cell−cell interaction
Dotaz
Zobrazit nápovědu
Phosphofurin acidic cluster sorting protein 2 (PACS2) plays a vital role in maintaining cellular homeostasis by regulating protein trafficking between cellular membranes. This function impacts crucial processes like apoptosis, mitochondria-endoplasmic reticulum interaction, and subsequently Ca2+ flux, lipid biosynthesis, and autophagy. Missense mutations, particularly E209K and E211K, are linked to developmental and epileptic encephalopathy-66 (DEE66), known as PACS2 syndrome. Individuals with this syndrome exhibit neurodevelopmental delay, seizures, facial dysmorphism, hypotonia, and delayed motor skills.Understanding the impact of these missense mutations on molecular processes is crucial. Studies suggest that E209K mutation decreases phosphorylation, increases the survival time of protein, and modifies protein-protein interaction, consequently leading to disruption of calcium flux and lower resistance to apoptosis induction. Unfortunately, to date, only a limited number of research groups have investigated the effects of mutations in the PACS2 gene. Current research on PACS2 syndrome is hampered by the lack of suitable models. While in vitro models using transfected cell lines offer insights, they cannot fully capture the disease's complexity.To address this, utilizing cells from individuals with PACS2 syndrome, specifically induced pluripotent stem cells (iPSCs), holds promise for understanding phenotypic diversity and developing personalized therapies. However, iPSC models may not fully capture tissue-specific effects of the E209K/E211K mutation. In vivo studies using animal models, particularly mice, could overcome these limitations.This review summarizes current knowledge about PACS2 structure and functions, explores the cellular consequences of E209K and E211K mutations, and highlights the potential of iPSC and mouse models in advancing our understanding of PACS2 syndrome.
Propiconazole is a triazole fungicide previously shown to induce triglyceride accumulation in human liver HepaRG cells, potentially via activation of the Pregnane X Receptor (PXR). However, whether propiconazole can disrupt hepatic and whole-body metabolism in vivo is currently unknown. Therefore, we aimed to examine the metabolic effects of propiconazole in the context of metabolic dysfunction-associated steatotic liver disease (MASLD), obesity, and insulin resistance. To this end, male C57BL/6J mice were fed a high-fat diet for 20 weeks. During the last 10 weeks, mice additionally received vehicle, 0.04, 30, or 100 mg/kg body weight (bw)/day propiconazole via oral gavage. High-dose propiconazole, but not low or intermediate dose, reduced body weight gain and adipose tissue weight in obese mice. Mice receiving high-dose propiconazole displayed improved glucose tolerance and reduced levels of plasma triglycerides and cholesterol. Propiconazole dose-dependently increased liver weight and triglyceride levels and at high dose caused signs of hepatic inflammation. RNA sequencing on the liver revealed that propiconazole mainly induced PXR target genes. At intermediate and high dose, propiconazole induced pathways related to cell-cell interactions and inflammation, while oxidative phosphorylation was repressed by propiconazole. Comparison of gene regulation in wildtype and PXR knockout primary hepatocytes as well as gene reporter assays confirmed the activation of PXR by propiconazole. All in all, our data underscore the capacity of propiconazole to activate PXR in the liver and thereby promote the development of hepatic steatosis in vivo.
- MeSH
- dieta s vysokým obsahem tuků * MeSH
- inzulinová rezistence MeSH
- játra účinky léků metabolismus patologie MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL * MeSH
- myši MeSH
- obezita * chemicky indukované MeSH
- pregnanový X receptor * metabolismus genetika MeSH
- průmyslové fungicidy * toxicita MeSH
- triazoly * toxicita MeSH
- triglyceridy krev metabolismus MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- ztučnělá játra * chemicky indukované MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
A double primary colorectal cancer (CRC) in a familial setting signals a high risk of CRC. In order to identify novel CRC susceptibility genes, we whole-exome sequenced germline DNA from nine persons with a double primary CRC and a family history of CRC. The detected variants were processed by bioinformatics filtering and prioritization, including STRING protein-protein interaction and pathway analysis. A total of 150 missense, 19 stop-gain, 22 frameshift and 13 canonical splice site variants fulfilled our filtering criteria. The STRING analysis identified 20 DNA repair/cell cycle proteins as the main cluster, related to genes CHEK2, EXO1, FAAP24, FANCI, MCPH1, POLL, PRC1, RECQL, RECQL5, RRM2, SHCBP1, SMC2, XRCC1, in addition to CDK18, ENDOV, ZW10 and the known mismatch repair genes. Another STRING network included extracellular matrix genes and TGFβ signaling genes. In the nine whole-exome sequenced patients, eight harbored at least two candidate DNA repair/cell cycle/TGFβ signaling gene variants. The number of families is too small to provide evidence for individual variants but, considering the known role of DNA repair/cell cycle genes in CRC, the clustering of multiple deleterious variants in the present families suggests that these, perhaps jointly, contributed to CRC development in these families.
