Geometric Control of Cell Behavior by Biomolecule Nanodistribution
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36202388
PubMed Central
PMC9667466
DOI
10.1021/acsbiomaterials.2c00650
Knihovny.cz E-zdroje
- Klíčová slova
- biomimetic surface, cell adhesion and spreading, cell−cell interaction, electron-beam lithography, ligand clustering, nanopatterning, nanospacing,
- MeSH
- buněčná diferenciace MeSH
- buněčné kultury MeSH
- extracelulární matrix MeSH
- nanostruktury * chemie MeSH
- nanotechnologie * metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Many dynamic interactions within the cell microenvironment modulate cell behavior and cell fate. However, the pathways and mechanisms behind cell-cell or cell-extracellular matrix interactions remain understudied, as they occur at a nanoscale level. Recent progress in nanotechnology allows for mimicking of the microenvironment at nanoscale in vitro; electron-beam lithography (EBL) is currently the most promising technique. Although this nanopatterning technique can generate nanostructures of good quality and resolution, it has resulted, thus far, in the production of only simple shapes (e.g., rectangles) over a relatively small area (100 × 100 μm), leaving its potential in biological applications unfulfilled. Here, we used EBL for cell-interaction studies by coating cell-culture-relevant material with electron-conductive indium tin oxide, which formed nanopatterns of complex nanohexagonal structures over a large area (500 × 500 μm). We confirmed the potential of EBL for use in cell-interaction studies by analyzing specific cell responses toward differentially distributed nanohexagons spaced at 1000, 500, and 250 nm. We found that our optimized technique of EBL with HaloTags enabled the investigation of broad changes to a cell-culture-relevant surface and can provide an understanding of cellular signaling mechanisms at a single-molecule level.
Core Facility Cellular Imaging CEITEC Masaryk University Kamenice 5 Brno 625 00 Czech Republic
Department of Biology Faculty of Medicine Masaryk University Kamenice 5 Brno 625 00 Czech Republic
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
TESCAN Brno s r o Libušina tř 1 Brno 623 00 Czech Republic
TESCAN Orsay Holding a s Libušina tř 863 Brno 623 00 Czech Republic
Zobrazit více v PubMed
Werner S.; Grose R. Regulation of Wound Healing by Growth Factors and Cytokines. Physiol. Rev. 2003, 83 (3), 835–870. 10.1152/physrev.2003.83.3.835. PubMed DOI
Zamir E.; Katz M.; Posen Y.; Erez N.; Yamada K. M.; Katz B. Z.; Lin S.; Lin D. C.; Bershadsky A.; Kam Z.; Geiger B. Dynamics and Segregation of Cell-Matrix Adhesions in Cultured Fibroblasts. Nat. Cell Biol. 2000, 2 (4), 191–196. 10.1038/35008607. PubMed DOI
Suzuki K.; Saito J.; Yanai R.; Yamada N.; Chikama T.; Seki K.; Nishida T. Cell-Matrix and Cell-Cell Interactions during Corneal Epithelial Wound Healing. Prog. Retin. Eye Res. 2003, 22 (2), 113–133. 10.1016/S1350-9462(02)00042-3. PubMed DOI
Yao X.; Peng R.; Ding J. Cell–Material Interactions Revealed Via Material Techniques of Surface Patterning. Adv. Mater. 2013, 25 (37), 5257–5286. 10.1002/adma.201301762. PubMed DOI
Alghisi G.; Ponsonnet L.; Rüegg C. The Integrin Antagonist Cilengitide Activates AVβ3, Disrupts VE-Cadherin Localization at Cell Junctions and Enhances Permeability in Endothelial Cells. PloS One 2009, 4, e4449.10.1371/journal.pone.0004449. PubMed DOI PMC
Yeo I.-S.; Min S.-K.; Ki Kang H.; Kwon T.-K.; Youn Jung S.; Min B.-M. Adhesion and Spreading of Osteoblast-like Cells on Surfaces Coated with Laminin-Derived Bioactive Core Peptides. Data Brief 2015, 5, 411–415. 10.1016/j.dib.2015.09.032. PubMed DOI PMC
