The Effects of Bilirubin and Lumirubin on Metabolic and Oxidative Stress Markers
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
33746746
PubMed Central
PMC7969661
DOI
10.3389/fphar.2021.567001
PII: 567001
Knihovny.cz E-resources
- Keywords
- antioxidant, bilirubin, cell respiration, intracellular metabolite, lumirubin,
- Publication type
- Journal Article MeSH
For severe unconjugated hyperbilirubinemia the gold standard treatment is phototherapy with blue-green light, producing more polar photo-oxidation products, believed to be non-toxic. The aim of the present study was to compare the effects of bilirubin (BR) and lumirubin (LR), the major BR photo-oxidation product, on metabolic and oxidative stress markers. The biological activities of these pigments were investigated on several human and murine cell lines, with the focus on mitochondrial respiration, substrate metabolism, reactive oxygen species production, and the overall effects on cell viability. Compared to BR, LR was found to be much less toxic, while still maintaining a similar antioxidant capacity in the serum as well as suppressing activity leading to mitochondrial superoxide production. Nevertheless, due to its lower lipophilicity, LR was less efficient in preventing lipoperoxidation. The cytotoxicity of BR was affected by the cellular glycolytic reserve, most compromised in human hepatoblastoma HepG2 cells. The observed effects were correlated with changes in the production of tricarboxylic acid cycle metabolites. Both BR and LR modulated expression of PPARα downstream effectors involved in lipid and glucose metabolism. Proinflammatory effects of BR, evidenced by increased expression of TNFα upon exposure to bacterial lipopolysaccharide, were observed in murine macrophage-like RAW 264.7 cells. Collectively, these data point to the biological effects of BR and its photo-oxidation products, which might have clinical relevance in phototherapy-treated hyperbilirubinemic neonates and adult patients.
See more in PubMed
Almeida M. A., Rezende L. (1981). The serum levels of unbound bilirubin that induce changes in some brain mitochondrial reactions in newborn guinea-pigs. Experientia 37, 807–809. 10.1007/BF01985651 PubMed DOI
Arnold C., Pedroza C., Tyson J. E. (2014). Phototherapy in ELBW newborns: does it work? Is it safe? The evidence from randomized clinical trials. Semin. Perinatol. 38, 452–464. 10.1053/j.semperi.2014.08.008 PubMed DOI
Auger N., Laverdiere C., Ayoub A., Lo E., Luu T. M. (2019). Neonatal phototherapy and future risk of childhood cancer. Int. J. Cancer 145, 2061–2069. 10.1002/ijc.32158 PubMed DOI
Barone E., Trombino S., Cassano R., Sgambato A., De Paola B., Di Stasio E., et al. (2009). Characterization of the S-denitrosylating activity of bilirubin. J. Cell Mol. Med. 13, 2365–2375. 10.1111/j.1582-4934.2009.00680.x PubMed DOI PMC
Brand M. D., Nicholls D. G. (2011). Assessing mitochondrial dysfunction in cells. Biochem. J. 435, 297–312. 10.1042/BJ20110162 PubMed DOI PMC
Crewe C., Kinter M., Szweda L. I. (2013). Rapid inhibition of pyruvate dehydrogenase: an initiating event in high dietary fat-induced loss of metabolic flexibility in the heart. PLoS One 8, e77280, 10.1371/journal.pone.0077280 PubMed DOI PMC
Dal Ben M., Bottin C., Zanconati F., Tiribelli C., Gazzin S. (2017). Evaluation of region selective bilirubin-induced brain damage as a basis for a pharmacological treatment. Sci. Rep. 7, 41032. 10.1038/srep41032 PubMed DOI PMC