- MeSH
- dospělí MeSH
- genetická predispozice k nemoci * MeSH
- kolorektální nádory * genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- oprava DNA genetika MeSH
- rodokmen MeSH
- sekvenování exomu * metody MeSH
- senioři MeSH
- zárodečné mutace * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: Transgenic mice with fluorescent protein (FP) reporters take full advantage of new in vivo imaging technologies. Therefore, we generated a TRPC5- and a TRPA1-reporter mouse based on FP C-terminal fusion, providing us with better alternatives for studying the physiology, interaction and coeffectors of these two TRP channels at the cellular and tissue level. METHODS: We generated transgenic constructs of the murine TRPC5- and TRPA1-gene with a 3*GGGGS linker and C-terminal fusion to mCherry and mTagBFP, respectively. We microinjected zygotes to generate reporter mice. Reporter mice were examined for visible fluorescence in trigeminal ganglia with two-photon microscopy, immunohistochemistry and calcium imaging. RESULTS: Both TRPC5-mCherry and TRPA1-mTagBFP knock-in mouse models were successful at the DNA and RNA level. However, at the protein level, TRPC5 resulted in no mCherry fluorescence. In contrast, sensory neurons derived from the TRPA1-reporter mice exhibited visible mTag-BFP fluorescence, although TRPA1 had apparently lost its ion channel function. CONCLUSIONS: Creating transgenic mice with a TRP channel tagged at the C-terminus with a FP requires detailed investigation of the structural and functional consequences in a given cellular context and fine-tuning the design of specific constructs for a given TRP channel subtype. Different degrees of functional impairment of TRPA1 and TRPC5 constructs suggest a specific importance of the distal C-terminus for the regulation of these two channels in trigeminal neurons.
- MeSH
- červený fluorescenční protein MeSH
- ganglion trigeminale metabolismus MeSH
- genový knockin * MeSH
- kationtové kanály TRPC * genetika metabolismus MeSH
- kationtový kanál TRPA1 * genetika metabolismus MeSH
- luminescentní proteiny * genetika metabolismus MeSH
- myši transgenní * MeSH
- myši MeSH
- rekombinantní fúzní proteiny metabolismus genetika MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Cancer immunotherapy is increasingly used in clinical practice, but its success rate is reduced by tumor escape from the immune system. This may be due to the genetic instability of tumor cells, which allows them to adapt to the immune response and leads to intratumoral immune heterogeneity. The study investigated spatial immune heterogeneity in the tumor microenvironment and its possible drivers in a mouse model of tumors induced by human papillomaviruses (HPV) following immunotherapy. Gene expression was determined by RNA sequencing and mutations by whole exome sequencing. A comparison of different tumor areas revealed heterogeneity in immune cell infiltration, gene expression, and mutation composition. While the mean numbers of mutations with every impact on gene expression or protein function were comparable in treated and control tumors, mutations with high or moderate impact were increased after immunotherapy. The genes mutated in treated tumors were significantly enriched in genes associated with ECM metabolism, degradation, and interactions, HPV infection and carcinogenesis, and immune processes such as antigen processing and presentation, Toll-like receptor signaling, and cytokine production. Gene expression analysis of DNA damage and repair factors revealed that immunotherapy upregulated Apobec1 and Apobec3 genes and downregulated genes related to homologous recombination and translesion synthesis. In conclusion, this study describes the intratumoral immune heterogeneity, that could lead to tumor immune escape, and suggests the potential mechanisms involved.
