The frequency and consequences of multipolar mitoses in undifferentiated embryonic stem cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Polsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
15-04844S
Czech Science Foundation - Czech Republic
15-11707S
Czech Science Foundation - Czech Republic
CZ.02.1.01/0.0/0.0/16_013/000
European Regional Development Fund-Project - Czech Republic
H2A-GFP
construct - Germany
PubMed
34907719
DOI
10.32725/jab.2019.018
Knihovny.cz E-zdroje
- Klíčová slova
- Embryonic stem (ES) cells, Mitosis length, Multipolar division, Single-cell tracking, Spindle assembly checkpoint (SAC), Time-lapse microscopy,
- Publikační typ
- časopisecké články MeSH
Embryonic stem (ES) cells are pluripotent cells widely used in cell therapy and tissue engineering. However, the broader clinical applications of ES cells are limited by their genomic instability and karyotypic abnormalities. Thus, understanding the mechanisms underlying ES cell karyotypic abnormalities is critical to optimizing their clinical use. In this study, we focused on proliferating human and mouse ES cells undergoing multipolar divisions. Specifically, we analyzed the frequency and outcomes of such divisions using a combination of time-lapse microscopy and cell tracking. This revealed that cells resulting from multipolar divisions were not only viable, but they also frequently underwent subsequent cell divisions. Our novel data also showed that in human and mouse ES cells, multipolar spindles allowed more robust escape from chromosome segregation control mechanisms than bipolar spindles. Considering the frequency of multipolar divisions in proliferating ES cells, it is conceivable that cell division errors underlie ES cell karyotypic instability.
Institute of Biophysics of the Czech Academy of Sciences Brno Czech Republic
Masaryk University Faculty of Medicine Department of Histology and Embryology Brno Czech Republic
Pasteur Institute Image Analysis Hub Paris France
St Anne's University Hospital International Clinical Research Center Brno Czech Republic
Zobrazit více v PubMed
Ballabeni A, Park IH, Zhao R, Wang W, Lerou PH, Daley GQ, Kirschner MW (2011). Cell cycle adaptations of embryonic stem cells. Proc Natl Acad Sci U S A 108(48): 19252-19257. DOI: 10.1073/pnas.1116794108. PubMed DOI
Brinkley BR (2001). Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol 11(1): 18-21. DOI: 10.1016/s0962-8924(00)01872-9. PubMed DOI
Castedo M, Perfettini JL, Roumier T, Valent A, Raslova H, Yakushijin K, et al. (2004). Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene 23(25): 4362-4370. DOI: 10.1038/sj.onc.1207572. PubMed DOI
Celton-Morizur S, Merlen G, Couton D, Margall-Ducos G, Desdouets C (2009). The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents. J Clin Invest 119(7): 1880-1887. DOI: 10.1172/jci38677. PubMed DOI
Chen J, Liu J (2015). Erroneous silencing of the mitotic checkpoint by aberrant spindle pole-kinetochore coordination. Biophys J 109(11): 2418-2435. DOI: 10.1016/j.bpj.2015.10.024. PubMed DOI
Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, et al. (2004). Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22(1): 53-54. DOI: 10.1038/nbt922. PubMed DOI
Duncan AW, Taylor MH, Hickey RD, Hanlon Newell AE, Lenzi ML, Olson SB, et al. (2010). The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 467(7316): 707-710. DOI: 10.1038/nature09414. PubMed DOI
Durrbaum M, Storchova Z (2016). Effects of aneuploidy on gene expression: implications for cancer. FEBS J 283(5): 791-802. DOI: 10.1111/febs.13591. PubMed DOI
Foley EA, Kapoor TM (2013). Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 14(1): 25-37. DOI: 10.1038/nrm3494. PubMed DOI
Galimberti F, Thompson SL, Ravi S, Compton DA, Dmitrovsky E (2011). Anaphase catastrophe is a target for cancer therapy. Clin Cancer Res 17(6): 1218-1222. DOI: 10.1158/1078-0432.CCR-10-1178. PubMed DOI
Ganem NJ, Cornils H, Chiu SY, O'Rourke KP, Arnaud J, Yimlamai D, et al. (2014). Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158(4): 833-848. DOI: 10.1016/j.cell.2014.06.029. PubMed DOI
Ganem NJ, Godinho SA, Pellman D (2009). A mechanism linking extra centrosomes to chromosomal instability. Nature 460(7252): 278-282. DOI: 10.1038/nature08136. PubMed DOI
Gentric G, Desdouets C (2014). Polyploidization in liver tissue. Am J Pathol 184(2): 322-331. DOI: 10.1016/j.ajpath.2013.06.035. PubMed DOI
Gisselsson D, Jin Y, Lindgren D, Persson J, Gisselsson L, Hanks S, et al. (2010). Generation of trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis. Proc Natl Acad Sci U S A 107(47): 20489-20493. DOI: 10.1073/pnas.1006829107. PubMed DOI
Holubcova Z, Blayney M, Elder K, Schuh M (2015). Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science 348(6239): 1143-1147. DOI: 10.1126/science.aaa9529. PubMed DOI