Dvorak A., Zelenka J., Smolkova K., Vitek L., Jezek P. (2017). Background levels of neomorphic 2-hydroxyglutarate facilitate proliferation of primary fibroblasts. Physiol. Res. 66, 293–304. 10.33549/physiolres.933249 PubMed DOI
Gordon D. M., Blomquist T. M., Miruzzi S. A., Mccullumsmith R., Stec D. E., Hinds T. D., Jr. (2019). RNA sequencing in human HepG2 hepatocytes reveals PPAR-α mediates transcriptome responsiveness of bilirubin. Physiol. Genomics 51, 234–240. 10.1152/physiolgenomics.00028.2019 PubMed DOI PMC
Gordon D. M., Neifer K. L., Hamoud A. A., Hawk C. F., Nestor-Kalinoski A. L., Miruzzi S. A., et al. (2020). Bilirubin remodels murine white adipose tissue by reshaping mitochondrial activity and the coregulator profile of peroxisome proliferator-activated receptor α. J. Biol. Chem. 295, 9804–9822. 10.1074/jbc.RA120.013700 PubMed DOI PMC
Grojean S., Koziel V., Vert P., Daval J. L. (2000). Bilirubin induces apoptosis via activation of NMDA receptors in developing rat brain neurons. Exp. Neurol. 166, 334–341. 10.1006/exnr.2000.7518 PubMed DOI
Hansen R., Gibson S., De Paiva Alves E., Goddard M., Maclaren A., Karcher A. M., et al. (2018). Adaptive response of neonatal sepsis-derived Group B Streptococcus to bilirubin. Sci. Rep. 8, 6470. 10.1038/s41598-018-24811-3 PubMed DOI PMC
Hegyi T., Goldie E., Hiatt M. (1994). The protective role of bilirubin in oxygen-radical diseases of the preterm infant. J. Perinatol. 14, 296–300. PubMed
Hinds T. D., Jr., Stec D. E. (2019). Bilirubin safeguards cardiorenal and metabolic diseases: a protective role in health. Curr. Hypertens. Rep. 21, 87. 10.1007/s11906-019-0994-z PubMed DOI PMC
Hinds T. D., Jr., Stec D. E. (2018). Bilirubin, a cardiometabolic signaling molecule. Hypertension 72, 788–795. 10.1161/HYPERTENSIONAHA.118.11130 PubMed DOI PMC
Hyperbilirubinemia (2004). Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 114, 297–316. 10.1542/peds.114.1.297 PubMed DOI
Jangi S., Otterbein L., Robson S. (2013). The molecular basis for the immunomodulatory activities of unconjugated bilirubin. Int. J. Biochem. Cell Biol. 45, 2843–2851. 10.1016/j.biocel.2013.09.014 PubMed DOI
Jašprová J., Dal Ben M., Hurný D., Hwang S., Žížalová K., Kotek J., et al. (2018). Neuro-inflammatory effects of photodegradative products of bilirubin. Sci. Rep. 8, 7444. 10.1038/s41598-018-25684-2 PubMed DOI PMC
Jasprova J., Dal Ben M., Vianello E., Goncharova I., Urbanova M., Vyroubalova K., et al. (2016). The biological effects of bilirubin photoisomers. PLoS One 11, e0148126. 10.1371/journal.pone.0148126 PubMed DOI PMC
Jasprova J., Dvorak A., Vecka M., Lenicek M., Lacina O., Valaskova P., et al. (2020). A novel accurate LC-MS/MS method for quantitative determination of Z-lumirubin. Sci. Rep. 10, 4411. 10.1038/s41598-020-61280-z PubMed DOI PMC
Kappler M., Pabst U., Weinholdt C., Taubert H., Rot S., Kaune T., et al. (2019). Causes and consequences of A glutamine induced normoxic HIF1 activity for the Tumor metabolism. Int. J. Mol. Sci. 20, 4742. 10.3390/ijms20194742 PubMed DOI PMC
Khan M., Malik K. A., Bai R. (2016). Hypocalcemia in jaundiced neonates receiving phototherapy. Pak J. Med. Sci. 32, 1449–1452. 10.12669/pjms.326.10849 PubMed DOI PMC
