Modulation of Amyloid-β Aggregation by Surface Proteins from Pathogens Associated with Alzheimer's Disease

. 2025 Sep 17 ; 16 (18) : 3554-3566. [epub] 20250827

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40859932

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder. Despite substantial research efforts, our understanding of its pathogenesis remains incomplete, limiting the development of effective treatments and preventive strategies. The potential role of microbial pathogens in AD etiology has gained increasing attention. Various human microbial pathogens have been identified in the brains of AD patients, leading to the pathogen hypothesis, which posits that these microorganisms may disrupt the brain's immune regulation and homeostasis. In this study, we examine the effects of proteins from three pathogens, Borrelia burgdorferi, HSV-1, and Porphyromonas gingivalis, on the aggregation of antimicrobial peptide amyloid-β (Aβ). Three of the four studied proteins were found to attenuate the aggregation of Aβ42 by interacting with its soluble form and inhibiting primary and secondary pathways. These in vitro findings were further supported by experiments using mature neurons derived from human pluripotent stem cells, which showed an increased accumulation of amyloid precursor protein (APP) aggregates upon infection with HSV-1 or exposure to the OspA surface protein from B. burgdorferi. Together, our results provide mechanistic insights into how pathogen-associated proteins modulate Aβ42 aggregation, contributing to an understanding of their potential role in AD pathogenesis.

Zobrazit více v PubMed

Nemergut M., Batkova T., Vigasova D., Bartos M., Hlozankova M., Schenkmayerova A.. et al. Increased occurrence of Treponema spp. and double-species infections in patients with Alzheimer’s disease. Sci. Total Environ. 2022;844:157114. doi: 10.1016/j.scitotenv.2022.157114. PubMed DOI

Vigasova D., Nemergut M., Liskova B., Damborsky J.. Multi-pathogen infections and Alzheimer’s disease. Microb Cell Fact. 2021;20(1):25. doi: 10.1186/s12934-021-01520-7. PubMed DOI PMC

Richmond-Rakerd L. S., Iyer M. T., D’Souza S., Khalifeh L., Caspi A., Moffitt T. E., Milne B. J.. Associations of hospital-treated infections with subsequent dementia: nationwide 30-year analysis. Nat. Aging. 2024;4(6):783–790. doi: 10.1038/s43587-024-00621-3. PubMed DOI

Kordi R., Andrews T. J., Hicar M. D.. Infections, genetics, and Alzheimer’s disease: Exploring the pathogenic factors for innovative therapies. Virology. 2025;607:110523. doi: 10.1016/j.virol.2025.110523. PubMed DOI

Itzhaki R. F.. Herpes simplex virus type 1 and Alzheimer’s disease: possible mechanisms and signposts. FASEB J. 2017;31(8):3216–3226. doi: 10.1096/fj.201700360. PubMed DOI

Linard M., Letenneur L., Garrigue I., Doize A., Dartigues J., Helmer C.. Interaction between APOE4 and herpes simplex virus type 1 in Alzheimer’s disease. Alzheimer’s Dementia. 2020;16(1):200–208. doi: 10.1002/alz.12008. PubMed DOI

Lövheim H., Norman T., Weidung B., Olsson J., Josefsson M., Adolfsson R.. et al. Herpes Simplex Virus, APOE ε4, and Cognitive Decline in Old Age: Results from the Betula Cohort Study. J. Alzheimer’s Dementia. 2019;67(1):211–220. doi: 10.3233/JAD-171162. PubMed DOI

Cairns D. M., Smiley B. M., Smiley J. A., Khorsandian Y., Kelly M., Itzhaki R. F., Kaplan D. L.. Repetitive injury induces phenotypes associated with Alzheimer’s disease by reactivating HSV-1 in a human brain tissue model. Sci. Signal. 2025;18(868):eado6430. doi: 10.1126/scisignal.ado6430. PubMed DOI

Miklossy J., Kis A., Radenovic A., Miller L., Forro L., Martins R.. et al. Beta-amyloid deposition and Alzheimer’s type changes induced by Borrelia spirochetes. Neurobiol. Aging. 2006;27(2):228–236. doi: 10.1016/j.neurobiolaging.2005.01.018. PubMed DOI

Dominy S. S., Lynch C., Ermini F., Benedyk M., Marczyk A., Konradi A.. et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 2019;5(1):eaau3333. doi: 10.1126/sciadv.aau3333. PubMed DOI PMC