Matsui N.; Nozaki K.; Ishihara K.; Yamashita K.; Nagai A. Concentration-Dependent Effects of Fibronectin Adsorbed on Hydroxyapatite Surfaces on Osteoblast Adhesion. Mater. Sci. Eng., C 2015, 48, 378–383. 10.1016/j.msec.2014.12.042. PubMed DOI
Docheva D.; Padula D.; Schieker M.; Clausen-Schaumann H. Effect of Collagen I and Fibronectin on the Adhesion, Elasticity and Cytoskeletal Organization of Prostate Cancer Cells. Biochem. Biophys. Res. Commun. 2010, 402 (2), 361–366. 10.1016/j.bbrc.2010.10.034. PubMed DOI
Chen C. S.; Mrksich M.; Huang S.; Whitesides G. M.; Ingber D. E. Geometric Control of Cell Life and Death. Science 1997, 276 (5317), 1425–1428. 10.1126/science.276.5317.1425. PubMed DOI
McBeath R.; Pirone D. M.; Nelson C. M.; Bhadriraju K.; Chen C. S. Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment. Dev. Cell 2004, 6 (4), 483–495. 10.1016/S1534-5807(04)00075-9. PubMed DOI
Zheng S.; Liu Q.; He J.; Wang X.; Ye K.; Wang X.; Yan C.; Liu P.; Ding J. Critical Adhesion Areas of Cells on Micro-Nanopatterns. Nano Res. 2022, 15 (2), 1623–1635. 10.1007/s12274-021-3711-6. PubMed DOI PMC
Nakanishi J.; Kikuchi Y.; Takarada T.; Nakayama H.; Yamaguchi K.; Maeda M. Spatiotemporal Control of Cell Adhesion on a Self-Assembled Monolayer Having a Photocleavable Protecting Group. Anal. Chim. Acta 2006, 578 (1), 100–104. 10.1016/j.aca.2006.04.059. PubMed DOI
Albert P. J.; Schwarz U. S. Modeling Cell Shape and Dynamics on Micropatterns. Cell Adhes. Migr. 2016, 10 (5), 516–528. 10.1080/19336918.2016.1148864. PubMed DOI PMC
Théry M.; Racine V.; Piel M.; Pépin A.; Dimitrov A.; Chen Y.; Sibarita J.-B.; Bornens M. Anisotropy of Cell Adhesive Microenvironment Governs Cell Internal Organization and Orientation of Polarity. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (52), 19771–19776. 10.1073/pnas.0609267103. PubMed DOI PMC
Kikuchi Y.; Nakanishi J.; Nakayama H.; Shimizu T.; Yoshino Y.; Yamaguchi K.; Yoshida Y.; Horiike Y. Grafting Poly(Ethylene Glycol) to a Glass Surface via a Photocleavable Linker for Light-Induced Cell Micropatterning and Cell Proliferation Control. Chem. Lett. 2008, 37 (10), 1062–1063. 10.1246/cl.2008.1062. DOI
Deglincerti A.; Etoc F.; Guerra M. C.; Martyn I.; Metzger J.; Ruzo A.; Simunovic M.; Yoney A.; Brivanlou A. H.; Siggia E.; Warmflash A. Self-Organization of Human Embryonic Stem Cells on Micropatterns. Nat. Protoc. 2016, 11 (11), 2223–2232. 10.1038/nprot.2016.131. PubMed DOI PMC
Geiger B.; Spatz J. P.; Bershadsky A. D. Environmental Sensing through Focal Adhesions. Nat. Rev. Mol. Cell Biol. 2009, 10 (1), 21–33. 10.1038/nrm2593. PubMed DOI
Dalby M. J.; Gadegaard N.; Oreffo R. O. C. Harnessing Nanotopography and Integrin–Matrix Interactions to Influence Stem Cell Fate. Nat. Mater. 2014, 13 (6), 558–569. 10.1038/nmat3980. PubMed DOI
Ermis M.; Antmen E.; Hasirci V. Micro and Nanofabrication Methods to Control Cell-Substrate Interactions and Cell Behavior: A Review from the Tissue Engineering Perspective. Bioact. Mater. 2018, 3 (3), 355–369. 10.1016/j.bioactmat.2018.05.005. PubMed DOI PMC
Humenik M.; Winkler A.; Scheibel T. Patterning of Protein-Based Materials. Biopolymers 2021, 112 (2), e23412.10.1002/bip.23412. PubMed DOI
Tudureanu R.; Handrea-Dragan I. M.; Boca S.; Botiz I. Insight and Recent Advances into the Role of Topography on the Cell Differentiation and Proliferation on Biopolymeric Surfaces. Int. J. Mol. Sci. 2022, 23 (14), 7731.10.3390/ijms23147731. PubMed DOI PMC
Valiokas R. Nanobiochips. Cell. Mol. Life Sci. 2012, 69 (3), 347–356. 10.1007/s00018-011-0853-9. PubMed DOI PMC
Sadana A.; Sadana N.; Sadana R.. Nanobiosensors. In A Fractal Analysis of Chemical Kinetics with Applications to Biological and Biosensor Interfaces; Sadana A., Sadana N., Sadana R., Eds.; Elsevier, 2018; Chapter 4, pp 69–96.10.1016/B978-0-444-63872-4.00004-X. DOI
