-
Something wrong with this record ?
The fungicide propiconazole induces hepatic steatosis and activates PXR in a mouse model of diet-induced obesity
B. Attema, O. Kummu, M. Krutáková, P. Pavek, J. Hakkola, GJEJ. Hooiveld, S. Kersten
Language English Country Germany
Document type Journal Article
Grant support
825762
H2020 Health
- MeSH
- Diet, High-Fat * MeSH
- Insulin Resistance MeSH
- Liver drug effects metabolism pathology MeSH
- Disease Models, Animal MeSH
- Mice, Inbred C57BL * MeSH
- Mice MeSH
- Obesity * chemically induced MeSH
- Pregnane X Receptor * metabolism genetics MeSH
- Fungicides, Industrial * toxicity MeSH
- Triazoles * toxicity MeSH
- Triglycerides blood metabolism MeSH
- Dose-Response Relationship, Drug MeSH
- Fatty Liver * chemically induced MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Propiconazole is a triazole fungicide previously shown to induce triglyceride accumulation in human liver HepaRG cells, potentially via activation of the Pregnane X Receptor (PXR). However, whether propiconazole can disrupt hepatic and whole-body metabolism in vivo is currently unknown. Therefore, we aimed to examine the metabolic effects of propiconazole in the context of metabolic dysfunction-associated steatotic liver disease (MASLD), obesity, and insulin resistance. To this end, male C57BL/6J mice were fed a high-fat diet for 20 weeks. During the last 10 weeks, mice additionally received vehicle, 0.04, 30, or 100 mg/kg body weight (bw)/day propiconazole via oral gavage. High-dose propiconazole, but not low or intermediate dose, reduced body weight gain and adipose tissue weight in obese mice. Mice receiving high-dose propiconazole displayed improved glucose tolerance and reduced levels of plasma triglycerides and cholesterol. Propiconazole dose-dependently increased liver weight and triglyceride levels and at high dose caused signs of hepatic inflammation. RNA sequencing on the liver revealed that propiconazole mainly induced PXR target genes. At intermediate and high dose, propiconazole induced pathways related to cell-cell interactions and inflammation, while oxidative phosphorylation was repressed by propiconazole. Comparison of gene regulation in wildtype and PXR knockout primary hepatocytes as well as gene reporter assays confirmed the activation of PXR by propiconazole. All in all, our data underscore the capacity of propiconazole to activate PXR in the liver and thereby promote the development of hepatic steatosis in vivo.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25009722
- 003
- CZ-PrNML
- 005
- 20250429135019.0
- 007
- ta
- 008
- 250415s2025 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s00204-024-03942-9 $2 doi
- 035 __
- $a (PubMed)39718591
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Attema, Brecht $u Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands $1 https://orcid.org/0000000280657883
- 245 14
- $a The fungicide propiconazole induces hepatic steatosis and activates PXR in a mouse model of diet-induced obesity / $c B. Attema, O. Kummu, M. Krutáková, P. Pavek, J. Hakkola, GJEJ. Hooiveld, S. Kersten
- 520 9_
- $a Propiconazole is a triazole fungicide previously shown to induce triglyceride accumulation in human liver HepaRG cells, potentially via activation of the Pregnane X Receptor (PXR). However, whether propiconazole can disrupt hepatic and whole-body metabolism in vivo is currently unknown. Therefore, we aimed to examine the metabolic effects of propiconazole in the context of metabolic dysfunction-associated steatotic liver disease (MASLD), obesity, and insulin resistance. To this end, male C57BL/6J mice were fed a high-fat diet for 20 weeks. During the last 10 weeks, mice additionally received vehicle, 0.04, 30, or 100 mg/kg body weight (bw)/day propiconazole via oral gavage. High-dose propiconazole, but not low or intermediate dose, reduced body weight gain and adipose tissue weight in obese mice. Mice receiving high-dose propiconazole displayed improved glucose tolerance and reduced levels of plasma triglycerides and cholesterol. Propiconazole dose-dependently increased liver weight and triglyceride levels and at high dose caused signs of hepatic inflammation. RNA sequencing on the liver revealed that propiconazole mainly induced PXR target genes. At intermediate and high dose, propiconazole induced pathways related to cell-cell interactions and inflammation, while oxidative phosphorylation was repressed by propiconazole. Comparison of gene regulation in wildtype and PXR knockout primary hepatocytes as well as gene reporter assays confirmed the activation of PXR by propiconazole. All in all, our data underscore the capacity of propiconazole to activate PXR in the liver and thereby promote the development of hepatic steatosis in vivo.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 12
- $a triazoly $x toxicita $7 D014230
- 650 12
- $a obezita $x chemicky indukované $7 D009765
- 650 12
- $a myši inbrední C57BL $7 D008810
- 650 12
- $a průmyslové fungicidy $x toxicita $7 D005659
- 650 12
- $a dieta s vysokým obsahem tuků $7 D059305
- 650 12
- $a pregnanový X receptor $x metabolismus $x genetika $7 D000077297
- 650 12
- $a ztučnělá játra $x chemicky indukované $7 D005234
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a játra $x účinky léků $x metabolismus $x patologie $7 D008099
- 650 _2
- $a modely nemocí na zvířatech $7 D004195
- 650 _2
- $a triglyceridy $x krev $x metabolismus $7 D014280
- 650 _2
- $a vztah mezi dávkou a účinkem léčiva $7 D004305
- 650 _2
- $a inzulinová rezistence $7 D007333
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Kummu, Outi $u Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland $1 https://orcid.org/0000000303273496
- 700 1_
- $a Krutáková, Mária $u Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Ak. Heyrovského 1203, 50005, Hradec Králové, Czech Republic
- 700 1_
- $a Pavek, Petr $u Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Ak. Heyrovského 1203, 50005, Hradec Králové, Czech Republic $1 https://orcid.org/0000000187694196 $7 xx0093070
- 700 1_
- $a Hakkola, Jukka $u Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland $1 https://orcid.org/0000000150484363
- 700 1_
- $a Hooiveld, Guido J E J $u Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands $1 https://orcid.org/0000000319543542
- 700 1_
- $a Kersten, Sander $u Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands. ahk4@cornell.edu $u Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA. ahk4@cornell.edu $1 https://orcid.org/0000000344887734
- 773 0_
- $w MED00009265 $t Archives of toxicology $x 1432-0738 $g Roč. 99, č. 3 (2025), s. 1203-1221
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39718591 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250415 $b ABA008
- 991 __
- $a 20250429135015 $b ABA008
- 999 __
- $a ok $b bmc $g 2311224 $s 1246803
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 99 $c 3 $d 1203-1221 $e 20241224 $i 1432-0738 $m Archives of toxicology $n Arch Toxicol $x MED00009265
- GRA __
- $a 825762 $p H2020 Health
- LZP __
- $a Pubmed-20250415