Liu Y., Wu Z., Nakanishi Y., Ni J., Hayashi Y., Takayama F.. et al. Infection of microglia with Porphyromonas gingivalis promotes cell migration and an inflammatory response through the gingipain-mediated activation of protease-activated receptor-2 in mice. Sci. Rep. 2017;7(1):11759. doi: 10.1038/s41598-017-12173-1. PubMed DOI PMC

Albaret G., Sifré E., Floch P., Laye S., Aubert A., Dubus P.. et al. Alzheimer’s Disease and Helicobacter pylori Infection: Inflammation from Stomach to Brain? J. Neurobiol. Aging. 2020;73(2):801–809. doi: 10.3233/JAD-190496. PubMed DOI

Kountouras J., Boziki M., Gavalas E., Zavos C., Deretzi G., Grigoriadis N.. et al. Increased Cerebrospinal Fluid Helicobacter Pylori Antibody in Alzheimer’s Disease. Int. J. Neurosci. 2009;119(6):765–777. doi: 10.1080/00207450902782083. PubMed DOI

Lathe R., Schultek N. M., Balin B. J., Ehrlich G. D., Auber L. A., Perry G.. et al. Establishment of a consensus protocol to explore the brain pathobiome in patients with mild cognitive impairment and Alzheimer’s disease: Research outline and call for collaboration. Alzheimer’s Dementia. 2023;19(11):5209–5231. doi: 10.1002/alz.13076. PubMed DOI PMC

Eyting M., Xie M., Michalik F., Heß S., Chung S., Geldsetzer P.. A natural experiment on the effect of herpes zoster vaccination on dementia. Nature. 2025;641(8062):438–446. doi: 10.1038/s41586-025-08800-x. PubMed DOI PMC

Cairns D. M., Itzhaki R. F., Kaplan D. L.. Potential Involvement of Varicella Zoster Virus in Alzheimer’s Disease via Reactivation of Quiescent Herpes Simplex Virus Type 1. J. Neurobiol. Aging. 2022;88(3):1189–1200. doi: 10.3233/JAD-220287. PubMed DOI

Madavaraju K., Koganti R., Volety I., Yadavalli T., Shukla D.. Herpes Simplex Virus Cell Entry Mechanisms: An Update. Front Cell Infect Microbiol. 2021;10:617578. doi: 10.3389/fcimb.2020.617578. PubMed DOI PMC

Jambunathan N., Clark C., Musarrat F., Chouljenko V., Rudd J., Kousoulas K.. Two Sides to Every Story: Herpes Simplex Type-1 Viral Glycoproteins gB, gD, gH/gL, gK, and Cellular Receptors Function as Key Players in Membrane Fusion. Viruses. 2021;13(9):1849. doi: 10.3390/v13091849. PubMed DOI PMC

Heldwein E. E., Lou H., Bender F. C., Cohen G. H., Eisenberg R. J., Harrison S. C.. Crystal Structure of Glycoprotein B from Herpes Simplex Virus 1. Science. 2006;313(5784):217–220. doi: 10.1126/science.1126548. PubMed DOI

Bourgade K., Frost E. H., Dupuis G., Witkowski J. M., Laurent B., Calmettes C.. et al. Interaction Mechanism Between the HSV-1 Glycoprotein B and the Antimicrobial Peptide Amyloid-β. J. Alzheimer’s Dis. Rep. 2022;6(1):599–606. doi: 10.3233/ADR-220061. PubMed DOI PMC

Cribbs D. H., Azizeh B. Y., Cotman C. W., LaFerla F. M.. Fibril Formation and Neurotoxicity by a Herpes Simplex Virus Glycoprotein B Fragment with Homology to the Alzheimer’s Aβ Peptide. Biochemistry. 2000;39(20):5988–5994. doi: 10.1021/bi000029f. PubMed DOI

Vollmer B., Pražák V., Vasishtan D., Jefferys E. E., Hernandez-Duran A., Vallbracht M.. et al. The prefusion structure of herpes simplex virus glycoprotein B. Sci. Adv. 2020;6(39):eabc1726. doi: 10.1126/sciadv.abc1726. PubMed DOI PMC

Stroobants K., Kumita J. R., Harris N. J., Chirgadze D. Y., Dobson C. M., Booth P. J., Vendruscolo M.. Amyloid-like Fibrils from an α-Helical Transmembrane Protein. Biochemistry. 2017;56(25):3225–3233. doi: 10.1021/acs.biochem.7b00157. PubMed DOI PMC