Kim J. W., Tchernyshyov I., Semenza G. L., Dang C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185. 10.1016/j.cmet.2006.02.002 PubMed DOI
Koves T. R., Ussher J. R., Noland R. C., Slentz D., Mosedale M., Ilkayeva O., et al. (2008). Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 7, 45–56. 10.1016/j.cmet.2007.10.013 PubMed DOI
Lightner D. A., Quistad G. B. (1972). Hematinic acid and propentdyopents from bilirubin photo-oxidation in vitro . FEBS Lett. 25, 94–96. 10.1016/0014-5793(72)80462-9 PubMed DOI
Lightner D. A., Linnane W. P., 3rd, Ahlfors C. E. (1984). Bilirubin photooxidation products in the urine of jaundiced neonates receiving phototherapy. Pediatr. Res. 18, 696–700. 10.1203/00006450-198408000-00003 PubMed DOI
Maisels M. J., McDonagh A. F. (2008). Phototherapy for neonatal jaundice. N. Engl. J. Med. 358, 920–928. 10.1056/NEJMct0708376 PubMed DOI
Martinez-Reyes I., Chandel N. S. (2020). Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11, 102. 10.1038/s41467-019-13668-3 PubMed DOI PMC
McDonagh A. F., Assisi F. (1972). The ready isomerization of bilirubin IX-in aqueous solution. Biochem. J. 129, 797–800. 10.1042/bj1290797 PubMed DOI PMC
McDonagh A. F., Palma L. A. (1980). Hepatic excretion of circulating bilirubin photoproducts in the Gunn rat. J. Clin. Invest 66, 1182–1185. 10.1172/JCI109951 PubMed DOI PMC
Mcnamee M. B., Cardwell C. R., Patterson C. C. (2012). Neonatal jaundice is associated with a small increase in the risk of childhood type 1 diabetes: a meta-analysis of observational studies. Acta Diabetol. 49, 83–87. 10.1007/s00592-011-0326-5 PubMed DOI
Mustafa M. G., Cowger M. L., King T. E. (1969). Effects of bilirubin on mitochondrial reactions. J. Biol. Chem. 244, 6403–6414. 10.1016/s0021-9258(18)63479-9 PubMed DOI
Mustafa M. G., Cowger M. L., King T. E. (1967). On the energy-dependent bilirubin-induced mitochondrial swelling. Biochem. Biophys. Res. Commun. 29, 661–666. 10.1016/0006-291x(67)90267-7 PubMed DOI
Noir B. A., Boveris A., Garaza Pereira A. M., Stoppani A. O. (1972). Bilirubin: a multi-site inhibitor of mitochondrial respiration. FEBS Lett. 27, 270–274. 10.1016/0014-5793(72)80638-0 PubMed DOI
Onishi S., Kawade N., Itoh S., Isobe K., Sugiyama S., Hashimoto T., et al. (1981). Kinetics of biliary excretion of the main two bilirubin photoproducts after injection into Gunn rats. Biochem. J. 198, 107–112. 10.1042/bj1980107 PubMed DOI PMC
Raghavan K., Thomas E., Patole S., Muller R. (2005). Is phototherapy a risk factor for ileus in high-risk neonates?. J. Matern. Fetal Neonatal. Med. 18, 129–131. 10.1080/14767050500233076 PubMed DOI
Rakhshandehroo M., Knoch B., Muller M., Kersten S. (2010). Peroxisome proliferator-activated receptor alpha target genes. PPAR Res. 2010, 612089. 10.1155/2010/612089 PubMed DOI PMC
Roca L., Calligaris S., Wennberg R. P., Ahlfors C. E., Malik S. G., Ostrow J. D., et al. (2006). Factors affecting the binding of bilirubin to serum albumins: validation and application of the peroxidase method. Pediatr. Res. 60, 724–728. 10.1203/01.pdr.0000245992.89965.94 PubMed DOI
Rodrigues C. M., Sola S., Brites D. (2002). Bilirubin induces apoptosis via the mitochondrial pathway in developing rat brain neurons. Hepatology 35, 1186–1195. 10.1053/jhep.2002.32967 PubMed DOI
Safar H., Elsary A. Y. (2020). Neonatal jaundice: the other side of the coin in the development of allergy. Am. J. Perinatol 37, 1357–1363. 10.1055/s-0039-1693697 PubMed DOI
