MicroRNA Profiling of Self-Renewing Human Neural Stem Cells Reveals Novel Sets of Differentially Expressed microRNAs During Neural Differentiation In Vitro
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36918496
PubMed Central
PMC10366325
DOI
10.1007/s12015-023-10524-2
PII: 10.1007/s12015-023-10524-2
Knihovny.cz E-zdroje
- Klíčová slova
- Cell cycle, Human pluripotent stem cells, Neural stem cells, miRNA sequencing, microRNA,
- MeSH
- buněčná diferenciace genetika MeSH
- embryonální kmenové buňky MeSH
- lidé MeSH
- mikro RNA * genetika metabolismus MeSH
- nervové kmenové buňky * metabolismus MeSH
- stanovení celkové genové exprese MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA * MeSH
The involvement of microRNAs (miRNAs) in orchestrating self-renewal and differentiation of stem cells has been revealed in a number of recent studies. And while in human pluripotent stem cells, miRNAs have been directly linked to the core pluripotency network, including the cell cycle regulation and the maintenance of the self-renewing capacity, their role in the onset of differentiation in other contexts, such as determination of neural cell fate, remains poorly described. To bridge this gap, we used three model cell types to study miRNA expression patterns: human embryonic stem cells (hESCs), hESCs-derived self-renewing neural stem cells (NSCs), and differentiating NSCs. The comprehensive miRNA profiling presented here reveals novel sets of miRNAs differentially expressed during human neural cell fate determination in vitro. Furthermore, we report a miRNA expression profile of self-renewing human NSCs, which has been lacking to this date. Our data also indicates that miRNA clusters enriched in NSCs share the target-determining seed sequence with cell cycle regulatory miRNAs expressed in pluripotent hESCs. Lastly, our mechanistic experiments confirmed that cluster miR-17-92, one of the NSCs-enriched clusters, is directly transcriptionally regulated by transcription factor c-MYC.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Zobrazit více v PubMed
Becker KA, Ghule PN, Therrien JA, Lian JB, Stein JL, van Wijnen AJ, Stein GS. Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. Journal of Cellular Physiology. 2006;209(3):883–893. doi: 10.1002/jcp.20776. PubMed DOI
Greer Card DA, Hebbar PB, Li L, Trotter KW, Komatsu Y, Mishina Y, Archer TK. Oct4/Sox2-Regulated miR-302 Targets Cyclin D1 in Human Embryonic Stem Cells. Molecular and Cellular Biology. 2008;28(20):6426–6438. doi: 10.1128/MCB.00359-08. PubMed DOI PMC
Duan X, Kang E, Liu CY, Ming G-L, Song H. Development of neural stem cell in the adult brain. Current Opinion in Neurobiology. 2008;18(1):108–115. doi: 10.1016/j.conb.2008.04.001. PubMed DOI PMC
Bencurova P, Baloun J, Musilova K, Radova L, Tichy B, Pail M, Zeman M, Brichtova E, Hermanova M, Pospisilova S, Mraz M, Brazdil M. MicroRNA and mesial temporal lobe epilepsy with hippocampal sclerosis: Whole miRNome profiling of human hippocampus. Epilepsia. 2017;58(10):1782–1793. doi: 10.1111/epi.13870. PubMed DOI
Thodeson DM, Brulet R, Hsieh J. Neural stem cells and epilepsy: Functional roles and disease-in-a-dish models. Cell and Tissue Research. 2018;371(1):47–54. doi: 10.1007/s00441-017-2675-z. PubMed DOI
Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H. Clustering and conservation patterns of human microRNAs. Nucleic Acids Research. 2005;33(8):2697–2706. doi: 10.1093/nar/gki567. PubMed DOI PMC
Wang Y, Luo J, Zhang H, Lu J. MicroRNAs in the same clusters evolve to coordinately regulate functionally related genes. Molecular Biology and Evolution. 2016;33(9):2232–2247. doi: 10.1093/molbev/msw089. PubMed DOI PMC