- MeSH
- imunoterapie * metody MeSH
- infekce papilomavirem imunologie virologie MeSH
- lidé MeSH
- modely nemocí na zvířatech * MeSH
- mutace * MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové mikroprostředí * imunologie MeSH
- regulace genové exprese u nádorů MeSH
- sekvenování exomu MeSH
- únik nádoru z imunitní kontroly genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: The E3 ubiquitin ligase Cbl-b is a novel target in immune-oncology, with critical roles in regulating T-cell activation and signaling pathways. By facilitating the ubiquitination and degradation of key signaling proteins, Cbl-b modulates immune responses, maintaining immune homeostasis and preventing unwarranted T-cell proliferation. The therapeutic potential of Cbl-b as a cancer immunotherapy target is underscored by its contribution to an immunosuppressive tumor microenvironment, with efforts currently underway to develop small-molecule inhibitors. AREAS COVERED: We reviewed the small molecules, and antibody-drug conjugates targeting Cbl-b from 2018 to 2024. The patents were gathered through publicly available databases and analyzed with in-house developed cheminformatic workflow, described within the manuscript. EXPERT OPINION: Targeting Cbl-b presents a promising approach in immuno-oncology, offering a novel pathway to potentiate the immune system's ability to combat cancer beyond PDL1/PD1 inhibition. The development and clinical advancement of Cbl-b inhibitors, as evidenced by the ongoing trials, mark a significant step toward harnessing this target for therapeutic benefits. Overall, the strategic inhibition of Cbl-b holds substantial promise for improving cancer immunotherapy outcomes, heralding a new era in the fight against cancer.
- MeSH
- adaptorové proteiny signální transdukční MeSH
- cílená molekulární terapie * MeSH
- imunokonjugáty farmakologie MeSH
- imunoterapie * metody MeSH
- lidé MeSH
- nádorové mikroprostředí * imunologie MeSH
- nádory * imunologie farmakoterapie MeSH
- patenty jako téma * MeSH
- protinádorové látky farmakologie MeSH
- protoonkogenní proteiny c-cbl * imunologie antagonisté a inhibitory MeSH
- signální transdukce účinky léků MeSH
- T-lymfocyty imunologie účinky léků MeSH
- vyvíjení léků * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Cell cycle progression and leukemia development are tightly regulated processes in which even a small imbalance in the expression of cell cycle regulatory molecules and microRNAs (miRNAs) can lead to an increased risk of cancer/leukemia development. Here, we focus on the study of a ubiquitous, multifunctional, and oncogenic miRNA-hsa-miR-155-5p (miR-155, MIR155HG), which is overexpressed in malignancies including chronic lymphocytic leukemia (CLL). Nonetheless, the precise mechanism of how miR-155 regulates the cell cycle in leukemic cells remains the subject of extensive research. METHODS: We edited the CLL cell line MEC-1 by CRISPR/Cas9 to introduce a short deletion within the MIR155HG gene. To describe changes at the transcriptome and miRNome level in miR-155-deficient cells, we performed mRNA-seq/miRNA-seq and validated changes by qRT-PCR. Flow cytometry was used to measure cell cycle kinetics. A WST-1 assay, hemocytometer, and Annexin V/PI staining assessed cell viability and proliferation. RESULTS: The limited but phenotypically robust miR-155 modification impaired cell proliferation, cell cycle, and cell ploidy. This was accompanied by overexpression of the negative cell cycle regulator p21/CDKN1A and Cyclin D1 (CCND1). We confirmed the overexpression of canonical miR-155 targets such as PU.1, FOS, SHIP-1, TP53INP1 and revealed new potential targets (FCRL5, ISG15, and MX1). CONCLUSIONS: We demonstrate that miR-155 deficiency impairs cell proliferation, cell cycle, transcriptome, and miRNome via deregulation of the MIR155HG/TP53INP1/CDKN1A/CCND1 axis. Our CLL model is valuable for further studies to manipulate miRNA levels to revert highly aggressive leukemic cells to nearly benign or non-leukemic types.