Aguilar Z. P.Nanobiosensors. In Nanomaterials for Medical Applications; Aguilar Z. P., Ed.; Elsevier, 2013; Chapter 4, pp 127–179.10.1016/B978-0-12-385089-8.00004-2. DOI
Vigneswaran N.; Samsuri F.; Ranganathan B.; Padmapriya Recent Advances in Nano Patterning and Nano Imprint Lithography for Biological Applications. Procedia Eng. 2014, 97, 1387–1398. 10.1016/j.proeng.2014.12.420. DOI
Wilson D. L.; Martin R.; Hong S.; Cronin-Golomb M.; Mirkin C. A.; Kaplan D. L. Surface Organization and Nanopatterning of Collagen by Dip-Pen Nanolithography. Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (24), 13660–13664. 10.1073/pnas.241323198. PubMed DOI PMC
Lee K.-B.; Park S.-J.; Mirkin C. A.; Smith J. C.; Mrksich M. Protein Nanoarrays Generated By Dip-Pen Nanolithography. Science 2002, 295 (5560), 1702–1705. 10.1126/science.1067172. PubMed DOI
Hong S.; Zhu J.; Mirkin C. A. Multiple Ink Nanolithography: Toward a Multiple-Pen Nano-Plotter. Science 1999, 286 (5439), 523–525. 10.1126/science.286.5439.523. PubMed DOI
Salaita K.; Wang Y.; Mirkin C. A. Applications of Dip-Pen Nanolithography. Nat. Nanotechnol. 2007, 2 (3), 145–155. 10.1038/nnano.2007.39. PubMed DOI
Krivoshapkina Y.; Kaestner M.; Rangelow I. W.. Tip-Based Nanolithography Methods and Materials. In Frontiers of Nanoscience; Robinson A., Lawson R., Eds.; Materials and Processes for Next Generation Lithography; Elsevier, 2016; Vol. 11, Chapter 15, pp 497–542.10.1016/B978-0-08-100354-1.00015-6. DOI
Giam L. R.; Massich M. D.; Hao L.; Wong L. S.; Mader C. C.; Mirkin C. A. Scanning Probe-Enabled Nanocombinatorics Define the Relationship between Fibronectin Feature Size and Stem Cell Fate. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (12), 4377–4382. 10.1073/pnas.1201086109. PubMed DOI PMC
Liu G. Y.; Xu S.; Qian Y. Nanofabrication of Self-Assembled Monolayers Using Scanning Probe Lithography. Acc. Chem. Res. 2000, 33 (7), 457–466. 10.1021/ar980081s. PubMed DOI
Shi J.; Chen J.; Cremer P. S. Sub-100 Nm Patterning of Supported Bilayers by Nanoshaving Lithography. J. Am. Chem. Soc. 2008, 130 (9), 2718–2719. 10.1021/ja077730s. PubMed DOI PMC
Kenseth J. R.; Harnisch J. A.; Jones V. W.; Porter M. D. Investigation of Approaches for the Fabrication of Protein Patterns by Scanning Probe Lithography. Langmuir 2001, 17 (13), 4105–4112. 10.1021/la0100744. DOI
ElZubir O.; Barlow I.; Leggett G. J.; Williams N. H. Fabrication of Molecular Nanopatterns at Aluminium Oxide Surfaces by Nanoshaving of Self-Assembled Monolayers of Alkylphosphonates. Nanoscale 2013, 5 (22), 11125–11131. 10.1039/c3nr04701f. PubMed DOI
Liu M.; Amro N. A.; Liu G. Nanografting for Surface Physical Chemistry. Annu. Rev. Phys. Chem. 2008, 59, 367–386. 10.1146/annurev.physchem.58.032806.104542. PubMed DOI
Garcia-Cruz A.; Lee M.; Zine N.; Sigaud M.; Marote P.; Lopez M.; Bausells J.; Jaffrezic-Renault N.; Errachid A. Biopatterning of Antibodies on Poly(Pyrrole)-Nanowires Using Nanocontact Printing: Surface Characterization. Mater. Sci. Eng., C 2018, 91, 466–474. 10.1016/j.msec.2018.05.047. PubMed DOI
Li H.-W.; Muir B. V. O.; Fichet G.; Huck W. T. S. Nanocontact Printing: A Route to Sub-50-Nm-Scale Chemical and Biological Patterning. Langmuir 2003, 19 (6), 1963–1965. 10.1021/la0269098. DOI
Renault J. P.; Bernard A.; Bietsch A.; Michel B.; Bosshard H. R.; Delamarche E.; Kreiter M.; Hecht B.; Wild U. P. Fabricating Arrays of Single Protein Molecules on Glass Using Microcontact Printing. J. Phys. Chem. B 2003, 107 (3), 703–711. 10.1021/jp0263424. DOI
