.. Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J Neurosci. 2004;24(21):5016–21. doi: 10.1523/JNEUROSCI.0820-04.2004 ; PubMed Central PMCID: PMC6729371. PubMed DOI PMC
Savya SP, Li F, Lam S, Wellman SM, Stieger KC, Chen K, et al.. In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. Biomaterials. 2022;289:121784. Epub 20220902. doi: 10.1016/j.biomaterials.2022.121784 ; PubMed Central PMCID: PMC10231871. PubMed DOI PMC
Wang J, Sareddy GR, Lu Y, Pratap UP, Tang F, Greene KM, et al.. Astrocyte-Derived Estrogen Regulates Reactive Astrogliosis and is Neuroprotective following Ischemic Brain Injury. J Neurosci. 2020;40(50):9751–71. Epub 20201106. doi: 10.1523/JNEUROSCI.0888-20.2020 ; PubMed Central PMCID: PMC7726540. PubMed DOI PMC
Wang H, Song G, Chuang H, Chiu C, Abdelmaksoud A, Ye Y, et al.. Portrait of glial scar in neurological diseases. Int J Immunopathol Pharmacol. 2018;31:2058738418801406. doi: 10.1177/2058738418801406 ; PubMed Central PMCID: PMC6187421. PubMed DOI PMC
Lagos-Cabre R, Burgos-Bravo F, Avalos AM, Leyton L. Connexins in Astrocyte Migration. Front Pharmacol. 2019;10:1546. Epub 20200115. doi: 10.3389/fphar.2019.01546 ; PubMed Central PMCID: PMC6974553. PubMed DOI PMC
Tcw J, Wang M, Pimenova AA, Bowles KR, Hartley BJ, Lacin E, et al.. An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells. Stem Cell Reports. 2017;9(2):600–14. Epub 20170727. doi: 10.1016/j.stemcr.2017.06.018 ; PubMed Central PMCID: PMC5550034. PubMed DOI PMC
Acharya A, Ambikan AT, Thurman M, Malik MR, Dyavar SR, Vegvari A, et al.. Proteomic landscape of astrocytes and pericytes infected with HIV/SARS-CoV-2 mono/co-infection, impacting on neurological complications. Res Sq. 2023. Epub 20230612. doi: 10.21203/rs.3.rs-3031591/v1 ; PubMed Central PMCID: PMC10312942. PubMed DOI PMC
Magistri M, Khoury N, Mazza EM, Velmeshev D, Lee JK, Bicciato S, et al.. A comparative transcriptomic analysis of astrocytes differentiation from human neural progenitor cells. Eur J Neurosci. 2016;44(10):2858–70. Epub 20160925. doi: 10.1111/ejn.13382 ; PubMed Central PMCID: PMC5118072. PubMed DOI PMC
Perriot S, Mathias A, Perriard G, Canales M, Jonkmans N, Merienne N, et al.. Human Induced Pluripotent Stem Cell-Derived Astrocytes Are Differentially Activated by Multiple Sclerosis-Associated Cytokines. Stem Cell Reports. 2018;11(5):1199–210. Epub 20181025. doi: 10.1016/j.stemcr.2018.09.015 ; PubMed Central PMCID: PMC6234919. PubMed DOI PMC
Chandrasekaran A, Avci HX, Ochalek A, Rosingh LN, Molnar K, Laszlo L, et al.. Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells. Stem Cell Res. 2017;25:139–51. Epub 20171014. doi: 10.1016/j.scr.2017.10.010 . PubMed DOI
Zhou S, Szczesna K, Ochalek A, Kobolak J, Varga E, Nemes C, et al.. Neurosphere Based Differentiation of Human iPSC Improves Astrocyte Differentiation. Stem Cells Int. 2016;2016:4937689. Epub 20151221. doi: 10.1155/2016/4937689 ; PubMed Central PMCID: PMC4699090. PubMed DOI PMC
Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature biotechnology. 2009;27(3):275–80. Epub 03/01. doi: 10.1038/nbt.1529 . PubMed DOI PMC
Shi Y, Kirwan P, Livesey FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nature Protocols. 2012;7:1836. doi: 10.1038/nprot.2012.116 PubMed DOI
