Modulation of Amyloid-β Aggregation by Surface Proteins from Pathogens Associated with Alzheimer's Disease
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40859932
PubMed Central
PMC12447514
DOI
10.1021/acschemneuro.5c00444
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, amyloid-β, amyloids, neuroinflammation, pathogen, virus,
- MeSH
- Alzheimerova nemoc * metabolismus mikrobiologie MeSH
- amyloidní beta-protein * metabolismus MeSH
- amyloidový prekurzorový protein beta metabolismus MeSH
- bakteriální proteiny * metabolismus farmakologie MeSH
- Borrelia burgdorferi metabolismus MeSH
- lidé MeSH
- lidský herpesvirus 1 metabolismus MeSH
- neurony metabolismus účinky léků MeSH
- peptidové fragmenty * metabolismus MeSH
- Porphyromonas gingivalis metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amyloid beta-protein (1-42) MeSH Prohlížeč
- amyloidní beta-protein * MeSH
- amyloidový prekurzorový protein beta MeSH
- bakteriální proteiny * MeSH
- peptidové fragmenty * MeSH
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder. Despite substantial research efforts, our understanding of its pathogenesis remains incomplete, limiting the development of effective treatments and preventive strategies. The potential role of microbial pathogens in AD etiology has gained increasing attention. Various human microbial pathogens have been identified in the brains of AD patients, leading to the pathogen hypothesis, which posits that these microorganisms may disrupt the brain's immune regulation and homeostasis. In this study, we examine the effects of proteins from three pathogens, Borrelia burgdorferi, HSV-1, and Porphyromonas gingivalis, on the aggregation of antimicrobial peptide amyloid-β (Aβ). Three of the four studied proteins were found to attenuate the aggregation of Aβ42 by interacting with its soluble form and inhibiting primary and secondary pathways. These in vitro findings were further supported by experiments using mature neurons derived from human pluripotent stem cells, which showed an increased accumulation of amyloid precursor protein (APP) aggregates upon infection with HSV-1 or exposure to the OspA surface protein from B. burgdorferi. Together, our results provide mechanistic insights into how pathogen-associated proteins modulate Aβ42 aggregation, contributing to an understanding of their potential role in AD pathogenesis.
Department of Experimental Biology Faculty of Science Masaryk University Brno 625 00 Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Brno 602 00 Czech Republic
Zobrazit více v PubMed
Nemergut M., Batkova T., Vigasova D., Bartos M., Hlozankova M., Schenkmayerova A.. et al. Increased occurrence of Treponema spp. and double-species infections in patients with Alzheimer’s disease. Sci. Total Environ. 2022;844:157114. doi: 10.1016/j.scitotenv.2022.157114. PubMed DOI
Vigasova D., Nemergut M., Liskova B., Damborsky J.. Multi-pathogen infections and Alzheimer’s disease. Microb Cell Fact. 2021;20(1):25. doi: 10.1186/s12934-021-01520-7. PubMed DOI PMC