Kolodziej C. M.; Maynard H. D. Electron-Beam Lithography for Patterning Biomolecules at the Micron and Nanometer Scale. Chem. Mater. 2012, 24 (5), 774–780. 10.1021/cm202669f. DOI
Vieu C.; Carcenac F.; Pépin A.; Chen Y.; Mejias M.; Lebib A.; Manin-Ferlazzo L.; Couraud L.; Launois H. Electron Beam Lithography: Resolution Limits and Applications. Appl. Surf. Sci. 2000, 164 (1), 111–117. 10.1016/S0169-4332(00)00352-4. DOI
Lercel M. J.; Whelan C. S.; Craighead H. G.; Seshadri K.; Allara D. L. High-resolution Silicon Patterning with Self-assembled Monolayer Resists. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1996, 14 (6), 4085–4090. 10.1116/1.588596. DOI
Zhang G.-J.; Tanii T.; Funatsu T.; Ohdomari I. Patterning of DNA Nanostructures on Silicon Surface by Electron Beam Lithography of Self-Assembled Monolayer. Chem. Commun. 2004, (7), 786–787. 10.1039/b315278b. PubMed DOI
Lussi J. W.; Tang C.; Kuenzi P.-A.; Staufer U.; Csucs G.; Vörös J.; Danuser G.; Hubbell J. A.; Textor M. Selective Molecular Assembly Patterning at the Nanoscale: A Novel Platform for Producing Protein Patterns by Electron-Beam Lithography on SiO2/Indium Tin Oxide-Coated Glass Substrates. Nanotechnology 2005, 16 (9), 1781–1786. 10.1088/0957-4484/16/9/062. DOI
Künzi P. A.; Lussi J.; Aeschimann L.; Danuser G.; Textor M.; de Rooij N. F.; Staufer U. Nanofabrication of Protein-Patterned Substrates for Future Cell Adhesion Experiments. Microelectron. Eng. 2005, 78–79, 582–586. 10.1016/j.mee.2004.12.073. DOI
Park M.; Harrison C.; Chaikin P. M.; Register R. A.; Adamson D. H. Block Copolymer Lithography: Periodic Arrays of ∼ 1011 Holes in 1 Square Centimeter. Science 1997, 276 (5317), 1401–1404. 10.1126/science.276.5317.1401. DOI
Jo K.; Teague S.; Chen B.; Khan H. A.; Freeburne E.; Li H.; Li B.; Ran R.; Spence J. R.; Heemskerk I. Efficient Differentiation of Human Primordial Germ Cells through Geometric Control Reveals a Key Role for Nodal Signaling. eLife 2022, 11, e72811.10.7554/eLife.72811. PubMed DOI PMC
Irvine D. J.; Mayes A. M.; Griffith L. G. Nanoscale Clustering of RGD Peptides at Surfaces Using Comb Polymers. 1. Synthesis and Characterization of Comb Thin Films. Biomacromolecules 2001, 2 (1), 85–94. 10.1021/bm005584b. PubMed DOI
Lau U. Y.; Saxer S. S.; Lee J.; Bat E.; Maynard H. D. Direct Write Protein Patterns for Multiplexed Cytokine Detection from Live Cells Using Electron Beam Lithography. ACS Nano 2016, 10 (1), 723–729. 10.1021/acsnano.5b05781. PubMed DOI PMC
Zhang M.; Desai T.; Ferrari M. Proteins and Cells on PEG Immobilized Silicon Surfaces. Biomaterials 1998, 19 (10), 953–960. 10.1016/S0142-9612(98)00026-X. PubMed DOI
Yates N.; Fascione M.; Parkin A. Methodologies for “Wiring” Redox Proteins/Enzymes to Electrode Surfaces. Chemistry 2018, 24 (47), 12164–12182. 10.1002/chem.201800750. PubMed DOI PMC
Hutsell S. Q.; Kimple R. J.; Siderovski D. P.; Willard F. S.; Kimple A. J. High Affinity Immobilization of Proteins Using Biotin- and GST-Based Coupling Strategies. Methods Mol. Biol. Clifton NJ. 2010, 627, 75–90. 10.1007/978-1-60761-670-2_4. PubMed DOI PMC
Lutolf M. p.; Raeber G. p.; Zisch A. h.; Tirelli N.; Hubbell J. a. Cell-Responsive Synthetic Hydrogels. Adv. Mater. 2003, 15 (11), 888–892. 10.1002/adma.200304621. DOI
Taniguchi Y.; Kawakami M. Application of HaloTag Protein to Covalent Immobilization of Recombinant Proteins for Single Molecule Force Spectroscopy. Langmuir 2010, 26 (13), 10433–10436. 10.1021/la101658a. PubMed DOI
Grainger D. W.; Castner D. G.; Dubey M.; Emoto K.; Takahashi H. Affinity-Based Protein Surface Pattern Formation by Ligand Self-Selection from Mixed Protein Solutions. Adv. Funct. Mater. 2009, 19 (19), 3046–3055. 10.1002/adfm.200900809. PubMed DOI PMC