Alles, J., Fehlmann, T., Fischer, U., Backes, C., Galata, V., Minet, M., Hart, M., Abu-Halima, M., Grässer, F., Lenhof, H.-P., Keller, A., & Meese, E. (2019). An estimate of the total number of true human miRNAs. Nucleic Acids Research, 47. 10.1093/nar/gkz097 PubMed PMC
Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ. Dicer is essential for mouse development. Nature Genetics. 2003;35(3):215–217. doi: 10.1038/ng1253. PubMed DOI
Morita S, Horii T, Kimura M, Goto Y, Ochiya T, Hatada I. One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics. 2007;89(6):687–696. doi: 10.1016/j.ygeno.2007.01.004. PubMed DOI
De Pietri Tonelli D, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB. MiRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development. 2008;135(23):3911–3921. doi: 10.1242/dev.025080. PubMed DOI PMC
Andersson T, Rahman S, Sansom SN, Alsiö JM, Kaneda M, Smith J, O’Carroll D, Tarakhovsky A, Livesey FJ. Reversible Block of Mouse Neural Stem Cell Differentiation in the Absence of Dicer and MicroRNAs. PLOS ONE. 2010;5(10):e13453. doi: 10.1371/journal.pone.0013453. PubMed DOI PMC
Saurat N, Andersson T, Vasistha NA, Molnar Z, Livesey FJ. Dicer is required for neural stem cell multipotency and lineage progression during cerebral cortex development. Neural Development. 2013;8(1):14. doi: 10.1186/1749-8104-8-14. PubMed DOI PMC
Zhao C, Sun G, Li S, Shi Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nature Structural & Molecular Biology. 2009;16(4):365–371. doi: 10.1038/nsmb.1576. PubMed DOI PMC
Zhao C, Sun G, Li S, Lang M-F, Yang S, Li W, Shi Y. MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(5):1876–1881. doi: 10.1073/pnas.0908750107. PubMed DOI PMC
Sun G, Ye P, Murai K, Lang M-F, Li S, Zhang H, Li W, Fu C, Yin J, Wang A, Ma X, Shi Y. MiR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells. Nature Communications. 2011;2:529. doi: 10.1038/ncomms1532. PubMed DOI PMC
Murai K, Sun G, Ye P, Tian E, Yang S, Cui Q, Sun G, Trinh D, Sun O, Hong T, Wen Z, Kalkum M, Riggs AD, Song H, Ming G, Shi Y. The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model. Nature Communications. 2016;7(1):10965. doi: 10.1038/ncomms10965. PubMed DOI PMC
Visvanathan J, Lee S, Lee B, Lee JW, Lee S-K. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes & Development. 2007;21(7):744–749. doi: 10.1101/gad.1519107. PubMed DOI PMC
Cheng L-C, Pastrana E, Tavazoie M, Doetsch F. MiR-124 regulates adult neurogenesis in the SVZ stem cell niche. Nature Neuroscience. 2009;12(4):399–408. doi: 10.1038/nn.2294. PubMed DOI PMC
Laneve P, Gioia U, Andriotto A, Moretti F, Bozzoni I, Caffarelli E. A minicircuitry involving REST and CREB controls miR-9-2 expression during human neuronal differentiation. Nucleic Acids Research. 2010;38(20):6895–6905. doi: 10.1093/nar/gkq604. PubMed DOI PMC
Wu L, Belasco JG. Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Molecular and Cellular Biology. 2005;25(21):9198–9208. doi: 10.1128/MCB.25.21.9198-9208.2005. PubMed DOI PMC
Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proceedings of the National Academy of Sciences. 2005;102(45):16426–16431. doi: 10.1073/pnas.0508448102. PubMed DOI PMC
Magill ST, Cambronne XA, Luikart BW, Lioy DT, Leighton BH, Westbrook GL, Mandel G, Goodman RH. MicroRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proceedings of the National Academy of Sciences. 2010;107(47):20382–20387. doi: 10.1073/pnas.1015691107. PubMed DOI PMC
Pathania M, Torres-Reveron J, Yan L, Kimura T, Lin TV, Gordon V, Teng Z-Q, Zhao X, Fulga TA, Vactor DV, Bordey A. MiR-132 enhances dendritic morphogenesis, spine density, synaptic integration, and survival of newborn olfactory bulb neurons. PLOS ONE. 2012;7(5):e38174. doi: 10.1371/journal.pone.0038174. PubMed DOI PMC