Richmond-Rakerd L. S., Iyer M. T., D’Souza S., Khalifeh L., Caspi A., Moffitt T. E., Milne B. J.. Associations of hospital-treated infections with subsequent dementia: nationwide 30-year analysis. Nat. Aging. 2024;4(6):783–790. doi: 10.1038/s43587-024-00621-3. PubMed DOI
Kordi R., Andrews T. J., Hicar M. D.. Infections, genetics, and Alzheimer’s disease: Exploring the pathogenic factors for innovative therapies. Virology. 2025;607:110523. doi: 10.1016/j.virol.2025.110523. PubMed DOI
Itzhaki R. F.. Herpes simplex virus type 1 and Alzheimer’s disease: possible mechanisms and signposts. FASEB J. 2017;31(8):3216–3226. doi: 10.1096/fj.201700360. PubMed DOI
Linard M., Letenneur L., Garrigue I., Doize A., Dartigues J., Helmer C.. Interaction between APOE4 and herpes simplex virus type 1 in Alzheimer’s disease. Alzheimer’s Dementia. 2020;16(1):200–208. doi: 10.1002/alz.12008. PubMed DOI
Lövheim H., Norman T., Weidung B., Olsson J., Josefsson M., Adolfsson R.. et al. Herpes Simplex Virus, APOE ε4, and Cognitive Decline in Old Age: Results from the Betula Cohort Study. J. Alzheimer’s Dementia. 2019;67(1):211–220. doi: 10.3233/JAD-171162. PubMed DOI
Cairns D. M., Smiley B. M., Smiley J. A., Khorsandian Y., Kelly M., Itzhaki R. F., Kaplan D. L.. Repetitive injury induces phenotypes associated with Alzheimer’s disease by reactivating HSV-1 in a human brain tissue model. Sci. Signal. 2025;18(868):eado6430. doi: 10.1126/scisignal.ado6430. PubMed DOI
Miklossy J., Kis A., Radenovic A., Miller L., Forro L., Martins R.. et al. Beta-amyloid deposition and Alzheimer’s type changes induced by Borrelia spirochetes. Neurobiol. Aging. 2006;27(2):228–236. doi: 10.1016/j.neurobiolaging.2005.01.018. PubMed DOI
Dominy S. S., Lynch C., Ermini F., Benedyk M., Marczyk A., Konradi A.. et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 2019;5(1):eaau3333. doi: 10.1126/sciadv.aau3333. PubMed DOI PMC
Liu Y., Wu Z., Nakanishi Y., Ni J., Hayashi Y., Takayama F.. et al. Infection of microglia with Porphyromonas gingivalis promotes cell migration and an inflammatory response through the gingipain-mediated activation of protease-activated receptor-2 in mice. Sci. Rep. 2017;7(1):11759. doi: 10.1038/s41598-017-12173-1. PubMed DOI PMC
Albaret G., Sifré E., Floch P., Laye S., Aubert A., Dubus P.. et al. Alzheimer’s Disease and Helicobacter pylori Infection: Inflammation from Stomach to Brain? J. Neurobiol. Aging. 2020;73(2):801–809. doi: 10.3233/JAD-190496. PubMed DOI
Kountouras J., Boziki M., Gavalas E., Zavos C., Deretzi G., Grigoriadis N.. et al. Increased Cerebrospinal Fluid Helicobacter Pylori Antibody in Alzheimer’s Disease. Int. J. Neurosci. 2009;119(6):765–777. doi: 10.1080/00207450902782083. PubMed DOI
Lathe R., Schultek N. M., Balin B. J., Ehrlich G. D., Auber L. A., Perry G.. et al. Establishment of a consensus protocol to explore the brain pathobiome in patients with mild cognitive impairment and Alzheimer’s disease: Research outline and call for collaboration. Alzheimer’s Dementia. 2023;19(11):5209–5231. doi: 10.1002/alz.13076. PubMed DOI PMC
Eyting M., Xie M., Michalik F., Heß S., Chung S., Geldsetzer P.. A natural experiment on the effect of herpes zoster vaccination on dementia. Nature. 2025;641(8062):438–446. doi: 10.1038/s41586-025-08800-x. PubMed DOI PMC
Cairns D. M., Itzhaki R. F., Kaplan D. L.. Potential Involvement of Varicella Zoster Virus in Alzheimer’s Disease via Reactivation of Quiescent Herpes Simplex Virus Type 1. J. Neurobiol. Aging. 2022;88(3):1189–1200. doi: 10.3233/JAD-220287. PubMed DOI
Madavaraju K., Koganti R., Volety I., Yadavalli T., Shukla D.. Herpes Simplex Virus Cell Entry Mechanisms: An Update. Front Cell Infect Microbiol. 2021;10:617578. doi: 10.3389/fcimb.2020.617578. PubMed DOI PMC
Jambunathan N., Clark C., Musarrat F., Chouljenko V., Rudd J., Kousoulas K.. Two Sides to Every Story: Herpes Simplex Type-1 Viral Glycoproteins gB, gD, gH/gL, gK, and Cellular Receptors Function as Key Players in Membrane Fusion. Viruses. 2021;13(9):1849. doi: 10.3390/v13091849. PubMed DOI PMC
Heldwein E. E., Lou H., Bender F. C., Cohen G. H., Eisenberg R. J., Harrison S. C.. Crystal Structure of Glycoprotein B from Herpes Simplex Virus 1. Science. 2006;313(5784):217–220. doi: 10.1126/science.1126548. PubMed DOI
Bourgade K., Frost E. H., Dupuis G., Witkowski J. M., Laurent B., Calmettes C.. et al. Interaction Mechanism Between the HSV-1 Glycoprotein B and the Antimicrobial Peptide Amyloid-β. J. Alzheimer’s Dis. Rep. 2022;6(1):599–606. doi: 10.3233/ADR-220061. PubMed DOI PMC
Cribbs D. H., Azizeh B. Y., Cotman C. W., LaFerla F. M.. Fibril Formation and Neurotoxicity by a Herpes Simplex Virus Glycoprotein B Fragment with Homology to the Alzheimer’s Aβ Peptide. Biochemistry. 2000;39(20):5988–5994. doi: 10.1021/bi000029f. PubMed DOI
Vollmer B., Pražák V., Vasishtan D., Jefferys E. E., Hernandez-Duran A., Vallbracht M.. et al. The prefusion structure of herpes simplex virus glycoprotein B. Sci. Adv. 2020;6(39):eabc1726. doi: 10.1126/sciadv.abc1726. PubMed DOI PMC
Stroobants K., Kumita J. R., Harris N. J., Chirgadze D. Y., Dobson C. M., Booth P. J., Vendruscolo M.. Amyloid-like Fibrils from an α-Helical Transmembrane Protein. Biochemistry. 2017;56(25):3225–3233. doi: 10.1021/acs.biochem.7b00157. PubMed DOI PMC
Kanagasingam S., Chukkapalli S. S., Welbury R., Singhrao S. K.. Porphyromonas gingivalis is a Strong Risk Factor for Alzheimer’s Disease. J. Alzheimer’s Dis. Rep. 2020;4(1):501–511. doi: 10.3233/ADR-200250. PubMed DOI PMC
Poole S., Singhrao S. K., Kesavalu L., Curtis M. A., Crean S.. Determining the Presence of Periodontopathic Virulence Factors in Short-Term Postmortem Alzheimer’s Disease Brain Tissue. J. Alzheimer’s Dis. 2013;36(4):665–677. doi: 10.3233/JAD-121918. PubMed DOI
Ilievski V., Zuchowska P. K., Green S. J., Toth P. T., Ragozzino M. E., Le K.. et al. Chronic oral application of a periodontal pathogen results in brain inflammation, neurodegeneration and amyloid beta production in wild type mice. PLoS One. 2018;13(10):e0204941. doi: 10.1371/journal.pone.0204941. PubMed DOI PMC
O’Brien-Simpson N. M., Pathirana R. D., Walker G. D., Reynolds E. C.. Porphyromonas gingivalis RgpA-Kgp Proteinase-Adhesin Complexes Penetrate Gingival Tissue and Induce Proinflammatory Cytokines or Apoptosis in a Concentration-Dependent Manner. Infect. Immun. 2009;77(3):1246–1261. doi: 10.1128/IAI.01038-08. PubMed DOI PMC
Pulzova L., Bhide M.. Outer Surface Proteins of Borrelia: Peerless Immune Evasion Tools. Curr. Protein Pept. Sci. 2014;15(1):75–88. doi: 10.2174/1389203715666140221124213. PubMed DOI
Batsford S., Dunn J., Mihatsch M.. Outer surface lipoproteins of Borrelia burgdorferi vary in their ability to induce experimental joint injury. Arthritis Rheumatol. 2004;50(7):2360–2369. doi: 10.1002/art.20337. PubMed DOI
Tauber S. C., Ribes S., Ebert S., Heinz T., Fingerle V., Bunkowski S.. et al. Long-Term Intrathecal Infusion of Outer Surface Protein C From Borrelia burgdorferi Causes Axonal Damage. J. Neuropathol. Exp. Neurol. 2011;70(9):748–757. doi: 10.1097/NEN.0b013e3182289acd. PubMed DOI
Schutzer S. E., Coyle P. K., Krupp L. B., Deng Z., Belman A. L., Dattwyler R., Luft B. J.. Simultaneous expression of Borrelia OspA and OspC and IgM response in cerebrospinal fluid in early neurologic Lyme disease. J. Clin. Invest. 1997;100(4):763–767. doi: 10.1172/JCI119589. PubMed DOI PMC
Rupprecht T. A., Koedel U., Heimerl C., Fingerle V., Paul R., Wilske B., Pfister H. W.. Adhesion of Borrelia garinii to neuronal cells is mediated by the interaction of OspA with proteoglycans. J. Neuroimmunol. 2006;175(1–2):5–11. doi: 10.1016/j.jneuroim.2006.02.007. PubMed DOI
Sen E., Sigal L. H.. Enhanced Adhesion and OspC Protein Synthesis of the Lyme Disease Spirochete Borrelia Burgdorferi Cultivated in a Host-Derived Tissue Co-Culture System. Balk. Med. J. 2013;30(2):215–224. doi: 10.5152/balkanmedj.2013.7059. PubMed DOI PMC
Nguyen N. T. T., Röttgerding F., Devraj G., Lin Y. P., Koenigs A., Kraiczy P.. The Complement Binding and Inhibitory Protein CbiA of Borrelia miyamotoi Degrades Extracellular Matrix Components by Interacting with Plasmin(ogen) Front. Cell. Infect. Microbiol. 2018;8:23. doi: 10.3389/fcimb.2018.00023. PubMed DOI PMC
Li H., Dunn J. J., Luft B. J., Lawson C. L.. Crystal structure of Lyme disease antigen outer surface protein A complexed with an Fab. Proc. Natl. Acad. Sci. U. S. A. 1997;94(8):3584–3589. doi: 10.1073/pnas.94.8.3584. PubMed DOI PMC
Ohnishi S., Koide A., Koide S.. Solution conformation and amyloid-like fibril formation of a polar peptide derived from a β-hairpin in the OspA single-layer β-sheet. J. Mol. Biol. 2000;301(2):477–489. doi: 10.1006/jmbi.2000.3980. PubMed DOI
Ohnishi S., Koide A., Koide S.. The roles of turn formation and cross-strand interactions in fibrillization of peptides derived from the OspA single-layer β-sheet. Protein Sci. 2001;10:2083–2092. doi: 10.1110/ps.15901. PubMed DOI PMC
MacDonald A. B.. Plaques of Alzheimer’s disease originate from cysts of Borrelia burgdorferi, the Lyme disease spirochete. Med. Hypotheses. 2006;67(3):592–600. doi: 10.1016/j.mehy.2006.02.035. PubMed DOI
Senejani A. G., Maghsoudlou J., El-Zohiry D., Gaur G., Wawrzeniak K., Caravaglia C.. et al. Borrelia burgdorferi Co-Localizing with Amyloid Markers in Alzheimer’s Disease Brain Tissues. J. Alzheimer’s Dis. 2022;85(2):889–903. doi: 10.3233/JAD-215398. PubMed DOI PMC
Kumaran D.. Crystal structure of outer surface protein C (OspC) from the Lyme disease spirochete, Borrelia burgdorferi . EMBO J. 2001;20(5):971–978. doi: 10.1093/emboj/20.5.971. PubMed DOI PMC
Walsh D. M., Thulin E., Minogue A. M., Gustavsson N., Pang E., Teplow D. B., Linse S.. A facile method for expression and purification of the Alzheimer’s disease-associated amyloid β-peptide. FEBS J. 2009;276(5):1266–1281. doi: 10.1111/j.1742-4658.2008.06862.x. PubMed DOI PMC
O’Malley, T. T. ; Linse, S. ; Walsh, D. M. . Production and Use of Recombinant Aβ for Aggregation Studies. In Peptide Self-Assembly. Methods in Molecular Biology; Nilsson, B. ; Doran, T. , Eds.; Humana Press: New York, NY, 2018; Vol. 1777 10.1007/978-1-4939-7811-3_19. PubMed DOI PMC
Cohen S. I. A., Linse S., Luheshi L. M., Hellstrand E., White D. A., Rajah L.. et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl. Acad. Sci. U. S. A. 2013;110(24):9758–9763. doi: 10.1073/pnas.1218402110. PubMed DOI PMC
Meisl G., Kirkegaard J. B., Arosio P., Michaels T. C. T., Vendruscolo M., Dobson C. M.. et al. Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat. Protoc. 2016;11(2):252–272. doi: 10.1038/nprot.2016.010. PubMed DOI
Meisl G., Yang X., Frohm B., Knowles T. P. J., Linse S.. Quantitative analysis of intrinsic and extrinsic factors in the aggregation mechanism of Alzheimer-associated Aβ-peptide. Sci. Rep. 2016;6(1):18728. doi: 10.1038/srep18728. PubMed DOI PMC
Meisl G., Yang X., Hellstrand E., Frohm B., Kirkegaard J. B., Cohen S. I. A.. et al. Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proc. Natl. Acad. Sci. U. S. A. 2014;111(26):9384–9389. doi: 10.1073/pnas.1401564111. PubMed DOI PMC
Törnquist M., Michaels T. C. T., Sanagavarapu K., Yang X., Meisl G., Cohen S. I. A.. et al. Secondary nucleation in amyloid formation. Chem. Commun. 2018;54(63):8667–8684. doi: 10.1039/C8CC02204F. PubMed DOI
Bohaciakova D., Hruska-Plochan M., Tsunemoto R., Gifford W. D., Driscoll S. P., Glenn T. D.. et al. A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors. Stem Cell Res. Ther. 2019;10(1):83. doi: 10.1186/s13287-019-1163-7. PubMed DOI PMC
Fernandopulle M. S., Prestil R., Grunseich C., Wang C., Gan L., Ward M. E.. Transcription Factor–Mediated Differentiation of Human iPSCs into Neurons. Curr. Protoc. Cell Biol. 2018;79(1):e51. doi: 10.1002/cpcb.51. PubMed DOI PMC
Soscia S. J., Kirby J. E., Washicosky K. J., Tucker S. M., Ingelsson M., Hyman B.. et al. The Alzheimer’s Disease-Associated Amyloid β-Protein Is an Antimicrobial Peptide. PLoS One. 2010;5(3):e9505. doi: 10.1371/journal.pone.0009505. PubMed DOI PMC
Kumar D. K. V., Choi S. H., Washicosky K. J., Eimer W. A., Tucker S., Ghofrani J.. et al. Amyloid-b peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci. Transl. Med. 2016;8(340):340ra72. doi: 10.1126/scitranslmed.aaf1059. PubMed DOI PMC
Vanova T., Sedmik J., Raska J., Amruz Cerna K., Taus P., Pospisilova V.. et al. Cerebral organoids derived from patients with Alzheimer’s disease with PSEN1/2 mutations have defective tissue patterning and altered development. Cell Rep. 2023;42(11):113310. doi: 10.1016/j.celrep.2023.113310. PubMed DOI
Barak M., Fedorova V., Pospisilova V., Raska J., Vochyanova S., Sedmik J.. et al. Human iPSC-Derived Neural Models for Studying Alzheimer’s Disease: from Neural Stem Cells to Cerebral Organoids. Stem Cell Rev. Rep. 2022;18(2):792–820. doi: 10.1007/s12015-021-10254-3. PubMed DOI PMC
Eimer W. A., Vijaya Kumar D. K., Navalpur Shanmugam N. K., Rodriguez A. S., Mitchell T., Washicosky K. J.. et al. Alzheimer’s Disease-Associated β-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection. Neuron. 2018;99(1):56–63.e3. doi: 10.1016/j.neuron.2018.06.030. PubMed DOI PMC
Bourgade K., Garneau H., Giroux G., Le Page A. Y., Bocti C., Dupuis G.. et al. β-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology. 2015;16(1):85–98. doi: 10.1007/s10522-014-9538-8. PubMed DOI
Bourgade K., Le Page A., Bocti C., Witkowski J. M., Dupuis G., Frost E. H.. et al. Protective Effect of Amyloid-β Peptides Against Herpes Simplex Virus-1 Infection in a Neuronal Cell Culture Model. J. Alzheimer’s Dis. 2016;50:1227–1241. doi: 10.3233/JAD-150652. PubMed DOI
Spitzer P., Condic M., Herrmann M., Oberstein T. J., Scharin-Mehlmann M., Gilbert D. F.. et al. Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity. Sci. Rep. 2016;6(1):32228. doi: 10.1038/srep32228. PubMed DOI PMC
Whitson H. E., Banks W. A., Diaz M. M., Frost B., Kellis M., Lathe R.. et al. New approaches for understanding the potential role of microbes in Alzheimer’s disease. Brain, Behav., Immun.:Health. 2024;36:100743. doi: 10.1016/j.bbih.2024.100743. PubMed DOI PMC
Habchi J., Chia S., Limbocker R., Mannini B., Ahn M., Perni M.. et al. Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 2017;114(2):E200–E208. doi: 10.1073/pnas.1615613114. PubMed DOI PMC
Arosio P., Michaels T. C. T., Linse S., Månsson C., Emanuelsson C., Presto J.. et al. Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation. Nat. Commun. 2016;7(1):10948. doi: 10.1038/ncomms10948. PubMed DOI PMC
Linse S., Scheidt T., Bernfur K., Vendruscolo M., Dobson C. M., Cohen S. I. A.. et al. Kinetic fingerprints differentiate the mechanisms of action of anti-Aβ antibodies. Nat. Struct. Mol. Biol. 2020;27(12):1125–1133. doi: 10.1038/s41594-020-0505-6. PubMed DOI
Sochocka M., Zwolińska K., Leszek J.. The Infectious Etiology of Alzheimer’s Disease. Curr. Neuropharmacol. 2017;15:996–1009. doi: 10.2174/1570159X15666170313122937. PubMed DOI PMC
Schrottenbach H.. Beiträge zur Kenntnis der Pathologie der menschlichen Neuroglia nach Studien an einem Falle von primärem idiopathischen Hydrocephalus internus mittels der Färbemethode von Ramón y Cajal. Arch. Psychiatr. Nervenkrankh. 1918;59(2–3):1086–1117. doi: 10.1007/BF02251870. DOI
Alzheimer, A. Über einen eigenartigen schweren Erkrankungsprozeβ der Hirnrincle Neurol Central. 1906; Vol. 25, p 1134.
Prosswimmer T., Heng A., Daggett V.. Mechanistic insights into the role of amyloid-β in innate immunity. Sci. Rep. 2024;14(1):5376. doi: 10.1038/s41598-024-55423-9. PubMed DOI PMC
Hook V., Schechter I., Demuth H. U., Hook G.. Alternative Pathways for Production of Beta-Amyloid Peptides of Alzheimer’s Disease. Biol. Chem. 2008;389(8):993–1006. doi: 10.1515/BC.2008.124. PubMed DOI PMC
Grigolato F., Arosio P.. The role of surfaces on amyloid formation. Biophys. Chem. 2021;270:106533. doi: 10.1016/j.bpc.2020.106533. PubMed DOI
Tayeb-Fligelman E., Bowler J. T., Tai C. E., Sawaya M. R., Jiang Y. X., Garcia G.. et al. Low complexity domains of the nucleocapsid protein of SARS-CoV-2 form amyloid fibrils. Nat. Commun. 2023;14(1):2379. doi: 10.1038/s41467-023-37865-3. PubMed DOI PMC
Bhardwaj T., Gadhave K., Kapuganti S. K., Kumar P., Brotzakis Z. F., Saumya K. U.. et al. Amyloidogenic proteins in the SARS-CoV and SARS-CoV-2 proteomes. Nat. Commun. 2023;14(1):945. doi: 10.1038/s41467-023-36234-4. PubMed DOI PMC
Tetz G., Tetz V.. Bacterial Extracellular DNA Promotes β-Amyloid Aggregation. Microorganisms. 2021;9(6):1301. doi: 10.3390/microorganisms9061301. PubMed DOI PMC
Kim H. S., Kim S., Shin S. J., Park Y. H., Nam Y., Kim C. W.. et al. Gram-negative bacteria and their lipopolysaccharides in Alzheimer’s disease: pathologic roles and therapeutic implications. Transl. Neurodegener. 2021;10(1):49. doi: 10.1186/s40035-021-00273-y. PubMed DOI PMC
Cagno V., Tseligka E. D., Jones S. T., Tapparel C.. Heparan Sulfate Proteoglycans and Viral Attachment: True Receptors or Adaptation Bias? Viruses. 2019;11(7):596. doi: 10.3390/v11070596. PubMed DOI PMC
Hellstrand E., Boland B., Walsh D. M., Linse S.. Amyloid β-Protein Aggregation Produces Highly Reproducible Kinetic Data and Occurs by a Two-Phase Process. ACS Chem. Neurosci. 2010;1(1):13–18. doi: 10.1021/cn900015v. PubMed DOI PMC
Fedorova V., Pospisilova V., Vanova T., Amruz Cerna K., Abaffy P., Sedmik J.. et al. Glioblastoma and cerebral organoids: development and analysis of an in vitro model for glioblastoma migration. Mol. Oncol. 2023;17(4):647–663. doi: 10.1002/1878-0261.13389. PubMed DOI PMC
Fedorova V., Amruz Cerna K., Oppelt J., Pospisilova V., Barta T., Mraz M., Bohaciakova D.. MicroRNA Profiling of Self-Renewing Human Neural Stem Cells Reveals Novel Sets of Differentially Expressed microRNAs During Neural Differentiation In Vitro. Stem Cell Rev. Rep. 2023;19(5):1524–1539. doi: 10.1007/s12015-023-10524-2. PubMed DOI PMC
Štefánik M., Bhosale D. S., Haviernik J., Strakova P., Fojtikova M., Dufkova L.. et al. Diphyllin Shows a Broad-Spectrum Antiviral Activity against Multiple Medically Important Enveloped RNA and DNA Viruses. Viruses. 2022;14(2):354. doi: 10.3390/v14020354. PubMed DOI PMC
Bohaciakova D., Renzova T., Fedorova V., Barak M., Kunova Bosakova M., Hampl A., Cajanek L.. An Efficient Method for Generation of Knockout Human Embryonic Stem Cells Using CRISPR/Cas9 System. Stem Cells Dev. 2017;26(21):1521–1527. doi: 10.1089/scd.2017.0058. PubMed DOI PMC
Capková N., Pospisilova V., Fedorová V., Raska J., Pospisilova K., Dal Ben M.. et al. The Effects of Bilirubin and Lumirubin on the Differentiation of Human Pluripotent Cell-Derived Neural Stem Cells. Antioxidants. 2021;10(10):1532. doi: 10.3390/antiox10101532. PubMed DOI PMC