Benink H.; Urh M. HaloTag Technology for Specific and Covalent Labeling of Fusion Proteins. Methods Mol. Biol. Clifton NJ. 2015, 1266, 119–128. 10.1007/978-1-4939-2272-7_8. PubMed DOI
Wang X.; Li S.; Yan C.; Liu P.; Ding J. Fabrication of RGD Micro/Nanopattern and Corresponding Study of Stem Cell Differentiation. Nano Lett. 2015, 15 (3), 1457–1467. 10.1021/nl5049862. PubMed DOI
Chen Z.; Oh D.; Biswas K. H.; Zaidel-Bar R.; Groves J. T. Probing the Effect of Clustering on EphA2 Receptor Signaling Efficiency by Subcellular Control of Ligand-Receptor Mobility. eLife 2021, 10, e67379.10.7554/eLife.67379. PubMed DOI PMC
Davy A.; Soriano P. Ephrin Signaling in Vivo: Look Both Ways. Dev. Dyn. 2005, 232 (1), 1–10. 10.1002/dvdy.20200. PubMed DOI
Genander M.; Frisén J. Ephrins and Eph Receptors in Stem Cells and Cancer. Curr. Opin. Cell Biol. 2010, 22 (5), 611–616. 10.1016/j.ceb.2010.08.005. PubMed DOI
Shaw A.; Lundin V.; Petrova E.; Fördős F.; Benson E.; Al-Amin A.; Herland A.; Blokzijl A.; Högberg B.; Teixeira A. I. Spatial Control of Membrane Receptor Function Using Ligand Nanocalipers. Nat. Methods 2014, 11 (8), 841–846. 10.1038/nmeth.3025. PubMed DOI
Lai D.; Wang Y.; Sun J.; Chen Y.; Li T.; Wu Y.; Guo L.; Wei C. Derivation and Characterization of Human Embryonic Stem Cells on Human Amnion Epithelial Cells. Sci. Rep. 2015, 5 (1), 10014.10.1038/srep10014. PubMed DOI PMC
Baltzis K.Hexagonal vs Circular Cell Shape: A Comparative Analysis and Evaluation of the Two Popular Modeling Approximations. In Cellular Networks; IntechOpen, 2011.10.5772/14851. DOI
Altissimo M. E-Beam Lithography for Micro-/nanofabrication. Biomicrofluidics 2010, 4 (2), 026503.10.1063/1.3437589. PubMed DOI PMC
Porokh V.; Vaňhara P.; Bárta T.; Jurečková L.; Bohačiaková D.; Pospíšilová V.; Mináriková D.; Holubcová Z.; Pelková V.; Souček K.; Hampl A. Soluble Cripto-1 Induces Accumulation of Supernumerary Centrosomes and Formation of Aberrant Mitoses in Human Embryonic Stem Cells. Stem Cells Dev. 2018, 27 (16), 1077–1084. 10.1089/scd.2018.0017. PubMed DOI
Pospíšilová V.; Ešner M.; Červenková I.; Fedr R.; Tinevez J.-Y.; Hampl A.; Anger M. The Frequency and Consequences of Multipolar Mitoses in Undifferentiated Embryonic Stem Cells. J. Appl. Biomed. 2019, 17 (4), 209–217. 10.32725/jab.2019.018. PubMed DOI
Fedorova V.; Vanova T.; Elrefae L.; Pospisil J.; Petrasova M.; Kolajova V.; Hudacova Z.; Baniariova J.; Barak M.; Peskova L.; Barta T.; Kaucka M.; Killinger M.; Vecera J.; Bernatik O.; Cajanek L.; Hribkova H.; Bohaciakova D. Differentiation of Neural Rosettes from Human Pluripotent Stem Cells in Vitro Is Sequentially Regulated on a Molecular Level and Accomplished by the Mechanism Reminiscent of Secondary Neurulation. Stem Cell Res. 2019, 40, 101563.10.1016/j.scr.2019.101563. PubMed DOI
Asano S. M.; Gao R.; Wassie A. T.; Tillberg P.; Chen F.; Boyden E. S. Expansion Microscopy: Protocols for Imaging Proteins and RNA in Cells and Tissues. Curr. Protoc. Cell Biol. 2018, 80 (1), e56.10.1002/cpcb.56. PubMed DOI PMC
Schindelin J.; Arganda-Carreras I.; Frise E.; Kaynig V.; Longair M.; Pietzsch T.; Preibisch S.; Rueden C.; Saalfeld S.; Schmid B.; Tinevez J.-Y.; White D. J.; Hartenstein V.; Eliceiri K.; Tomancak P.; Cardona A. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9 (7), 676–682. 10.1038/nmeth.2019. PubMed DOI PMC
Tseng A.A.; Chen K.; Chen C.D.; Ma K.J. Electron Beam Lithography in Nanoscale Fabrication: Recent Development. IEEE Trans. Electron. Packag. Manuf. 2003, 26 (2), 141–149. 10.1109/TEPM.2003.817714. DOI
Groves T. R.Electron Beam Lithography. In Nanolithography; Feldman M., Ed.; Woodhead Publishing, 2014; Chapter 3, pp 80–115.10.1533/9780857098757.80. DOI