- MeSH
- chronická lymfatická leukemie * genetika patologie MeSH
- cyklin D1 genetika metabolismus MeSH
- inhibitor p21 cyklin-dependentní kinasy * genetika metabolismus MeSH
- kontrolní body buněčného cyklu * genetika MeSH
- lidé MeSH
- mikro RNA * genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- proliferace buněk genetika MeSH
- proteiny teplotního šoku MeSH
- regulace genové exprese u leukemie MeSH
- transportní proteiny genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Heavy metals are naturally occurring components of the Earth's crust and persistent environmental pollutants. Human exposure to heavy metals occurs via various pathways, including inhalation of air/dust particles, ingesting contaminated water or soil, or through the food chain. Their bioaccumulation may lead to diverse toxic effects affecting different body tissues and organ systems. The toxicity of heavy metals depends on the properties of the given metal, dose, route, duration of exposure (acute or chronic), and extent of bioaccumulation. The detrimental impacts of heavy metals on human health are largely linked to their capacity to interfere with antioxidant defense mechanisms, primarily through their interaction with intracellular glutathione (GSH) or sulfhydryl groups (R-SH) of antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and other enzyme systems. Although arsenic (As) is believed to bind directly to critical thiols, alternative hydrogen peroxide production processes have also been postulated. Heavy metals are known to interfere with signaling pathways and affect a variety of cellular processes, including cell growth, proliferation, survival, metabolism, and apoptosis. For example, cadmium can affect the BLC-2 family of proteins involved in mitochondrial death via the overexpression of antiapoptotic Bcl-2 and the suppression of proapoptotic (BAX, BAK) mechanisms, thus increasing the resistance of various cells to undergo malignant transformation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of antioxidant enzymes, the level of oxidative stress, and cellular resistance to oxidants and has been shown to act as a double-edged sword in response to arsenic-induced oxidative stress. Another mechanism of significant health threats and heavy metal (e.g., Pb) toxicity involves the substitution of essential metals (e.g., calcium (Ca), copper (Cu), and iron (Fe)) with structurally similar heavy metals (e.g., cadmium (Cd) and lead (Pb)) in the metal-binding sites of proteins. Displaced essential redox metals (copper, iron, manganese) from their natural metal-binding sites can catalyze the decomposition of hydrogen peroxide via the Fenton reaction and generate damaging ROS such as hydroxyl radicals, causing damage to lipids, proteins, and DNA. Conversely, some heavy metals, such as cadmium, can suppress the synthesis of nitric oxide radical (NO·), manifested by altered vasorelaxation and, consequently, blood pressure regulation. Pb-induced oxidative stress has been shown to be indirectly responsible for the depletion of nitric oxide due to its interaction with superoxide radical (O2·-), resulting in the formation of a potent biological oxidant, peroxynitrite (ONOO-). This review comprehensively discusses the mechanisms of heavy metal toxicity and their health effects. Aluminum (Al), cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), and chromium (Cr) and their roles in the development of gastrointestinal, pulmonary, kidney, reproductive, neurodegenerative (Alzheimer's and Parkinson's diseases), cardiovascular, and cancer (e.g. renal, lung, skin, stomach) diseases are discussed. A short account is devoted to the detoxification of heavy metals by chelation via the use of ethylenediaminetetraacetic acid (EDTA), dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA), 2,3-dimercapto-1-propane sulfonic acid (DMPS), and penicillamine chelators.