Wei Z, Zhang W, Fang H, Li Y, Wang X. esATAC: an easy-to-use systematic pipeline for ATAC-seq data analysis. Bioinformatics. 2018;34(15):2664–5. doi: 10.1093/bioinformatics/bty141 ; PubMed Central PMCID: PMC6061683. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8 ; PubMed Central PMCID: PMC4302049. PubMed DOI PMC
Galili T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics. 2015;31(22):3718–20. Epub 20150723. doi: 10.1093/bioinformatics/btv428 ; PubMed Central PMCID: PMC4817050. PubMed DOI PMC
Gu Z, Hubschmann D. Make Interactive Complex Heatmaps in R. Bioinformatics. 2022;38(5):1460–2. doi: 10.1093/bioinformatics/btab806 ; PubMed Central PMCID: PMC8826183. PubMed DOI PMC
Sutton GJ, Poppe D, Simmons RK, Walsh K, Nawaz U, Lister R, et al.. Comprehensive evaluation of deconvolution methods for human brain gene expression. Nat Commun. 2022;13(1):1358. Epub 20220315. doi: 10.1038/s41467-022-28655-4 ; PubMed Central PMCID: PMC8924248. PubMed DOI PMC
Hunt GJ, Freytag S, Bahlo M, Gagnon-Bartsch JA. dtangle: accurate and robust cell type deconvolution. Bioinformatics. 2019;35(12):2093–9. doi: 10.1093/bioinformatics/bty926 . PubMed DOI
Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, et al.. Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse. Neuron. 2016;89(1):37–53. Epub 20151210. doi: 10.1016/j.neuron.2015.11.013 ; PubMed Central PMCID: PMC4707064. PubMed DOI PMC
Moein M, Grzyb K, Goncalves Martins T, Komoto S, Peri F, Crawford AD, et al.. CaSiAn: a Calcium Signaling Analyzer tool. Bioinformatics. 2018;34(17):3052–4. doi: 10.1093/bioinformatics/bty281 ; PubMed Central PMCID: PMC6129310. PubMed DOI PMC
de Leeuw SM, Kirschner AWT, Lindner K, Rust R, Budny V, Wolski WE, et al.. APOE2, E3, and E4 differentially modulate cellular homeostasis, cholesterol metabolism, and inflammatory response in isogenic iPSC-derived astrocytes. Stem Cell Reports. 2022;17(1):110–26. Epub 20211216. doi: 10.1016/j.stemcr.2021.11.007 ; PubMed Central PMCID: PMC8758949. PubMed DOI PMC
Kang P, Lee HK, Glasgow SM, Finley M, Donti T, Gaber ZB, et al.. Sox9 and NFIA coordinate a transcriptional regulatory cascade during the initiation of gliogenesis. Neuron. 2012;74(1):79–94. doi: 10.1016/j.neuron.2012.01.024 ; PubMed Central PMCID: PMC3543821. PubMed DOI PMC
Rajan P, McKay RD. Multiple routes to astrocytic differentiation in the CNS. J Neurosci. 1998;18(10):3620–9. doi: 10.1523/JNEUROSCI.18-10-03620.1998 ; PubMed Central PMCID: PMC6793143. PubMed DOI PMC
Verkhratsky A, Matteoli M, Parpura V, Mothet JP, Zorec R. Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. The EMBO Journal. 2016;35(3):239–57-57. doi: 10.15252/embj.201592705 PubMed DOI PMC
Naruse M, Shibasaki K, Yokoyama S, Kurachi M, Ishizaki Y. Dynamic changes of CD44 expression from progenitors to subpopulations of astrocytes and neurons in developing cerebellum. PLoS One. 2013;8(1):e53109. Epub 20130104. doi: 10.1371/journal.pone.0053109 ; PubMed Central PMCID: PMC3537769. PubMed DOI PMC
Liu Y, Han SS, Wu Y, Tuohy TM, Xue H, Cai J, et al.. CD44 expression identifies astrocyte-restricted precursor cells. Dev Biol. 2004;276(1):31–46. doi: 10.1016/j.ydbio.2004.08.018 . PubMed DOI
Gabel S, Koncina E, Dorban G, Heurtaux T, Birck C, Glaab E, et al.. Inflammation Promotes a Conversion of Astrocytes into Neural Progenitor Cells via NF-kappaB Activation. Mol Neurobiol. 2016;53(8):5041–55. Epub 20150917. doi: 10.1007/s12035-015-9428-3 ; PubMed Central PMCID: PMC5012156. PubMed DOI PMC
Lattke M, Goldstone R, Ellis JK, Boeing S, Jurado-Arjona J, Marichal N, et al.. Extensive transcriptional and chromatin changes underlie astrocyte maturation in vivo and in culture. Nat Commun. 2021;12(1):4335. Epub 20210715. doi: 10.1038/s41467-021-24624-5 ; PubMed Central PMCID: PMC8282848. PubMed DOI PMC
Clavreul S, Dumas L, Loulier K. Astrocyte development in the cerebral cortex: Complexity of their origin, genesis, and maturation. Front Neurosci. 2022;16:916055. Epub 20220913. doi: 10.3389/fnins.2022.916055 ; PubMed Central PMCID: PMC9513187. PubMed DOI PMC
Villarreal A, Vogel T. Different Flavors of Astrocytes: Revising the Origins of Astrocyte Diversity and Epigenetic Signatures to Understand Heterogeneity after Injury. Int J Mol Sci. 2021;22(13). Epub 20210626. doi: 10.3390/ijms22136867 ; PubMed Central PMCID: PMC8268487. PubMed DOI PMC
Allnoch L, Leitzen E, Zdora I, Baumgartner W, Hansmann F. Astrocyte depletion alters extracellular matrix composition in the demyelinating phase of Theiler’s murine encephalomyelitis. PLoS One. 2022;17(6):e0270239. Epub 20220617. doi: 10.1371/journal.pone.0270239 ; PubMed Central PMCID: PMC9205503. PubMed DOI PMC
Choi SS, Lee HJ, Lim I, Satoh J, Kim SU. Human astrocytes: secretome profiles of cytokines and chemokines. PLoS One. 2014;9(4):e92325. Epub 20140401. doi: 10.1371/journal.pone.0092325 ; PubMed Central PMCID: PMC3972155. PubMed DOI PMC
Muir EM, Adcock KH, Morgenstern DA, Clayton R, von Stillfried N, Rhodes K, et al.. Matrix metalloproteases and their inhibitors are produced by overlapping populations of activated astrocytes. Brain Res Mol Brain Res. 2002;100(1–2):103–17. doi: 10.1016/s0169-328x(02)00132-8 . PubMed DOI
Perriot S, Canales M, Mathias A, Du Pasquier R. Differentiation of functional astrocytes from human-induced pluripotent stem cells in chemically defined media. STAR Protoc. 2021;2(4):100902. Epub 20211020. doi: 10.1016/j.xpro.2021.100902 ; PubMed Central PMCID: PMC8551928. PubMed DOI PMC
Voulgaris D, Nikolakopoulou P, Herland A. Generation of Human iPSC-Derived Astrocytes with a mature star-shaped phenotype for CNS modeling. Stem Cell Rev Rep. 2022;18(7):2494–512. Epub 20220430. doi: 10.1007/s12015-022-10376-2 ; PubMed Central PMCID: PMC9489586. PubMed DOI PMC
Kerkering J, Muinjonov B, Rosiewicz KS, Diecke S, Biese C, Schiweck J, et al.. iPSC-derived reactive astrocytes from patients with multiple sclerosis protect cocultured neurons in inflammatory conditions. J Clin Invest. 2023;133(13). Epub 20230703. doi: 10.1172/JCI164637 ; PubMed Central PMCID: PMC10313373. PubMed DOI PMC
Sullivan MA, Lane SD, McKenzie ADJ, Ball SR, Sunde M, Neely GG, et al.. iPSC-derived PSEN2 (N141I) astrocytes and microglia exhibit a primed inflammatory phenotype. J Neuroinflammation. 2024;21(1):7. Epub 20240104. doi: 10.1186/s12974-023-02951-2 ; PubMed Central PMCID: PMC10765839. PubMed DOI PMC
Williams EC, Zhong X, Mohamed A, Li R, Liu Y, Dong Q, et al.. Mutant astrocytes differentiated from Rett syndrome patients-specific iPSCs have adverse effects on wild-type neurons. Hum Mol Genet. 2014;23(11):2968–80. Epub 20140112. doi: 10.1093/hmg/ddu008 ; PubMed Central PMCID: PMC4014193. PubMed DOI PMC
Hedegaard A, Monzon-Sandoval J, Newey SE, Whiteley ES, Webber C, Akerman CJ. Pro-maturational Effects of Human iPSC-Derived Cortical Astrocytes upon iPSC-Derived Cortical Neurons. Stem Cell Reports. 2020;15(1):38–51. Epub 20200604. doi: 10.1016/j.stemcr.2020.05.003 ; PubMed Central PMCID: PMC7363746. PubMed DOI PMC
Santos R, Vadodaria KC, Jaeger BN, Mei A, Lefcochilos-Fogelquist S, Mendes APD, et al.. Differentiation of Inflammation-Responsive Astrocytes from Glial Progenitors Generated from Human Induced Pluripotent Stem Cells. Stem Cell Reports. 2017;8(6):1757–69. doi: 10.1016/j.stemcr.2017.05.011 ; PubMed Central PMCID: PMC5470172. PubMed DOI PMC
Meloni M, Morgado J, Garcia M, Stipursky J, Gomes FCA. Cryopreserved astrocytes maintain biological properties: Support of neuronal survival and differentiation. J Neurosci Methods. 2020;343:108806. Epub 20200620. doi: 10.1016/j.jneumeth.2020.108806 . PubMed DOI
Berryer MH, Tegtmeyer M, Binan L, Valakh V, Nathanson A, Trendafilova D, et al.. Robust induction of functional astrocytes using NGN2 expression in human pluripotent stem cells. iScience. 2023;26(7):106995. Epub 20230530. doi: 10.1016/j.isci.2023.106995 ; PubMed Central PMCID: PMC10391684. PubMed DOI PMC
Mulica P, Venegas C, Landoulsi Z, Badanjak K, Delcambre S, Tziortziou M, et al.. Comparison of two protocols for the generation of iPSC-derived human astrocytes. Biol Proced Online. 2023;25(1):26. Epub 20230920. doi: 10.1186/s12575-023-00218-x ; PubMed Central PMCID: PMC10512486. PubMed DOI PMC
Ahlemeyer B, Kolker S, Zhu Y, Hoffmann GF, Krieglstein J. Cytosine arabinofuranoside-induced activation of astrocytes increases the susceptibility of neurons to glutamate due to the release of soluble factors. Neurochem Int. 2003;42(7):567–81. doi: 10.1016/s0197-0186(02)00164-x . PubMed DOI
Neyrinck K, Van Den Daele J, Vervliet T, De Smedt J, Wierda K, Nijs M, et al.. SOX9-induced Generation of Functional Astrocytes Supporting Neuronal Maturation in an All-human System. Stem Cell Rev Rep. 2021;17(5):1855–73. Epub 20210512. doi: 10.1007/s12015-021-10179-x ; PubMed Central PMCID: PMC8553725. PubMed DOI PMC
Li X, Tao Y, Bradley R, Du Z, Tao Y, Kong L, et al.. Fast Generation of Functional Subtype Astrocytes from Human Pluripotent Stem Cells. Stem Cell Reports. 2018;11(4):998–1008. Epub 20180927. doi: 10.1016/j.stemcr.2018.08.019 ; PubMed Central PMCID: PMC6178885. PubMed DOI PMC
Tchieu J, Calder EL, Guttikonda SR, Gutzwiller EM, Aromolaran KA, Steinbeck JA, et al.. NFIA is a gliogenic switch enabling rapid derivation of functional human astrocytes from pluripotent stem cells. Nat Biotechnol. 2019;37(3):267–75. Epub 20190225. doi: 10.1038/s41587-019-0035-0 ; PubMed Central PMCID: PMC6591152. PubMed DOI PMC
Yanez RJ, Porter AC. A chromosomal position effect on gene targeting in human cells. Nucleic Acids Res. 2002;30(22):4892–901. doi: 10.1093/nar/gkf614 ; PubMed Central PMCID: PMC137162. PubMed DOI PMC
Smith AJ, Tasnim N, Psaras Z, Gyamfi D, Makani K, Suzuki WA, et al.. Assessing Human Spatial Navigation in a Virtual Space and its Sensitivity to Exercise. J Vis Exp. 2024;(203). Epub 20240126. doi: 10.3791/65332 . PubMed DOI
Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, et al.. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021;24(3):312–25. Epub 20210215. doi: 10.1038/s41593-020-00783-4 ; PubMed Central PMCID: PMC8007081. PubMed DOI PMC
Knott JC, Edwards AJ, Gullan RW, Clarke TM, Pilkington GJ. A human glioma cell line retaining expression of GFAP and gangliosides, recognized by A2B5 and LB1 antibodies, after prolonged passage. Neuropathol Appl Neurobiol. 1990;16(6):489–500. doi: 10.1111/j.1365-2990.1990.tb01288.x . PubMed DOI
Nishiyama A, Suzuki R, Zhu X. NG2 cells (polydendrocytes) in brain physiology and repair. Front Neurosci. 2014;8:133. Epub 20140627. doi: 10.3389/fnins.2014.00133 ; PubMed Central PMCID: PMC4072963. PubMed DOI PMC
Laywell ED, Rakic P, Kukekov VG, Holland EC, Steindler DA. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci U S A. 2000;97(25):13883–8. doi: 10.1073/pnas.250471697 ; PubMed Central PMCID: PMC17670. PubMed DOI PMC
Lattke M, Guillemot F. Understanding astrocyte differentiation: Clinical relevance, technical challenges, and new opportunities in the omics era. WIREs Mech Dis. 2022;14(5):e1557. Epub 20220512. doi: 10.1002/wsbm.1557 ; PubMed Central PMCID: PMC9539907. PubMed DOI PMC
Evans RJ, Wyllie FS, Wynford-Thomas D, Kipling D, Jones CJ. A P53-dependent, telomere-independent proliferative life span barrier in human astrocytes consistent with the molecular genetics of glioma development. Cancer Res. 2003;63(16):4854–61. . PubMed
Pertusa M, Garcia-Matas S, Rodriguez-Farre E, Sanfeliu C, Cristofol R. Astrocytes aged in vitro show a decreased neuroprotective capacity. J Neurochem. 2007;101(3):794–805. Epub 20070123. doi: 10.1111/j.1471-4159.2006.04369.x . PubMed DOI
Kawano H, Katsurabayashi S, Kakazu Y, Yamashita Y, Kubo N, Kubo M, et al.. Long-term culture of astrocytes attenuates the readily releasable pool of synaptic vesicles. PLoS One. 2012;7(10):e48034. Epub 20121026. doi: 10.1371/journal.pone.0048034 ; PubMed Central PMCID: PMC3482238. PubMed DOI PMC
Semyanov A, Henneberger C, Agarwal A. Making sense of astrocytic calcium signals—from acquisition to interpretation. Nat Rev Neurosci. 2020;21(10):551–64. Epub 20200901. doi: 10.1038/s41583-020-0361-8 . PubMed DOI
Fujii Y, Maekawa S, Morita M. Astrocyte calcium waves propagate proximally by gap junction and distally by extracellular diffusion of ATP released from volume-regulated anion channels. Sci Rep. 2017;7(1):13115. Epub 20171013. doi: 10.1038/s41598-017-13243-0 ; PubMed Central PMCID: PMC5640625. PubMed DOI PMC
de Ceglia R, Ledonne A, Litvin DG, Lind BL, Carriero G, Latagliata EC, et al.. Specialized astrocytes mediate glutamatergic gliotransmission in the CNS. Nature. 2023;622(7981):120–9. Epub 20230906. doi: 10.1038/s41586-023-06502-w ; PubMed Central PMCID: PMC10550825. PubMed DOI PMC
Goenaga J, Araque A, Kofuji P, Herrera Moro Chao D. Calcium signaling in astrocytes and gliotransmitter release. Front Synaptic Neurosci. 2023;15:1138577. Epub 20230302. doi: 10.3389/fnsyn.2023.1138577 ; PubMed Central PMCID: PMC10017551. PubMed DOI PMC
Wang TF, Zhou C, Tang AH, Wang SQ, Chai Z. Cellular mechanism for spontaneous calcium oscillations in astrocytes. Acta Pharmacol Sin. 2006;27(7):861–8. doi: 10.1111/j.1745-7254.2006.00397.x . PubMed DOI
Lavrentovich M, Hemkin S. A mathematical model of spontaneous calcium(II) oscillations in astrocytes. J Theor Biol. 2008;251(4):553–60. Epub 20080214. doi: 10.1016/j.jtbi.2007.12.011 . PubMed DOI
Vainchtein ID, Molofsky AV. Astrocytes and Microglia: In Sickness and in Health. Trends Neurosci. 2020;43(3):144–54. Epub 20200207. doi: 10.1016/j.tins.2020.01.003 ; PubMed Central PMCID: PMC7472912. PubMed DOI PMC
Xiong Y, Chen J, Li Y. Microglia and astrocytes underlie neuroinflammation and synaptic susceptibility in autism spectrum disorder. Front Neurosci. 2023;17:1125428. Epub 20230320. doi: 10.3389/fnins.2023.1125428 ; PubMed Central PMCID: PMC10067592. PubMed DOI PMC
Hyvarinen T, Hagman S, Ristola M, Sukki L, Veijula K, Kreutzer J, et al.. Co-stimulation with IL-1beta and TNF-alpha induces an inflammatory reactive astrocyte phenotype with neurosupportive characteristics in a human pluripotent stem cell model system. Sci Rep. 2019;9(1):16944. Epub 20191115. doi: 10.1038/s41598-019-53414-9 ; PubMed Central PMCID: PMC6858358. PubMed DOI PMC
Pamies D, Sartori C, Schvartz D, Gonzalez-Ruiz V, Pellerin L, Nunes C, et al.. Neuroinflammatory Response to TNFalpha and IL1beta Cytokines Is Accompanied by an Increase in Glycolysis in Human Astrocytes In Vitro. Int J Mol Sci. 2021;22(8). Epub 20210414. doi: 10.3390/ijms22084065 ; PubMed Central PMCID: PMC8071021. PubMed DOI PMC
Roberts AP, Dec K, McAllister B, Tyrrell V, O’Donnell VB, Harwood A, et al.. Upregulated NF-κB pathway proteins may underlie APOE44 associated astrocyte phenotypes in sporadic Alzheimer’s disease. bioRxiv. 2023:2023.04.19.537428. doi: 10.1101/2023.04.19.537428 DOI
Oberheim NA, Goldman SA, Nedergaard M. Heterogeneity of astrocytic form and function. Methods Mol Biol. 2012;814:23–45. doi: 10.1007/978-1-61779-452-0_3 ; PubMed Central PMCID: PMC3506190. PubMed DOI PMC
Mayo F, Gonzalez-Vinceiro L, Hiraldo-Gonzalez L, Calle-Castillejo C, Morales-Alvarez S, Ramirez-Lorca R, et al.. Aquaporin-4 Expression Switches from White to Gray Matter Regions during Postnatal Development of the Central Nervous System. Int J Mol Sci. 2023;24(3). Epub 20230203. doi: 10.3390/ijms24033048 ; PubMed Central PMCID: PMC9917791. PubMed DOI PMC
O’Leary LA, Davoli MA, Belliveau C, Tanti A, Ma JC, Farmer WT, et al.. Characterization of Vimentin-Immunoreactive Astrocytes in the Human Brain. Front Neuroanat. 2020;14:31. Epub 20200730. doi: 10.3389/fnana.2020.00031 ; PubMed Central PMCID: PMC7406576. PubMed DOI PMC
Sullivan MA, Lane S, Volkerling A, Engel M, Werry EL, Kassiou M. Three-dimensional bioprinting of stem cell-derived central nervous system cells enables astrocyte growth, vasculogenesis, and enhances neural differentiation/function. Biotechnol Bioeng. 2023;120(10):3079–91. Epub 20230703. doi: 10.1002/bit.28470 . PubMed DOI PMC