Kanagasingam S., Chukkapalli S. S., Welbury R., Singhrao S. K.. Porphyromonas gingivalis is a Strong Risk Factor for Alzheimer’s Disease. J. Alzheimer’s Dis. Rep. 2020;4(1):501–511. doi: 10.3233/ADR-200250. PubMed DOI PMC

Poole S., Singhrao S. K., Kesavalu L., Curtis M. A., Crean S.. Determining the Presence of Periodontopathic Virulence Factors in Short-Term Postmortem Alzheimer’s Disease Brain Tissue. J. Alzheimer’s Dis. 2013;36(4):665–677. doi: 10.3233/JAD-121918. PubMed DOI

Ilievski V., Zuchowska P. K., Green S. J., Toth P. T., Ragozzino M. E., Le K.. et al. Chronic oral application of a periodontal pathogen results in brain inflammation, neurodegeneration and amyloid beta production in wild type mice. PLoS One. 2018;13(10):e0204941. doi: 10.1371/journal.pone.0204941. PubMed DOI PMC

O’Brien-Simpson N. M., Pathirana R. D., Walker G. D., Reynolds E. C.. Porphyromonas gingivalis RgpA-Kgp Proteinase-Adhesin Complexes Penetrate Gingival Tissue and Induce Proinflammatory Cytokines or Apoptosis in a Concentration-Dependent Manner. Infect. Immun. 2009;77(3):1246–1261. doi: 10.1128/IAI.01038-08. PubMed DOI PMC

Pulzova L., Bhide M.. Outer Surface Proteins of Borrelia: Peerless Immune Evasion Tools. Curr. Protein Pept. Sci. 2014;15(1):75–88. doi: 10.2174/1389203715666140221124213. PubMed DOI

Batsford S., Dunn J., Mihatsch M.. Outer surface lipoproteins of Borrelia burgdorferi vary in their ability to induce experimental joint injury. Arthritis Rheumatol. 2004;50(7):2360–2369. doi: 10.1002/art.20337. PubMed DOI

Tauber S. C., Ribes S., Ebert S., Heinz T., Fingerle V., Bunkowski S.. et al. Long-Term Intrathecal Infusion of Outer Surface Protein C From Borrelia burgdorferi Causes Axonal Damage. J. Neuropathol. Exp. Neurol. 2011;70(9):748–757. doi: 10.1097/NEN.0b013e3182289acd. PubMed DOI

Schutzer S. E., Coyle P. K., Krupp L. B., Deng Z., Belman A. L., Dattwyler R., Luft B. J.. Simultaneous expression of Borrelia OspA and OspC and IgM response in cerebrospinal fluid in early neurologic Lyme disease. J. Clin. Invest. 1997;100(4):763–767. doi: 10.1172/JCI119589. PubMed DOI PMC

Rupprecht T. A., Koedel U., Heimerl C., Fingerle V., Paul R., Wilske B., Pfister H. W.. Adhesion of Borrelia garinii to neuronal cells is mediated by the interaction of OspA with proteoglycans. J. Neuroimmunol. 2006;175(1–2):5–11. doi: 10.1016/j.jneuroim.2006.02.007. PubMed DOI

Sen E., Sigal L. H.. Enhanced Adhesion and OspC Protein Synthesis of the Lyme Disease Spirochete Borrelia Burgdorferi Cultivated in a Host-Derived Tissue Co-Culture System. Balk. Med. J. 2013;30(2):215–224. doi: 10.5152/balkanmedj.2013.7059. PubMed DOI PMC

Nguyen N. T. T., Röttgerding F., Devraj G., Lin Y. P., Koenigs A., Kraiczy P.. The Complement Binding and Inhibitory Protein CbiA of Borrelia miyamotoi Degrades Extracellular Matrix Components by Interacting with Plasmin­(ogen) Front. Cell. Infect. Microbiol. 2018;8:23. doi: 10.3389/fcimb.2018.00023. PubMed DOI PMC

Li H., Dunn J. J., Luft B. J., Lawson C. L.. Crystal structure of Lyme disease antigen outer surface protein A complexed with an Fab. Proc. Natl. Acad. Sci. U. S. A. 1997;94(8):3584–3589. doi: 10.1073/pnas.94.8.3584. PubMed DOI PMC