- MeSH
- antioxidancia metabolismus MeSH
- bioakumulace MeSH
- látky znečišťující životní prostředí toxicita MeSH
- lidé MeSH
- oxidační stres * účinky léků MeSH
- těžké kovy * toxicita MeSH
- vystavení vlivu životního prostředí škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
During development, tooth germs undergo various morphological changes resulting from interactions between the oral epithelium and ectomesenchyme. These processes are influenced by the extracellular matrix, the composition of which, along with cell adhesion and signaling, is regulated by metalloproteinases. Notably, these include matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and a disintegrin and metalloproteinases with thrombospondin motifs (ADAMTSs). Our analysis of previously published scRNAseq datasets highlight that these metalloproteinases show dynamic expression patterns during tooth development, with expression in a wide range of cell types, suggesting multiple roles in tooth morphogenesis. To investigate this, Marimastat, a broad-spectrum inhibitor of MMPs, ADAMs, and ADAMTSs, was applied to ex vivo cultures of mouse molar tooth germs. The treated samples exhibited significant changes in tooth germ size and morphology, including an overall reduction in size and an inversion of the typical bell shape. The cervical loop failed to extend, and the central area of the inner enamel epithelium protruded. Marimastat treatment also disrupted proliferation, cell polarization, and organization compared with control tooth germs. In addition, a decrease in laminin expression was observed, leading to a disruption in continuity of the basement membrane at the epithelial-mesenchymal junction. Elevated hypoxia-inducible factor 1-alpha gene (Hif-1α) expression correlated with a disruption to blood vessel development around the tooth germs. These results reveal the crucial role of metalloproteinases in tooth growth, shape, cervical loop elongation, and the regulation of blood vessel formation during prenatal tooth development.NEW & NOTEWORTHY Inhibition of metalloproteinases during tooth development had a wide-ranging impact on molar growth affecting proliferation, cell migration, and vascularization, highlighting the diverse role of these proteins in controlling development.
- MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa metabolismus genetika MeSH
- inhibitory matrixových metaloproteinas farmakologie MeSH
- kyseliny hydroxamové farmakologie MeSH
- metaloproteasy metabolismus genetika MeSH
- moláry embryologie růst a vývoj metabolismus enzymologie MeSH
- morfogeneze MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- odontogeneze * MeSH
- proliferace buněk * MeSH
- vývojová regulace genové exprese MeSH
- zubní zárodek embryologie metabolismus enzymologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Acinetobacter baumannii thrives within eukaryotic cells, influencing persistence, treatment approaches, and progression of disease. We probed epithelial cell invasion by A. baumannii and the influence of antibodies raised to outer membrane protein 34 (Omp34) on epithelial interactions. We expressed and purified recombinant Omp34 and induced anti-Omp34 antibodies in Bagg albino or BALB/c mice. Omp34 was evaluated for acute toxicity in mice through histological analysis of six organs. The host cell line, A549, was exposed to both A. baumannii 19606 and a clinical isolate. The study also investigated serum resistance, adherence, internalization, and proliferation of A. baumannii in A549 cells, with and without anti-Omp34 sera, utilizing cell culture techniques and light microscopy. A549 cell viability was evaluated by A. baumannii challenge and exposure to anti-Omp34 sera. Actin disruption experiments using cytochalasin D probed microfilament and microtubule roles in A. baumannii invasion. Omp34 prompted antibody production without toxicity in mice. The serum showed bactericidal effects on both strains. Additionally, both A. baumannii strains were found to form biofilms. Omp34 serum was observed to decrease biofilm formation, bacterial adherence, internalization, and proliferation in A549 cells. Furthermore, the use of anti-Omp34 serum enhanced the post-infection survival of the host cell. Pre-exposure of A549 cells to cytochalasin D reduced bacterial internalization, highlighting the role of actin polymerization in the invasion process. Microscopic analysis revealed various interactions, such as adherence, membrane alterations, vacuolization, apoptosis, and cellular damage. Anti-Omp34 serum-exposed A549 cells were protected and showed reduced damage. The findings reveal that A. baumannii can significantly multiply intracellularly within host cells. This suggests the bacterium's ability to establish an environment conducive to its replication by preventing fusion with degradative lysosomes and inhibiting acidification. This finding contributes to the understanding of A. baumannii's intracellular persistence and highlights the role of Omp34 in influencing apoptosis, autophagy, and bacterial adherence, which may impact the development of effective treatments against A. baumannii infections.
- MeSH
- Acinetobacter baumannii * fyziologie imunologie patogenita MeSH
- bakteriální adheze * MeSH
- biofilmy růst a vývoj MeSH
- buňky A549 MeSH
- epitelové buňky mikrobiologie MeSH
- infekce bakteriemi rodu Acinetobacter * mikrobiologie imunologie MeSH
- lidé MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- protilátky bakteriální * imunologie MeSH
- viabilita buněk MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH