Viral Infection Induces Alzheimer's Disease-Related Pathways and Senescence in iPSC-Derived Neuronal Models

. 2025 Jun 15 ; () : . [epub] 20250615

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, preprinty

Perzistentní odkaz   https://www.medvik.cz/link/pmid40661646

INTRODUCTION: The Pathogen Infection Hypothesis proposes that β-Amyloid (Aβ) functions as an antimicrobial peptide, with pathogen-induced aggregation potentially contributing to Alzheimer's disease (AD) pathology. METHODS: We used human iPSC-derived 2D neurons and 3D cerebral organoids from wild-type and familial AD (PSEN1/2 mutant) lines to model acute infections with HSV-1 and TBEV and Aβ aggregation. Transcriptomic and proteomic analyses were conducted to assess molecular responses. RESULTS: HSV-1, but not TBEV, induced robust Aβ clustering, which was, however, dependent on extracellular amyloid peptides. Transcriptomic profiling revealed widespread HSV-1-induced changes, including activation of neurodegeneration-related pathways. Proteomic profiling confirmed enrichment of neurodegeneration- and senescence-associated secretome signatures. PSEN1/2 mutations did not alter the acute infection response. Reanalysis of independent datasets confirmed our findings and revealed a limited protective effect of acyclovir. DISCUSSION: Results directly support the Pathogen Infection Hypothesis and suggest that preventing viral infections via vaccinations may represent a feasible approach to reducing AD risk.

Zobrazit více v PubMed

Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine 2016;8:595–608. 10.15252/emmm.201606210. PubMed DOI PMC

De Strooper B, Karran E. The Cellular Phase of Alzheimer’s Disease. Cell 2016;164:603–15. 10.1016/j.cell.2015.12.056. PubMed DOI

Cruchaga C, Chakraverty S, Mayo K, Vallania FLM, Mitra RD, Faber K, et al. Rare Variants in APP, PSEN1 and PSEN2 Increase Risk for AD in Late-Onset Alzheimer’s Disease Families. PLoS One 2012;7:e31039. 10.1371/journal.pone.0031039. PubMed DOI PMC

Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, et al. Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. PNAS 2005;102:13461–6. PubMed PMC

Karch CM, Goate AM. Alzheimer’s Disease Risk Genes and Mechanisms of Disease Pathogenesis. Biological Psychiatry 2015;77:43–51. 10.1016/j.biopsych.2014.05.006. PubMed DOI PMC

Seaks CE, Wilcock DM. Infectious hypothesis of Alzheimer disease. PLoS Pathog 2020;16:e1008596. 10.1371/journal.ppat.1008596. PubMed DOI PMC

Vigasova D, Nemergut M, Liskova B, Damborsky J. Multi-pathogen infections and Alzheimer’s disease. Microb Cell Fact 2021;20:25. 10.1186/s12934-021-01520-7. PubMed DOI PMC

Wiesner J, Vilcinskas A. Antimicrobial peptides: The ancient arm of the human immune system. Virulence 2010;1:440–64. 10.4161/viru.1.5.12983. PubMed DOI

Reinholz M, Ruzicka T, Schauber J. Cathelicidin LL-37: An Antimicrobial Peptide with a Role in Inflammatory Skin Disease. Annals of Dermatology 2012;24:126. 10.5021/ad.2012.24.2.126. PubMed DOI PMC

Cao Y, Chtarbanova S, Petersen AJ, Ganetzky B. Dnr1 mutations cause neurodegeneration in Drosophila by activating the innate immune response in the brain. Proceedings of the National Academy of Sciences 2013;110:E1752–60. 10.1073/pnas.1306220110. PubMed DOI PMC

Itzhaki RF. Corroboration of a Major Role for Herpes Simplex Virus Type 1 in Alzheimer’s Disease. Front Aging Neurosci 2018;10:324. 10.3389/fnagi.2018.00324. PubMed DOI PMC

Wozniak MA, Itzhaki RF, Shipley SJ, Dobson CB. Herpes simplex virus infection causes cellular beta-amyloid accumulation and secretase upregulation. Neurosci Lett 2007;429:95–100. 10.1016/j.neulet.2007.09.077. PubMed DOI

Jamieson GA, Maitland NJ, Wilcock GK, Yates CM, Itzhaki RF. Herpes simplex virus type 1 DNA is present in specific regions of brain from aged people with and without senile dementia of the Alzheimer type. J Pathol 1992;167:365–8. 10.1002/path.1711670403. PubMed DOI

Eyting M, Xie M, Michalik F, Heß S, Chung S, Geldsetzer P. A natural experiment on the effect of herpes zoster vaccination on dementia. Nature 2025:1–9. 10.1038/s41586-025-08800-x. PubMed DOI PMC

Bukhbinder AS, Ling Y, Hasan O, Jiang X, Kim Y, Phelps KN, et al. Risk of Alzheimer’s Disease Following Influenza Vaccination: A Claims-Based Cohort Study Using Propensity Score Matching. J Alzheimers Dis 2022;88:1061–74. 10.3233/JAD-220361. PubMed DOI PMC

Differences in Long COVID severity by duration of illness, symptom evolution, and vaccination: a longitudinal cohort study from the INSPIRE group - The Lancet Regional Health – Americas n.d. https://www.thelancet.com/journals/lanam/article/PIIS2667-193X(25)00036-5/fulltext (accessed February, 2025). PubMed PMC

Lapeyre L, Piret J, Rhéaume C, Pons V, Uyar O, Préfontaine P, et al. Herpes Simplex Virus 1 Infection Does Not Increase Amyloid-β Pathology in APP/PS1 Mice. J Alzheimers Dis 2024;97:171–8. 10.3233/JAD-230746. PubMed DOI

Bocharova O, Pandit NP, Molesworth K, Fisher A, Mychko O, Makarava N, et al. Alzheimer’s disease-associated β-amyloid does not protect against herpes simplex virus 1 infection in the mouse brain. J Biol Chem 2021;297:100845. 10.1016/j.jbc.2021.100845. PubMed DOI PMC

Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature 2013;501. 10.1038/nature12517. PubMed DOI PMC

Krenn V, Bosone C, Burkard TR, Spanier J, Kalinke U, Calistri A, et al. Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly. Cell Stem Cell 2021. 10.1016/j.stem.2021.03.004. PubMed DOI PMC

Barak M, Fedorova V, Pospisilova V, Raska J, Vochyanova S, Sedmik J, et al. Human iPSC-Derived Neural Models for Studying Alzheimer’s Disease: from Neural Stem Cells to Cerebral Organoids. Stem Cell Rev Rep 2022;18:792–820. 10.1007/s12015-021-10254-3. PubMed DOI PMC

Raska J, Hribkova H, Klimova H, Fedorova V, Barak M, Barta T, et al. Generation of six human iPSC lines from patients with a familial Alzheimer’s disease (n = 3) and sex- and age-matched healthy controls (n = 3). Stem Cell Research 2021;53:102379. 10.1016/j.scr.2021.102379. PubMed DOI

Fernandopulle MS, Prestil R, Grunseich C, Wang C, Gan L, Ward ME. Transcription Factor–Mediated Differentiation of Human iPSCs into Neurons. Current Protocols in Cell Biology 2018;79:e51. 10.1002/cpcb.51. PubMed DOI PMC

Vanova T, Sedmik J, Raska J, Amruz Cerna K, Taus P, Pospisilova V, et al. Cerebral organoids derived from patients with Alzheimer’s disease with PSEN1/2 mutations have defective tissue patterning and altered development. Cell Reports 2023;42:113310. 10.1016/j.celrep.2023.113310. PubMed DOI

Štefánik M, Bhosale DS, Haviernik J, Straková P, Fojtíková M, Dufková L, et al. Diphyllin Shows a Broad-Spectrum Antiviral Activity against Multiple Medically Important Enveloped RNA and DNA Viruses. Viruses 2022;14:354. 10.3390/v14020354. PubMed DOI PMC

Haviernik J, Eyer L, Yoshii K, Kobayashi S, Cerny J, Nougairède A, et al. Development and characterization of recombinant tick-borne encephalitis virus expressing mCherry reporter protein: A new tool for high-throughput screening of antiviral compounds, and neutralizing antibody assays. Antiviral Res 2021;185:104968. 10.1016/j.antiviral.2020.104968. PubMed DOI

Capková N, Pospíšilová V, Fedorová V, Raška J, Pospíšilová K, Dal Ben M, et al. The Effects of Bilirubin and Lumirubin on the Differentiation of Human Pluripotent Cell-Derived Neural Stem Cells. Antioxidants 2021;10:1532. 10.3390/antiox10101532. PubMed DOI PMC

Banović P, Díaz-Sánchez AA, Galon C, Foucault-Simonin A, Simin V, Mijatović D, et al. A One Health approach to study the circulation of tick-borne pathogens: A preliminary study. One Health 2021;13:100270. 10.1016/j.onehlt.2021.100270. PubMed DOI PMC

Fedorova V, Vanova T, Elrefae L, Pospisil J, Petrasova M, Kolajova V, et al. Differentiation of neural rosettes from human pluripotent stem cells in vitro is sequentially regulated on a molecular level and accomplished by the mechanism reminiscent of secondary neurulation. Stem Cell Research 2019;40:101563. 10.1016/j.scr.2019.101563. PubMed DOI

R: a language and environment for statistical computing – ScienceOpen n.d. https://www.scienceopen.com/book?vid=b164ea90-95d2-43bf-9710-99753c479112 (accessed February, 2025).

org.Hs.eg.db. Bioconductor n.d. http://bioconductor.org/packages/org.Hs.eg.db/ (accessed February, 2025).

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15–21. 10.1093/bioinformatics/bts635. PubMed DOI PMC

SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data | Bioinformatics | Oxford Academic n.d. https://academic.oup.com/bioinformatics/article/28/24/3211/246053?login=false (accessed February, 2025). PubMed

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550. 10.1186/s13059-014-0550-8. PubMed DOI PMC

Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012;16:284–7. 10.1089/omi.2011.0118. PubMed DOI PMC

Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2021;2:100141. 10.1016/j.xinn.2021.100141. PubMed DOI PMC

ggplot2: Elegant Graphics for Data Analysis | Journal of the Royal Statistical Society Series A: Statistics in Society | Oxford Academic n.d. https://academic.oup.com/jrsssa/article/174/1/245/7077675?login=false (accessed February, 2025).

Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 2017;33:2938–40. 10.1093/bioinformatics/btx364. PubMed DOI PMC

Yu G. Introduction | Biomedical Knowledge Mining using GOSemSim and clusterProfiler. https://yulab-smu.top/biomedical-knowledge-mining-book/

Feng S, Liu Y, Zhou Y, Shu Z, Cheng Z, Brenner C, et al. Mechanistic insights into the role of herpes simplex virus 1 in Alzheimer’s disease. Front Aging Neurosci 2023;15:1245904. 10.3389/fnagi.2023.1245904. PubMed DOI PMC

Polansky H, Goral B. How an increase in the copy number of HSV-1 during latency can cause Alzheimer’s disease: the viral and cellular dynamics according to the microcompetition model. J Neurovirol 2021;27:895–916. 10.1007/s13365-021-01012-9. PubMed DOI

Rybak-Wolf A, Wyler E, Pentimalli TM, Legnini I, Oliveras Martinez A, Glažar P, et al. Modelling viral encephalitis caused by herpes simplex virus 1 infection in cerebral organoids. Nat Microbiol 2023;8:1252–66. 10.1038/s41564-023-01405-y. PubMed DOI PMC

Wang C, Acosta D, McNutt M, Bian J, Ma A, Fu H, et al. A single-cell and spatial RNA-seq database for Alzheimer’s disease (ssREAD). Nat Commun 2024;15:4710. 10.1038/s41467-024-49133-z. PubMed DOI PMC

Dolgalev I. msigdbr: MSigDB Gene Sets for Multiple Organisms in a Tidy Data Format 2018:10.0.2. 10.32614/CRAN.package.msigdbr. DOI

Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002;30:207–10. PubMed PMC

Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 2019;47:D442–50. 10.1093/nar/gky1106. PubMed DOI PMC

Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, Rodriguez AS, Mitchell T, Washicosky KJ, et al. Alzheimer’s Disease-Associated β-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection. Neuron 2018;99:56–63.e3. 10.1016/j.neuron.2018.06.030. PubMed DOI PMC

Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, et al. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 2010;5:e9505. 10.1371/journal.pone.0009505. PubMed DOI PMC

Kumar DKV, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med 2016;8:340ra72. 10.1126/scitranslmed.aaf1059. PubMed DOI PMC

Wood JA, Chaparala S, Bantang C, Chattopadhyay A, Wesesky MA, Kinchington PR, et al. RNA-Seq time-course analysis of neural precursor cell transcriptome in response to herpes simplex Virus-1 infection. J Neurovirol 2024. 10.1007/s13365-024-01198-8. PubMed DOI PMC

Cairns DM, Rouleau N, Parker RN, Walsh KG, Gehrke L, Kaplan DL. A 3D human brain–like tissue model of herpes-induced Alzheimer’s disease. Science Advances 2020;6:eaay8828. 10.1126/sciadv.aay8828. PubMed DOI PMC

Abrahamson EE, Zheng W, Muralidaran V, Ikonomovic MD, Bloom DC, Nimgaonkar VL, et al. Modeling Aβ42 Accumulation in Response to Herpes Simplex Virus 1 Infection: Two Dimensional or Three Dimensional? Journal of Virology 2021;95: 10.1128/jvi.02219-20. https://doi.org/10.1128/jvi.02219-20. PubMed DOI PMC

D’Aiuto L, Bloom DC, Naciri JN, Smith A, Edwards TG, McClain L, et al. Modeling Herpes Simplex Virus 1 Infections in Human Central Nervous System Neuronal Cells Using Two- and Three-Dimensional Cultures Derived from Induced Pluripotent Stem Cells. Journal of Virology 2019;93: 10.1128/jvi.00111-19. https://doi.org/10.1128/jvi.00111-19. PubMed DOI PMC

Qiao H, Zhao W, Guo M, Zhu L, Chen T, Wang J, et al. Cerebral Organoids for Modeling of HSV-1-Induced-Amyloid β Associated Neuropathology and Phenotypic Rescue. Int J Mol Sci 2022;23:5981. 10.3390/ijms23115981. PubMed DOI PMC

Chiara GD, Marcocci ME, Civitelli L, Argnani R, Piacentini R, Ripoli C, et al. APP Processing Induced by Herpes Simplex Virus Type 1 (HSV-1) Yields Several APP Fragments in Human and Rat Neuronal Cells. PLOS ONE 2010;5:e13989. 10.1371/journal.pone.0013989. PubMed DOI PMC

Piacentini R, Civitelli L, Ripoli C, Marcocci ME, De Chiara G, Garaci E, et al. HSV-1 promotes Ca2+-mediated APP phosphorylation and Aβ accumulation in rat cortical neurons. Neurobiology of Aging 2011;32:2323.e13–2323.e26. 10.1016/j.neurobiolaging.2010.06.009. PubMed DOI

Basisty N, Kale A, Jeon OH, Kuehnemann C, Payne T, Rao C, et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol 2020;18:e3000599. 10.1371/journal.pbio.3000599. PubMed DOI PMC

Lapeyre L, Piret J, Rhéaume C, Pons V, Uyar O, Préfontaine P, et al. Herpes Simplex Virus 1 Infection Does Not Increase Amyloid-β Pathology in APP/PS1 Mice. Journal of Alzheimer’s Disease 2024;97:171–8. 10.3233/JAD-230746. PubMed DOI

Min J-H, Sarlus H, Harris R. MAD—microbial (origin of) Alzheimer’s disease hypothesis: from infection and the antimicrobial response to disruption of key copper-based systems. Frontiers in Neuroscience 2024;18. 10.3389/fnins.2024.1467333. PubMed DOI PMC

Bourgade K, Garneau H, Giroux G, Le Page AY, Bocti C, Dupuis G, et al. β-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology 2015;16:85–98. 10.1007/s10522-014-9538-8. PubMed DOI

Heneka MT, van der Flier WM, Jessen F, Hoozemanns J, Thal DR, Boche D, et al. Neuroinflammation in Alzheimer disease. Nat Rev Immunol 2024. 10.1038/s41577-024-01104-7. PubMed DOI

Readhead B, Haure-Mirande J-V, Funk CC, Richards MA, Shannon P, Haroutunian V, et al. Multiscale Analysis of Independent Alzheimer’s Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus. Neuron 2018;99:64–82.e7. 10.1016/j.neuron.2018.05.023. PubMed DOI PMC

Kristensson K. Microbes’ roadmap to neurons. Nat Rev Neurosci 2011;12:345–57. 10.1038/nrn3029. PubMed DOI

Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, et al. Cellular Senescence: Defining a Path Forward. Cell 2019;179:813–27. 10.1016/j.cell.2019.10.005. PubMed DOI

Martínez-Cué C, Rueda N. Cellular Senescence in Neurodegenerative Diseases. Frontiers in Cellular Neuroscience 2020;14:16. 10.3389/fncel.2020.00016. PubMed DOI PMC

Melo dos Santos L, Trombetta-Lima M, Eggen B, Demaria M. Cellular senescence in brain aging and neurodegeneration. Ageing Research Reviews 2024;93:102141. 10.1016/j.arr.2023.102141. PubMed DOI

Bussian TJ, Aziz A, Meyer CF, Swenson BL, Deursen JM van, Baker DJ. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 2018;562:578. 10.1038/s41586-018-0543-y. PubMed DOI PMC

Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler RG, Zhang S, et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nature Neuroscience 2019;22:719–28. 10.1038/s41593-019-0372-9. PubMed DOI PMC

Lee S, Yu Y, Trimpert J, Benthani F, Mairhofer M, Richter-Pechanska P, et al. Virus-induced senescence is a driver and therapeutic target in COVID-19. Nature 2021;599:283–9. 10.1038/s41586-021-03995-1. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...