Ohnishi S., Koide A., Koide S.. Solution conformation and amyloid-like fibril formation of a polar peptide derived from a β-hairpin in the OspA single-layer β-sheet. J. Mol. Biol. 2000;301(2):477–489. doi: 10.1006/jmbi.2000.3980. PubMed DOI

Ohnishi S., Koide A., Koide S.. The roles of turn formation and cross-strand interactions in fibrillization of peptides derived from the OspA single-layer β-sheet. Protein Sci. 2001;10:2083–2092. doi: 10.1110/ps.15901. PubMed DOI PMC

MacDonald A. B.. Plaques of Alzheimer’s disease originate from cysts of Borrelia burgdorferi, the Lyme disease spirochete. Med. Hypotheses. 2006;67(3):592–600. doi: 10.1016/j.mehy.2006.02.035. PubMed DOI

Senejani A. G., Maghsoudlou J., El-Zohiry D., Gaur G., Wawrzeniak K., Caravaglia C.. et al. Borrelia burgdorferi Co-Localizing with Amyloid Markers in Alzheimer’s Disease Brain Tissues. J. Alzheimer’s Dis. 2022;85(2):889–903. doi: 10.3233/JAD-215398. PubMed DOI PMC

Kumaran D.. Crystal structure of outer surface protein C (OspC) from the Lyme disease spirochete, Borrelia burgdorferi . EMBO J. 2001;20(5):971–978. doi: 10.1093/emboj/20.5.971. PubMed DOI PMC

Walsh D. M., Thulin E., Minogue A. M., Gustavsson N., Pang E., Teplow D. B., Linse S.. A facile method for expression and purification of the Alzheimer’s disease-associated amyloid β-peptide. FEBS J. 2009;276(5):1266–1281. doi: 10.1111/j.1742-4658.2008.06862.x. PubMed DOI PMC

O’Malley, T. T. ; Linse, S. ; Walsh, D. M. . Production and Use of Recombinant Aβ for Aggregation Studies. In Peptide Self-Assembly. Methods in Molecular Biology; Nilsson, B. ; Doran, T. , Eds.; Humana Press: New York, NY, 2018; Vol. 1777 10.1007/978-1-4939-7811-3_19. PubMed DOI PMC

Cohen S. I. A., Linse S., Luheshi L. M., Hellstrand E., White D. A., Rajah L.. et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl. Acad. Sci. U. S. A. 2013;110(24):9758–9763. doi: 10.1073/pnas.1218402110. PubMed DOI PMC

Meisl G., Kirkegaard J. B., Arosio P., Michaels T. C. T., Vendruscolo M., Dobson C. M.. et al. Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat. Protoc. 2016;11(2):252–272. doi: 10.1038/nprot.2016.010. PubMed DOI

Meisl G., Yang X., Frohm B., Knowles T. P. J., Linse S.. Quantitative analysis of intrinsic and extrinsic factors in the aggregation mechanism of Alzheimer-associated Aβ-peptide. Sci. Rep. 2016;6(1):18728. doi: 10.1038/srep18728. PubMed DOI PMC

Meisl G., Yang X., Hellstrand E., Frohm B., Kirkegaard J. B., Cohen S. I. A.. et al. Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proc. Natl. Acad. Sci. U. S. A. 2014;111(26):9384–9389. doi: 10.1073/pnas.1401564111. PubMed DOI PMC

Törnquist M., Michaels T. C. T., Sanagavarapu K., Yang X., Meisl G., Cohen S. I. A.. et al. Secondary nucleation in amyloid formation. Chem. Commun. 2018;54(63):8667–8684. doi: 10.1039/C8CC02204F. PubMed DOI

Bohaciakova D., Hruska-Plochan M., Tsunemoto R., Gifford W. D., Driscoll S. P., Glenn T. D.. et al. A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors. Stem Cell Res. Ther. 2019;10(1):83. doi: 10.1186/s13287-019-1163-7. PubMed DOI PMC

Fernandopulle M. S., Prestil R., Grunseich C., Wang C., Gan L., Ward M. E.. Transcription Factor–Mediated Differentiation of Human iPSCs into Neurons. Curr. Protoc. Cell Biol. 2018;79(1):e51. doi: 10.1002/cpcb.51. PubMed DOI PMC

Soscia S. J., Kirby J. E., Washicosky K. J., Tucker S. M., Ingelsson M., Hyman B.. et al. The Alzheimer’s Disease-Associated Amyloid β-Protein Is an Antimicrobial Peptide. PLoS One. 2010;5(3):e9505. doi: 10.1371/journal.pone.0009505. PubMed DOI PMC

Kumar D. K. V., Choi S. H., Washicosky K. J., Eimer W. A., Tucker S., Ghofrani J.. et al. Amyloid-b peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci. Transl. Med. 2016;8(340):340ra72. doi: 10.1126/scitranslmed.aaf1059. PubMed DOI PMC

Vanova T., Sedmik J., Raska J., Amruz Cerna K., Taus P., Pospisilova V.. et al. Cerebral organoids derived from patients with Alzheimer’s disease with PSEN1/2 mutations have defective tissue patterning and altered development. Cell Rep. 2023;42(11):113310. doi: 10.1016/j.celrep.2023.113310. PubMed DOI

Barak M., Fedorova V., Pospisilova V., Raska J., Vochyanova S., Sedmik J.. et al. Human iPSC-Derived Neural Models for Studying Alzheimer’s Disease: from Neural Stem Cells to Cerebral Organoids. Stem Cell Rev. Rep. 2022;18(2):792–820. doi: 10.1007/s12015-021-10254-3. PubMed DOI PMC

Eimer W. A., Vijaya Kumar D. K., Navalpur Shanmugam N. K., Rodriguez A. S., Mitchell T., Washicosky K. J.. et al. Alzheimer’s Disease-Associated β-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection. Neuron. 2018;99(1):56–63.e3. doi: 10.1016/j.neuron.2018.06.030. PubMed DOI PMC

Bourgade K., Garneau H., Giroux G., Le Page A. Y., Bocti C., Dupuis G.. et al. β-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology. 2015;16(1):85–98. doi: 10.1007/s10522-014-9538-8. PubMed DOI

Bourgade K., Le Page A., Bocti C., Witkowski J. M., Dupuis G., Frost E. H.. et al. Protective Effect of Amyloid-β Peptides Against Herpes Simplex Virus-1 Infection in a Neuronal Cell Culture Model. J. Alzheimer’s Dis. 2016;50:1227–1241. doi: 10.3233/JAD-150652. PubMed DOI

Spitzer P., Condic M., Herrmann M., Oberstein T. J., Scharin-Mehlmann M., Gilbert D. F.. et al. Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity. Sci. Rep. 2016;6(1):32228. doi: 10.1038/srep32228. PubMed DOI PMC

Whitson H. E., Banks W. A., Diaz M. M., Frost B., Kellis M., Lathe R.. et al. New approaches for understanding the potential role of microbes in Alzheimer’s disease. Brain, Behav., Immun.:Health. 2024;36:100743. doi: 10.1016/j.bbih.2024.100743. PubMed DOI PMC

Habchi J., Chia S., Limbocker R., Mannini B., Ahn M., Perni M.. et al. Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 2017;114(2):E200–E208. doi: 10.1073/pnas.1615613114. PubMed DOI PMC

Arosio P., Michaels T. C. T., Linse S., Månsson C., Emanuelsson C., Presto J.. et al. Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation. Nat. Commun. 2016;7(1):10948. doi: 10.1038/ncomms10948. PubMed DOI PMC

Linse S., Scheidt T., Bernfur K., Vendruscolo M., Dobson C. M., Cohen S. I. A.. et al. Kinetic fingerprints differentiate the mechanisms of action of anti-Aβ antibodies. Nat. Struct. Mol. Biol. 2020;27(12):1125–1133. doi: 10.1038/s41594-020-0505-6. PubMed DOI

Sochocka M., Zwolińska K., Leszek J.. The Infectious Etiology of Alzheimer’s Disease. Curr. Neuropharmacol. 2017;15:996–1009. doi: 10.2174/1570159X15666170313122937. PubMed DOI PMC

Schrottenbach H.. Beiträge zur Kenntnis der Pathologie der menschlichen Neuroglia nach Studien an einem Falle von primärem idiopathischen Hydrocephalus internus mittels der Färbemethode von Ramón y Cajal. Arch. Psychiatr. Nervenkrankh. 1918;59(2–3):1086–1117. doi: 10.1007/BF02251870. DOI

Alzheimer, A. Über einen eigenartigen schweren Erkrankungsprozeβ der Hirnrincle Neurol Central. 1906; Vol. 25, p 1134.

Prosswimmer T., Heng A., Daggett V.. Mechanistic insights into the role of amyloid-β in innate immunity. Sci. Rep. 2024;14(1):5376. doi: 10.1038/s41598-024-55423-9. PubMed DOI PMC

Hook V., Schechter I., Demuth H. U., Hook G.. Alternative Pathways for Production of Beta-Amyloid Peptides of Alzheimer’s Disease. Biol. Chem. 2008;389(8):993–1006. doi: 10.1515/BC.2008.124. PubMed DOI PMC

Grigolato F., Arosio P.. The role of surfaces on amyloid formation. Biophys. Chem. 2021;270:106533. doi: 10.1016/j.bpc.2020.106533. PubMed DOI

Tayeb-Fligelman E., Bowler J. T., Tai C. E., Sawaya M. R., Jiang Y. X., Garcia G.. et al. Low complexity domains of the nucleocapsid protein of SARS-CoV-2 form amyloid fibrils. Nat. Commun. 2023;14(1):2379. doi: 10.1038/s41467-023-37865-3. PubMed DOI PMC

Bhardwaj T., Gadhave K., Kapuganti S. K., Kumar P., Brotzakis Z. F., Saumya K. U.. et al. Amyloidogenic proteins in the SARS-CoV and SARS-CoV-2 proteomes. Nat. Commun. 2023;14(1):945. doi: 10.1038/s41467-023-36234-4. PubMed DOI PMC

Tetz G., Tetz V.. Bacterial Extracellular DNA Promotes β-Amyloid Aggregation. Microorganisms. 2021;9(6):1301. doi: 10.3390/microorganisms9061301. PubMed DOI PMC

Kim H. S., Kim S., Shin S. J., Park Y. H., Nam Y., Kim C. W.. et al. Gram-negative bacteria and their lipopolysaccharides in Alzheimer’s disease: pathologic roles and therapeutic implications. Transl. Neurodegener. 2021;10(1):49. doi: 10.1186/s40035-021-00273-y. PubMed DOI PMC

Cagno V., Tseligka E. D., Jones S. T., Tapparel C.. Heparan Sulfate Proteoglycans and Viral Attachment: True Receptors or Adaptation Bias? Viruses. 2019;11(7):596. doi: 10.3390/v11070596. PubMed DOI PMC

Hellstrand E., Boland B., Walsh D. M., Linse S.. Amyloid β-Protein Aggregation Produces Highly Reproducible Kinetic Data and Occurs by a Two-Phase Process. ACS Chem. Neurosci. 2010;1(1):13–18. doi: 10.1021/cn900015v. PubMed DOI PMC

Fedorova V., Pospisilova V., Vanova T., Amruz Cerna K., Abaffy P., Sedmik J.. et al. Glioblastoma and cerebral organoids: development and analysis of an in vitro model for glioblastoma migration. Mol. Oncol. 2023;17(4):647–663. doi: 10.1002/1878-0261.13389. PubMed DOI PMC

Fedorova V., Amruz Cerna K., Oppelt J., Pospisilova V., Barta T., Mraz M., Bohaciakova D.. MicroRNA Profiling of Self-Renewing Human Neural Stem Cells Reveals Novel Sets of Differentially Expressed microRNAs During Neural Differentiation In Vitro. Stem Cell Rev. Rep. 2023;19(5):1524–1539. doi: 10.1007/s12015-023-10524-2. PubMed DOI PMC

Štefánik M., Bhosale D. S., Haviernik J., Strakova P., Fojtikova M., Dufkova L.. et al. Diphyllin Shows a Broad-Spectrum Antiviral Activity against Multiple Medically Important Enveloped RNA and DNA Viruses. Viruses. 2022;14(2):354. doi: 10.3390/v14020354. PubMed DOI PMC

Bohaciakova D., Renzova T., Fedorova V., Barak M., Kunova Bosakova M., Hampl A., Cajanek L.. An Efficient Method for Generation of Knockout Human Embryonic Stem Cells Using CRISPR/Cas9 System. Stem Cells Dev. 2017;26(21):1521–1527. doi: 10.1089/scd.2017.0058. PubMed DOI PMC

Capková N., Pospisilova V., Fedorová V., Raska J., Pospisilova K., Dal Ben M.. et al. The Effects of Bilirubin and Lumirubin on the Differentiation of Human Pluripotent Cell-Derived Neural Stem Cells. Antioxidants. 2021;10(10):1532. doi: 10.3390/antiox10101532. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...