Stappert L, Borghese L, Roese-Koerner B, Weinhold S, Koch P, Terstegge S, Uhrberg M, Wernet P, Brüstle O. MicroRNA-Based Promotion of Human Neuronal Differentiation and Subtype Specification. PLOS ONE. 2013;8(3):e59011. doi: 10.1371/journal.pone.0059011. PubMed DOI PMC
Barca-Mayo O, De Pietri Tonelli D. Convergent microRNA actions coordinate neocortical development. Cellular and Molecular Life Sciences. 2014;71(16):2975–2995. doi: 10.1007/s00018-014-1576-5. PubMed DOI PMC
Stappert L, Roese-Koerner B, Brüstle O. The role of microRNAs in human neural stem cells, neuronal differentiation and subtype specification. Cell and Tissue Research. 2015;359(1):47–64. doi: 10.1007/s00441-014-1981-y. PubMed DOI PMC
Bohaciakova D, Hruska-Plochan M, Tsunemoto R, Gifford WD, Driscoll SP, Glenn TD, Wu S, Marsala S, Navarro M, Tadokoro T, Juhas S, Juhasova J, Platoshyn O, Piper D, Sheckler V, Ditsworth D, Pfaff SL, Marsala M. A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors. Stem Cell Research & Therapy. 2019;10(1):83. doi: 10.1186/s13287-019-1163-7. PubMed DOI PMC
Hruska-Plochan, M., Betz, K. M., Ronchi, S., Wiersma, V. I., Maniecka, Z., Hock, E.-M., Laferriere, F., Sahadevan, S., Hoop, V., Delvendahl, I., Panatta, M., Bourg, A. van der, Bohaciakova, D., Frontzek, K., Aguzzi, A., Lashley, T., Robinson, M. D., Karayannis, T., Mueller, M., …, & Polymenidou, M. (2021). Human neural networks with sparse TDP-43 pathology reveal NPTX2 misregulation in ALS/FTLD (p. 2021.12.08.471089). bioRxiv. 10.1101/2021.12.08.471089
Raska J, Hribkova H, Klimova H, Fedorova V, Barak M, Barta T, Pospisilova V, Vochyanova S, Vanova T, Bohaciakova D. Generation of six human iPSC lines from patients with a familial Alzheimer’s disease (n = 3) and sex- and age-matched healthy controls (n = 3) Stem Cell Research. 2021;53:102379. doi: 10.1016/j.scr.2021.102379. PubMed DOI
Raska J, Klimova H, Sheardova K, Fedorova V, Hribkova H, Pospisilova V, Vochyanova S, Vanova T, Bohaciakova D. Generation of three human iPSC lines from patients with a spontaneous late-onset Alzheimer’s disease and three sex- and age-matched healthy controls. Stem Cell Research. 2021;53:102378. doi: 10.1016/j.scr.2021.102378. PubMed DOI
Mraz M, Malinova K, Mayer J, Pospisilova S. MicroRNA isolation and stability in stored RNA samples. Biochemical and Biophysical Research Communications. 2009;390(1):1–4. doi: 10.1016/j.bbrc.2009.09.061. PubMed DOI
Cerna K, Oppelt J, Chochola V, Musilova K, Seda V, Pavlasova G, Radova L, Arigoni M, Calogero RA, Benes V, Trbusek M, Brychtova Y, Doubek M, Mayer J, Pospisilova S, Mraz M. MicroRNA miR-34a downregulates FOXP1 during DNA damage response to limit BCR signalling in chronic lymphocytic leukaemia B cells. Leukemia. 2019;33(2):403–414. doi: 10.1038/s41375-018-0230-x. PubMed DOI
Bohaciakova D, Renzova T, Fedorova V, Barak M, KunovaBosakova M, Hampl A, Cajanek L. An efficient method for generation of knockout human embryonic stem cells using CRISPR/Cas9 system. Stem Cells and Development. 2017;26(21):1521–1527. doi: 10.1089/scd.2017.0058. PubMed DOI PMC
Capková N, Pospíšilová V, Fedorová V, Raška J, Pospíšilová K, Dal Ben M, Dvořák A, Viktorová J, Bohačiaková D, Vítek L. The effects of bilirubin and lumirubin on the differentiation of human pluripotent cell-derived neural stem cells. Antioxidants (Basel, Switzerland) 2021;10(10):1532. doi: 10.3390/antiox10101532. PubMed DOI PMC
Nelson JD, Denisenko O, Bomsztyk K. Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nature Protocols. 2006;1(1):179–185. doi: 10.1038/nprot.2006.27. PubMed DOI