Holubcova Z, Matula P, Sedlackova M, Vinarsky V, Dolezalova D, Barta T, et al. (2011). Human embryonic stem cells suffer from centrosomal amplification. Stem Cells 29(1): 46-56. DOI: 10.1002/stem.549. PubMed DOI
Imreh MP, Gertow K, Cedervall J, Unger C, Holmberg K, Szoke K, et al. (2006). In vitro culture conditions favoring selection of chromosomal abnormalities in human ES cells. J Cell Biochem 99(2): 508-516. DOI: 10.1002/jcb.20897. PubMed DOI
International Stem Cell Initiative, Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, et al. (2011). Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 29(12): 1132-1144. DOI: 10.1038/nbt.2051. PubMed DOI
Kallas A, Pook M, Maimets M, Zimmermann K, Maimets T (2011). Nocodazole treatment decreases expression of pluripotency markers Nanog and Oct4 in human embryonic stem cells. PloS One 6(4): e19114. DOI: 10.1371/journal.pone.0019114. PubMed DOI
Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, Thery M, Pellman D (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22(16): 2189-2203. DOI: 10.1101/gad.1700908. PubMed DOI
Lin TX, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E, Xu Y (2005). P53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nature Cell Biol 7(2): 165-171. DOI: 10.1038/ncb1211. PubMed DOI
Martello G, Smith A (2014). The nature of embryonic stem cells. Annu Rev Cell Dev Biol 30: 647-675. DOI: 10.1146/annurev-cellbio-100913-013116. PubMed DOI
Nakagawa S, FitzHarris G (2017). Intrinsically defective microtubule dynamics contribute to age-related chromosome segregation errors in mouse oocyte meiosis-I. Curr Biol 27(7): 1040-1047. DOI: 10.1016/j.cub.2017.02.025. PubMed DOI
Park Y, Depeursinge C, Popescu G (2018). Quantitative phase imaging in biomedicine. Nature Photonics 12(10): 578-589. DOI: 10.1038/s41566-018-0253-x. DOI
Poser I, Sarov M, Hutchins JR, Heriche JK, Toyoda Y, Pozniakovsky A, et al. (2008). BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods 5(5): 409-415. DOI: 10.1038/nmeth.1199. PubMed DOI
Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM, Saunders WS (2005). Spindle multipolarity is prevented by centrosomal clustering. Science 307(5706): 127-129. DOI: 10.1126/science.1104905. PubMed DOI
Ring D, Hubble R, Kirschner M (1982). Mitosis in a cell with multiple centrioles. J Cell Biol 94(3): 549-556. DOI: 10.1083/jcb.94.3.549. PubMed DOI
Sanchez-Aguilera A, Montalban C, de la Cueva P, Sanchez-Verde L, Morente MM, Garcia-Cosio M, et al. (2006). Tumor microenvironment and mitotic checkpoint are key factors in the outcome of classic Hodgkin lymphoma. Blood 108(2): 662-668. DOI: 10.1182/blood-2005-12-5125. PubMed DOI
Santaguida S, Richardson A, Iyer DR, M'Saad O, Zasadil L, Knouse KA, et al. (2017). Chromosome mis-segregation generates cell-cycle-arrested cells with complex karyotypes that are eliminated by the immune system. Dev Cell 41(6): 638-651.e5. DOI: 10.1016/j.devcel.2017.05.022. PubMed DOI
Silkworth WT, Cimini D (2012). Transient defects of mitotic spindle geometry and chromosome segregation errors. Cell Div 7(1): 19. DOI: 10.1186/1747-1028-7-19. PubMed DOI
Silkworth WT, Nardi IK, Scholl LM, Cimini D (2009). Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. Plos One 4(8): e6564. DOI: 10.1371/journal.pone.0006564. PubMed DOI
Sluder G, Thompson EA, Miller FJ, Hayes J, Rieder CL (1997). The checkpoint control for anaphase onset does not monitor excess numbers of spindle poles or bipolar spindle symmetry. J Cell Sci 110(Pt 4): 421-429. PubMed
Spits C, Mateizel I, Geens M, Mertzanidou A, Staessen C, Vandeskelde Y, et al. (2008). Recurrent chromosomal abnormalities in human embryonic stem cells. Nat Biotechnol 26(12): 1361-1363. DOI: 10.1038/nbt.1510. PubMed DOI
Storchova Z, Kuffer C (2008). The consequences of tetraploidy and aneuploidy. J Cell Sci 121(Pt 23): 3859-3866. DOI: 10.1242/jcs.039537. PubMed DOI
Vitale I, Galluzzi L, Castedo M, Kroemer G (2011). Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 12(6): 385-392. DOI: 10.1038/nrm3115. PubMed DOI
Werbowetski-Ogilvie TE, Bosse M, Stewart M, Schnerch A, Ramos-Mejia V, Rouleau A, et al. (2009). Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol 27(1): 91-97. DOI: 10.1038/nbt.1516. PubMed DOI
Yi Q, Zhao X, Huang Y, Ma T, Zhang Y, Hou H, et al. (2011). P53 dependent centrosome clustering prevents multipolar mitosis in tetraploid cells. PLoS One 6(11): e27304. DOI: 10.1371/journal.pone.0027304. PubMed DOI
Zhang M, Cheng L, Jia Y, Liu G, Li C, Song S, et al. (2016). Aneuploid embryonic stem cells exhibit impaired differentiation and increased neoplastic potential. EMBO J 35(21): 2285-2300. DOI: 10.15252/embj.201593103. PubMed DOI
Zhang ZN, Chung SK, Xu Z, Xu Y (2014). Oct4 maintains the pluripotency of human embryonic stem cells by inactivating p53 through Sirt1-mediated deacetylation. Stem Cells 32(1): 157-165. DOI: 10.1002/stem.1532. PubMed DOI
Geometric Control of Cell Behavior by Biomolecule Nanodistribution