Lee M.-H.; Kim H.-M.; Cho S.-Y.; Lim K.; Park S.-Y.; Jong Lee J.; Kim K.-B. Fabrication of Ultra-High-Density Nanodot Array Patterns (∼3 Tbits/in.2) Using Electron-Beam Lithography. J. Vac. Sci. Technol. B 2011, 29 (6), 061602.10.1116/1.3646469. DOI
Grigorescu A.; Hagen C. W. Resists for Sub-20-Nm Electron Beam Lithography with a Focus on HSQ: State of the Art. Nanotechnology 2009, 20, 292001.10.1088/0957-4484/20/29/292001. PubMed DOI
Lin J.-J.; Li Z.-Q. Electronic Conduction Properties of Indium Tin Oxide: Single-Particle and Many-Body Transport. J. Phys. Condens. Matter Inst. Phys. J. 2014, 26 (34), 343201.10.1088/0953-8984/26/34/343201. PubMed DOI
Kim H.; Gilmore C. M.; Piqué A.; Horwitz J. S.; Mattoussi H.; Murata H.; Kafafi Z. H.; Chrisey D. B. Electrical, Optical, and Structural Properties of Indium–Tin–Oxide Thin Films for Organic Light-Emitting Devices. J. Appl. Phys. 1999, 86 (11), 6451–6461. 10.1063/1.371708. DOI
Lichtenberg J. Y.; Ling Y.; Kim S. Non-Specific Adsorption Reduction Methods in Biosensing. Sensors 2019, 19 (11), 2488.10.3390/s19112488. PubMed DOI PMC
Han S.; Kim C.; Kwon D. Thermal Degradation of Poly(Ethyleneglycol). Polym. Degrad. Stab. 1995, 47 (2), 203–208. 10.1016/0141-3910(94)00109-L. DOI
Elzouka M.; Ndao S. High Temperature Near-Field NanoThermoMechanical Rectification. Sci. Rep. 2017, 7 (1), 44901.10.1038/srep44901. PubMed DOI PMC
van Zanten T. S.; Cambi A.; Koopman M.; Joosten B.; Figdor C. G.; Garcia-Parajo M. F. Hotspots of GPI-Anchored Proteins and Integrin Nanoclusters Function as Nucleation Sites for Cell Adhesion. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (44), 18557–18562. 10.1073/pnas.0905217106. PubMed DOI PMC
Palmer A.; Klein R. Multiple Roles of Ephrins in Morphogenesis, Neuronal Networking, and Brain Function. Genes Dev. 2003, 17 (12), 1429–1450. 10.1101/gad.1093703. PubMed DOI
Sur M.; Rubenstein J. L. R. Patterning and Plasticity of the Cerebral Cortex. Science 2005, 310 (5749), 805–810. 10.1126/science.1112070. PubMed DOI
Nikolov D. B.; Xu K.; Himanen J. P. Eph/Ephrin Recognition and the Role of Eph/Ephrin Clusters in Signaling Initiation. Biochim. Biophys. Acta 2013, 1834 (10), 2160–2165. 10.1016/j.bbapap.2013.04.020. PubMed DOI PMC
Ravasio A.; Myaing M. Z.; Chia S.; Arora A.; Sathe A.; Cao E. Y.; Bertocchi C.; Sharma A.; Arasi B.; Chung V. Y.; Greene A. C.; Tan T. Z.; Chen Z.; Ong H. T.; Iyer N. G.; Huang R. Y.; DasGupta R.; Groves J. T.; Viasnoff V. Single-Cell Analysis of EphA Clustering Phenotypes to Probe Cancer Cell Heterogeneity. Commun. Biol. 2020, 3 (1), 1–12. 10.1038/s42003-020-01136-4. PubMed DOI PMC
Singh D. R.; Kanvinde P.; King C.; Pasquale E. B.; Hristova K. The EphA2 Receptor Is Activated through Induction of Distinct, Ligand-Dependent Oligomeric Structures. Commun. Biol. 2018, 1 (1), 1–12. 10.1038/s42003-018-0017-7. PubMed DOI PMC
Irie N.; Takada Y.; Watanabe Y.; Matsuzaki Y.; Naruse C.; Asano M.; Iwakura Y.; Suda T.; Matsuo K. Bidirectional Signaling through EphrinA2-EphA2 Enhances Osteoclastogenesis and Suppresses Osteoblastogenesis. J. Biol. Chem. 2009, 284 (21), 14637–14644. 10.1074/jbc.M807598200. PubMed DOI PMC
Rundle C. H.; Xing W.; Lau K.-H. W.; Mohan S. Bidirectional Ephrin Signaling in Bone. Osteoporos. Sarcopenia 2016, 2 (2), 65–76. 10.1016/j.afos.2016.05.002. PubMed DOI PMC
Eph Nomenclature Committee . Unified Nomenclature for Eph Family Receptors and Their Ligands, the Ephrins. Cell 1997, 90 ( (3), ), 403–404.10.1016/S0092-8674(00)80500-0 PubMed DOI
Casanova M. R.; Reis R. L.; Martins A.; Neves N. M. Surface Biofunctionalization to Improve the Efficacy of Biomaterial Substrates to Be Used in Regenerative Medicine. Mater. Horiz. 2020, 7 (9), 2258–2275. 10.1039/D0MH00542H. DOI
Wong L. S.; Karthikeyan C. V.; Eichelsdoerfer D. J.; Micklefield J.; Mirkin C. A. A Methodology for Preparing Nanostructured Biomolecular Interfaces with High Enzymatic Activity. Nanoscale 2012, 4 (2), 659–666. 10.1039/C1NR11443C. PubMed DOI
Wagner H.; Li Y.; Hirtz M.; Chi L.; Fuchs H.; Studer A. Site Specific Protein Immobilization into Structured Polymer Brushes Prepared by AFM Lithography. Soft Matter 2011, 7 (21), 9854–9858. 10.1039/c1sm06013a. DOI
Salaita K.; Nair P. M.; Petit R. S.; Neve R. M.; Das D.; Gray J. W.; Groves J. T. Restriction of Receptor Movement Alters Cellular Response: Physical Force Sensing by EphA2. Science 2010, 327 (5971), 1380–1385. 10.1126/science.1181729. PubMed DOI PMC
Chen K. G.; Mallon B. S.; McKay R. D. G.; Robey P. G. Human Pluripotent Stem Cell Culture: Considerations for Maintenance, Expansion, and Therapeutics. Cell Stem Cell 2014, 14 (1), 13–26. 10.1016/j.stem.2013.12.005. PubMed DOI PMC
Nebe B.; Finke B.; Körtge A.; Rebl H.; Staehlke S. Geometrical Micropillars Combined with Chemical Surface Modifications - Independency of Actin Filament Spatial Distribution in Primary Osteoblasts. Mater. Sci. Forum 2014, 783–786, 1320–1325. 10.4028/www.scientific.net/MSF.783-786.1320. DOI
Singh A.; Winterbottom E.; Daar I. O. Eph/Ephrin Signaling in Cell-Cell and Cell-Substrate Adhesion. Front. Biosci. Landmark Ed. 2012, 17, 473–497. 10.2741/3939. PubMed DOI PMC
Xu Q.; Lin W.-C.; Petit R. S.; Groves J. T. EphA2 Receptor Activation by Monomeric Ephrin-A1 on Supported Membranes. Biophys. J. 2011, 101 (11), 2731–2739. 10.1016/j.bpj.2011.10.039. PubMed DOI PMC
Wakao S.; Kitada M.; Kuroda Y.; Ogura F.; Murakami T.; Niwa A.; Dezawa M. Morphologic and Gene Expression Criteria for Identifying Human Induced Pluripotent Stem Cells. PloS One 2012, 7, e48677.10.1371/journal.pone.0048677. PubMed DOI PMC
Prager-Khoutorsky M.; Lichtenstein A.; Krishnan R.; Rajendran K.; Mayo A.; Kam Z.; Geiger B.; Bershadsky A. D. Fibroblast Polarization Is a Matrix-Rigidity-Dependent Process Controlled by Focal Adhesion Mechanosensing. Nat. Cell Biol. 2011, 13 (12), 1457–1465. 10.1038/ncb2370. PubMed DOI
Gauthier N. C.; Masters T. A.; Sheetz M. P. Mechanical Feedback between Membrane Tension and Dynamics. Trends Cell Biol. 2012, 22 (10), 527–535. 10.1016/j.tcb.2012.07.005. PubMed DOI
Wang X.; Hu X.; Dulińska-Molak I.; Kawazoe N.; Yang Y.; Chen G. Discriminating the Independent Influence of Cell Adhesion and Spreading Area on Stem Cell Fate Determination Using Micropatterned Surfaces. Sci. Rep. 2016, 6 (1), 28708.10.1038/srep28708. PubMed DOI PMC
Cabezas M. D.; Meckes B.; Mirkin C. A.; Mrksich M. Subcellular Control over Focal Adhesion Anisotropy, Independent of Cell Morphology, Dictates Stem Cell Fate. ACS Nano 2019, 13 (10), 11144–11152. 10.1021/acsnano.9b03937. PubMed DOI PMC
Min S.; Jeon Y. S.; Choi H.; Khatua C.; Li N.; Bae G.; Jung H. J.; Kim Y.; Hong H.; Shin J.; Ko M. J.; Ko H. S.; Kim T.; Moon J. H.; Song J.-J.; Dravid V. P.; Kim Y. K.; Kang H. Large and Externally Positioned Ligand-Coated Nanopatches Facilitate the Adhesion-Dependent Regenerative Polarization of Host Macrophages. Nano Lett. 2020, 20 (10), 7272–7280. 10.1021/acs.nanolett.0c02655. PubMed DOI
Pallarola D.; Bochen A.; Guglielmotti V.; Oswald T. A.; Kessler H.; Spatz J. P. Highly Ordered Gold Nanopatterned Indium Tin Oxide Electrodes for Simultaneous Optical and Electrochemical Probing Cell Interactions. Anal. Chem. 2017, 89 (18), 10054–10062. 10.1021/acs.analchem.7b02743. PubMed DOI
Wong S. H. D.; Xu X.; Chen X.; Xin Y.; Xu L.; Lai C. H. N.; Oh J.; Wong W. K. R.; Wang X.; Han S.; You W.; Shuai X.; Wong N.; Tan Y.; Duan L.; Bian L. Manipulation of the Nanoscale Presentation of Integrin Ligand Produces Cancer Cells with Enhanced Stemness and Robust Tumorigenicity. Nano Lett. 2021, 21 (7), 3225–3236. 10.1021/acs.nanolett.1c00501. PubMed DOI
Chu M.; Zhang C. Inhibition of Angiogenesis by Leflunomide via Targeting the Soluble Ephrin-A1/EphA2 System in Bladder Cancer. Sci. Rep. 2018, 8 (1), 1539.10.1038/s41598-018-19788-y. PubMed DOI PMC
Funk S. D.; Yurdagul A.; Albert P.; Traylor J. G.; Jin L.; Chen J.; Orr A. W. EphA2 Activation Promotes the Endothelial Cell Inflammatory Response: A Potential Role in Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2012, 32 (3), 686–695. 10.1161/ATVBAHA.111.242792. PubMed DOI PMC
Wakayama Y.; Miura K.; Sabe H.; Mochizuki N. EphrinA1-EphA2 Signal Induces Compaction and Polarization of Madin-Darby Canine Kidney Cells by Inactivating Ezrin through Negative Regulation of RhoA. J. Biol. Chem. 2011, 286 (51), 44243–44253. 10.1074/jbc.M111.267047. PubMed DOI PMC
Wykosky J.; Debinski W. The EphA2 Receptor and EphrinA1 Ligand in Solid Tumors: Function and Therapeutic Targeting. Mol. Cancer Res. MCR 2008, 6 (12), 1795–1806. 10.1158/1541-7786.MCR-08-0244. PubMed DOI PMC
Balatskaya M. N.; Baglay A. I.; Rubtsov Y. P.; V Sharonov G. Analysis of GPI-Anchored Receptor Distribution and Dynamics in Live Cells by Tag-Mediated Enzymatic Labeling and FRET. Methods Protoc. 2020, 3 (2), 33.10.3390/mps3020033. PubMed DOI PMC
Tillberg P. W.; Chen F.; Piatkevich K. D.; Zhao Y.; Yu C.-C. J.; English B. P.; Gao L.; Martorell A.; Suk H.-J.; Yoshida F.; DeGennaro E. M.; Roossien D. H.; Gong G.; Seneviratne U.; Tannenbaum S. R.; Desimone R.; Cai D.; Boyden E. S. Protein-Retention Expansion Microscopy of Cells and Tissues Labeled Using Standard Fluorescent Proteins and Antibodies. Nat. Biotechnol. 2016, 34 (9), 987–992. 10.1038/nbt.3625. PubMed DOI PMC
Seiradake E.; Harlos K.; Sutton G.; Aricescu A. R.; Jones E. Y. An Extracellular Steric Seeding Mechanism for Eph-Ephrin Signaling Platform Assembly. Nat. Struct. Mol. Biol. 2010, 17 (4), 398–402. 10.1038/nsmb.1782. PubMed DOI PMC
Himanen J. P.; Yermekbayeva L.; Janes P. W.; Walker J. R.; Xu K.; Atapattu L.; Rajashankar K. R.; Mensinga A.; Lackmann M.; Nikolov D. B.; Dhe-Paganon S. Architecture of Eph Receptor Clusters. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (24), 10860–10865. 10.1073/pnas.1004148107. PubMed DOI PMC
Baba A.; Akagi K.; Takayanagi M.; Flanagan J. G.; Kobayashi T.; Hattori M. Fyn Tyrosine Kinase Regulates the Surface Expression of Glycosylphosphatidylinositol-Linked Ephrin via the Modulation of Sphingomyelin Metabolism. J. Biol. Chem. 2009, 284 (14), 9206–9214. 10.1074/jbc.M809401200. PubMed DOI PMC
Davy A.; Gale N. W.; Murray E. W.; Klinghoffer R. A.; Soriano P.; Feuerstein C.; Robbins S. M. Compartmentalized Signaling by GPI-Anchored Ephrin-A5 Requires the Fyn Tyrosine Kinase to Regulate Cellular Adhesion. Genes Dev. 1999, 13 (23), 3125–3135. 10.1101/gad.13.23.3125. PubMed DOI PMC
Changede R.; Cai H.; Wind S. J.; Sheetz M. P. Integrin Nanoclusters Can Bridge Thin Matrix Fibres to Form Cell–Matrix Adhesions. Nat. Mater. 2019, 18 (12), 1366–1375. 10.1038/s41563-019-0460-y. PubMed DOI PMC
Huai J.; Drescher U. An Ephrin-A-Dependent Signaling Pathway Controls Integrin Function and Is Linked to the Tyrosine Phosphorylation of a 120-KDa Protein. J. Biol. Chem. 2001, 276 (9), 6689–6694. 10.1074/jbc.M008127200. PubMed DOI
Verheyen T.; Fang T.; Lindenhofer D.; Wang Y.; Akopyan K.; Lindqvist A.; Högberg B.; Teixeira A. I. Spatial Organization-Dependent EphA2 Transcriptional Responses Revealed by Ligand Nanocalipers. Nucleic Acids Res. 2020, 48 (10), 5777–5787. 10.1093/nar/gkaa274. PubMed DOI PMC