Davis MPA, van Dongen S, Abreu-Goodger C, Bartonicek N, Enright AJ. Kraken: A set of tools for quality control and analysis of high-throughput sequence data. Methods (San Diego, Calif.) 2013;63(1):41–49. doi: 10.1016/j.ymeth.2013.06.027. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal. 2011;17(1):10–12. doi: 10.14806/ej.17.1.200. DOI
Speir, M. L., Zweig, A. S., Rosenbloom, K. R., Raney, B. J., Paten, B., Nejad, P., Lee, B. T., Learned, K., Karolchik, D., Hinrichs, A. S., Heitner, S., Harte, R. A., Haeussler, M., Guruvadoo, L., Fujita, P. A., Eisenhart, C., Diekhans, M., Clawson, H., Casper, J., …, & Kent, W. J. (2016). The UCSC Genome Browser database: 2016 update. Nucleic Acids Research, 44(D1), D717–725. 10.1093/nar/gkv1275 PubMed PMC
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology. 2009;10(3):R25. doi: 10.1186/gb-2009-10-3-r25. PubMed DOI PMC
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: From microRNA sequences to function. Nucleic Acids Research. 2019;47(D1):D155–D162. doi: 10.1093/nar/gky1141. PubMed DOI PMC
Pantano L, Estivill X, Martí E. A non-biased framework for the annotation and classification of the non-miRNA small RNA transcriptome. Bioinformatics. 2011;27(22):3202–3203. doi: 10.1093/bioinformatics/btr527. PubMed DOI
Pantano L, Estivill X, Martí E. SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Research. 2010;38(5):e34. doi: 10.1093/nar/gkp1127. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science (New York, N.Y.) 1998;282(5391):1145–1147. doi: 10.1126/science.282.5391.1145. PubMed DOI
Calegari F, Huttner WB. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. Journal of Cell Science. 2003;116(Pt 24):4947–4955. doi: 10.1242/jcs.00825. PubMed DOI
Calegari F, Haubensak W, Haffner C, Huttner WB. Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. Journal of Neuroscience. 2005;25(28):6533–6538. doi: 10.1523/JNEUROSCI.0778-05.2005. PubMed DOI PMC
Lange C, Huttner WB, Calegari F. Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell. 2009;5(3):320–331. doi: 10.1016/j.stem.2009.05.026. PubMed DOI
Dolezalova D, Mraz M, Barta T, Plevova K, Vinarsky V, Holubcova Z, Jaros J, Dvorak P, Pospisilova S, Hampl A. MicroRNAs regulate p21Waf1/Cip1 protein expression and the DNA damage response in human embryonic stem cells. Stem Cells. 2012;30(7):1362–1372. doi: 10.1002/stem.1108. PubMed DOI
Suh M-R, Lee Y, Kim JY, Kim S-K, Moon S-H, Lee JY, Cha K-Y, Chung HM, Yoon HS, Moon SY, Kim VN, Kim K-S. Human embryonic stem cells express a unique set of microRNAs. Developmental Biology. 2004;270(2):488–498. doi: 10.1016/j.ydbio.2004.02.019. PubMed DOI
Barroso-delJesus A, Romero-López C, Lucena-Aguilar G, Melen GJ, Sanchez L, Ligero G, Berzal-Herranz A, Menendez P. Embryonic stem cell-specific miR302-367 cluster: Human gene structure and functional characterization of its core promoter. Molecular and Cellular Biology. 2008;28(21):6609–6619. doi: 10.1128/MCB.00398-08. PubMed DOI PMC
Wang, Y., & Blelloch, R. (2011). Cell Cycle Regulation by microRNAs in Stem Cells. In J. Z. Kubiak (Ed.), Cell Cycle in Development (pp. 459–472). Springer. 10.1007/978-3-642-19065-0_19 PubMed
Sugawara T, Kawamoto Y, Kawasaki T, Umezawa A, Akutsu H. A single allele of the hsa-miR-302/367 cluster maintains human pluripotent stem cells. Regenerative Therapy. 2022;21:37–45. doi: 10.1016/j.reth.2022.05.005. PubMed DOI PMC
Kumar S, Curran JE, DeLeon E, Leandro AC, Howard TE, Lehman DM, Williams-Blangero S, Glahn DC, Blangero J. Role of miRNA-mRNA interaction in neural stem cell differentiation of induced pluripotent stem cells. International Journal of Molecular Sciences. 2020;21(19):6980. doi: 10.3390/ijms21196980. PubMed DOI PMC
Hegarty SV, Sullivan AM, O’Keeffe GW. Inhibition of miR-181a promotes midbrain neuronal growth through a Smad1/5-dependent mechanism: Implications for Parkinson’s disease. Neuronal Signaling. 2018;2(1):NS20170181. doi: 10.1042/NS20170181. PubMed DOI PMC
Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, Guenther MG, Johnston WK, Wernig M, Newman J, Calabrese JM, Dennis LM, Volkert TL, Gupta S, Love J, Hannett N, Sharp PA, Bartel DP, Jaenisch R, Young RA. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell. 2008;134(3):521–533. doi: 10.1016/j.cell.2008.07.020. PubMed DOI PMC
Li Y, Choi PS, Casey SC, Dill DL, Felsher DW. MYC through miR-17-92 suppresses specific target genes to maintain survival, autonomous proliferation and a neoplastic state. Cancer Cell. 2014;26(2):262–272. doi: 10.1016/j.ccr.2014.06.014. PubMed DOI PMC
O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. C-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435(7043):839–843. doi: 10.1038/nature03677. PubMed DOI
Kumar P, Luo Y, Tudela C, Alexander JM, Mendelson CR. The c-Myc-regulated MicroRNA-17∼92 (miR-17∼92) and miR-106a∼363 clusters target hCYP19A1 and hGCM1 to inhibit human trophoblast differentiation. Molecular and Cellular Biology. 2013;33(9):1782–1796. doi: 10.1128/MCB.01228-12. PubMed DOI PMC
Lange C, Calegari F. Cdks and cyclins link G1 length and differentiation of embryonic, neural and hematopoietic stem cells. Cell Cycle (Georgetown, Tex.) 2010;9(10):1893–1900. doi: 10.4161/cc.9.10.11598. PubMed DOI
Liu L, Michowski W, Kolodziejczyk A, Sicinski P. The cell cycle in stem cell proliferation, pluripotency and differentiation. Nature Cell Biology. 2019;21(9):1060–1067. doi: 10.1038/s41556-019-0384-4. PubMed DOI PMC
Neganova I, Zhang X, Atkinson S, Lako M. Expression and functional analysis of G1 to S regulatory components reveals an important role for CDK2 in cell cycle regulation in human embryonic stem cells. Oncogene. 2009;28(1):20–30. doi: 10.1038/onc.2008.358. PubMed DOI
Conklin JF, Baker J, Sage J. The RB family is required for the self-renewal and survival of human embryonic stem cells. Nature Communications. 2012;3(1):1244. doi: 10.1038/ncomms2254. PubMed DOI
Sela Y, Molotski N, Golan S, Itskovitz-Eldor J, Soen Y. Human embryonic stem cells exhibit increased propensity to differentiate during the G1 phase prior to phosphorylation of retinoblastoma protein. Stem Cells (Dayton, Ohio) 2012;30(6):1097–1108. doi: 10.1002/stem.1078. PubMed DOI
Becker KA, Stein JL, Lian JB, van Wijnen AJ, Stein GS. Human embryonic stem cells are pre-mitotically committed to self-renewal and acquire a lengthened G1 phase upon lineage programming. Journal of Cellular Physiology. 2010;222(1):103–110. doi: 10.1002/jcp.21925. PubMed DOI PMC
Calder A, Roth-Albin I, Bhatia S, Pilquil C, Lee JH, Bhatia M, Levadoux-Martin M, McNicol J, Russell J, Collins T, Draper JS. Lengthened G1 phase indicates differentiation status in human embryonic stem cells. Stem Cells and Development. 2013;22(2):279–295. doi: 10.1089/scd.2012.0168. PubMed DOI
DeVeale B, Liu L, Boileau R, Swindlehurst-Chan J, Marsh B, Freimer JW, Abate A, Blelloch R. G1/S restriction point coordinates phasic gene expression and cell differentiation. Nature Communications. 2022;13:3696. doi: 10.1038/s41467-022-31101-0. PubMed DOI PMC
Filipczyk AA, Laslett AL, Mummery C, Pera MF. Differentiation is coupled to changes in the cell cycle regulatory apparatus of human embryonic stem cells. Stem Cell Research. 2007;1(1):45–60. doi: 10.1016/j.scr.2007.09.002. PubMed DOI
Coronado D, Godet M, Bourillot P-Y, Tapponnier Y, Bernat A, Petit M, Afanassieff M, Markossian S, Malashicheva A, Iacone R, Anastassiadis K, Savatier P. A short G1 phase is an intrinsic determinant of naïve embryonic stem cell pluripotency. Stem Cell Research. 2013;10(1):118–131. doi: 10.1016/j.scr.2012.10.004. PubMed DOI
Pauklin S, Vallier L. The cell-cycle state of stem cells determines cell fate propensity. Cell. 2013;155(1):135–147. doi: 10.1016/j.cell.2013.08.031. PubMed DOI PMC
Salomoni P, Calegari F. Cell cycle control of mammalian neural stem cells: Putting a speed limit on G1. Trends in Cell Biology. 2010;20(5):233–243. doi: 10.1016/j.tcb.2010.01.006. PubMed DOI
Fu M, Wang C, Li Z, Sakamaki T, Pestell RG. Minireview: Cyclin D1: Normal and abnormal functions. Endocrinology. 2004;145(12):5439–5447. doi: 10.1210/en.2004-0959. PubMed DOI
Nguyen L, Besson A, Heng JI-T, Schuurmans C, Teboul L, Parras C, Philpott A, Roberts JM, Guillemot F. P27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes & Development. 2006;20(11):1511–1524. doi: 10.1101/gad.377106. PubMed DOI PMC
Dori M, Cavalli D, Lesche M, Massalini S, Alieh LHA, de Toledo BC, Khudayberdiev S, Schratt G, Dahl A, Calegari F. MicroRNA profiling of mouse cortical progenitors and neurons reveals miR-486–5p as a regulator of neurogenesis. Development. 2020;147(9):dev190520. doi: 10.1242/dev.190520. PubMed DOI
Menzel P, McCorkindale AL, Stefanov SR, Zinzen RP, Meyer IM. Transcriptional dynamics of microRNAs and their targets during Drosophila neurogenesis. RNA Biology. 2019;16(1):69–81. doi: 10.1080/15476286.2018.1558907. PubMed DOI PMC
Kulcenty K, Wroblewska JP, Rucinski M, Kozlowska E, Jopek K, Suchorska WM. MicroRNA profiling during neural differentiation of induced pluripotent stem cells. International Journal of Molecular Sciences. 2019;20(15):3651. doi: 10.3390/ijms20153651. PubMed DOI PMC
Bian S, Hong J, Li Q, Schebelle L, Pollock A, Knauss JL, Garg V, Sun T. MicroRNA cluster miR-17-92 regulates neural stem cell expansion and transition to intermediate progenitors in the developing mouse neocortex. Cell Reports. 2013;3(5):1398–1406. doi: 10.1016/j.celrep.2013.03.037. PubMed DOI PMC
Zhang Y, Ueno Y, Liu XS, Buller B, Wang X, Chopp M, Zhang ZG. The MicroRNA-17–92 cluster enhances axonal outgrowth in embryonic cortical neurons. Journal of Neuroscience. 2013;33(16):6885–6894. doi: 10.1523/JNEUROSCI.5180-12.2013. PubMed DOI PMC
Pan WL, Chopp M, Fan B, Zhang R, Wang X, Hu J, Zhang XM, Zhang ZG, Liu XS. Ablation of the microRNA-17-92 cluster in neural stem cells diminishes adult hippocampal neurogenesis and cognitive function. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology. 2019;33(4):5257–5267. doi: 10.1096/fj.201801019R. PubMed DOI PMC
Brett JO, Renault VM, Rafalski VA, Webb AE, Brunet A. The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging. 2011;3(2):108–124. doi: 10.18632/aging.100285. PubMed DOI PMC
Favaloro, F., DeLeo, A. M., Delgado, A. C., & Doetsch, F. (2022). MiR-17∼92 exerts stage-specific effects in adult V-SVZ neural stem cell lineages. Cell Reports, 41(10). 10.1016/j.celrep.2022.111773 PubMed
Gabay M, Li Y, Felsher DW. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harbor Perspectives in Medicine. 2014;4(6):a014241. doi: 10.1101/cshperspect.a014241. PubMed DOI PMC
Madden SK, de Araujo AD, Gerhardt M, Fairlie DP, Mason JM. Taking the Myc out of cancer: Toward therapeutic strategies to directly inhibit c-Myc. Molecular Cancer. 2021;20(1):3. doi: 10.1186/s12943-020-01291-6. PubMed DOI PMC
Sullivan DK, Deutzmann A, Yarbrough J, Krishnan MS, Gouw AM, Bellovin DI, Adam SJ, Liefwalker DF, Dhanasekaran R, Felsher DW. MYC oncogene elicits tumorigenesis associated with embryonic, ribosomal biogenesis, and tissue-lineage dedifferentiation gene expression changes. Oncogene. 2022;41(45):4960–4970. doi: 10.1038/s41388-022-02458-9. PubMed DOI PMC
Yoshida GJ. Emerging roles of Myc in stem cell biology and novel tumor therapies. Journal of Experimental & Clinical Cancer Research. 2018;37(1):173. doi: 10.1186/s13046-018-0835-y. PubMed DOI PMC