Seidel R. A., Schowtka B., Klopfleisch M., Kuhl T., Weiland A., Koch A., et al. (2014). Total synthesis and characterization of the bilirubin oxidation product (Z)-2-(4-ethenyl-3-methyl-5-oxo-1,5-dihydro-2H-pyrrol-2-ylidene)ethanamide (Z-BOX B). Tetrahedron Lett. 55, 6526–6529. 10.1016/j.tetlet.2014.09.108 PubMed DOI
Shekeeb S. M., Kumar P., Sharma N., Narang A., Prasad R. (2008). Evaluation of oxidant and antioxidant status in term neonates: a plausible protective role of bilirubin. Mol. Cell Biochem. 317, 51–59. 10.1007/s11010-008-9807-4 PubMed DOI
Smolkova K., Dvorak A., Zelenka J., Vitek L., Jezek P. (2015). Reductive carboxylation and 2-hydroxyglutarate formation by wild-type IDH2 in breast carcinoma cells. Int. J. Biochem. Cell Biol. 65, 125–133. 10.1016/j.biocel.2015.05.012 PubMed DOI
Soufli I., Toumi R., Rafa H., Touil-Boukoffa C. (2016). Overview of cytokines and nitric oxide involvement in immuno-pathogenesis of inflammatory bowel diseases. World J. Gastrointest. Pharmacol. Ther. 7, 353–360. 10.4292/wjgpt.v7.i3.353 PubMed DOI PMC
Soutar M. P. M., Kempthorne L., Annuario E., Luft C., Wray S., Ketteler R., et al. (2019). FBS/BSA media concentration determines CCCP's ability to depolarize mitochondria and activate PINK1-PRKN mitophagy. Autophagy 15, 2002–2011. 10.1080/15548627.2019.1603549 PubMed DOI PMC
Stec D. E., John K., Trabbic C. J., Luniwal A., Hankins M. W., Baum J., et al. (2016). Bilirubin binding to PPARα inhibits lipid accumulation. PLoS One 11, e0153427. 10.1371/journal.pone.0153427 PubMed DOI PMC
Stocker R., Yamamoto Y., McDonagh A. F., Glazer A. N., Ames B. N. (1987). Bilirubin is an antioxidant of possible physiological importance. Science 235, 1043–1046. 10.1126/science.3029864 PubMed DOI
Stumpf D. A., Eguren L. A., Parks J. K. (1985). Bilirubin increases mitochondrial inner membrane conductance. Biochem. Med. 34, 226–229. 10.1016/0006-2944(85)90115-2 PubMed DOI
Valaskova P., Dvorak A., Lenicek M., Zizalova K., Kutinova-Canova N., Zelenka J., et al. (2019). Hyperbilirubinemia in Gunn rats is associated with decreased inflammatory response in LPS-mediated systemic inflammation. Ijms 20, 2306. 10.3390/ijms20092306 PubMed DOI PMC
Vítek L. (2020). Bilirubin as a signaling molecule. Med. Res. Rev. 40, 1335–1351. 10.1002/med.21660 PubMed DOI
Vreman H. J., Wong R. J., Sanesi C. A., Dennery P. A., Stevenson D. K. (1998). Simultaneous production of carbon monoxide and thiobarbituric acid reactive substances in rat tissue preparations by an iron-ascorbate system. Can J. Physiol. Pharmacol. 76, 1057–1065. 10.1139/cjpp-76-12-1057 PubMed DOI
Wagner K. H., Wallner M., Molzer C., Gazzin S., Bulmer A. C., Tiribelli C., et al. (2015). Looking to the horizon: the role of bilirubin in the development and prevention of age-related chronic diseases. Clin. Sci. 129, 1–25. 10.1042/CS20140566 PubMed DOI
Watchko J. F., Tiribelli C. (2013). Bilirubin-induced neurologic damage--mechanisms and management approaches. N. Engl. J. Med. 369, 2021–2030. 10.1056/NEJMra1308124 PubMed DOI
Williams N. C., O'Neill L. a. J. (2018). A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front. Immunol. 9, 141. 10.3389/fimmu.2018.00141 PubMed DOI PMC
Xie Q. W., Kashiwabara Y., Nathan C. (1994). Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J. Biol. Chem. 269, 4705–4708. 10.1016/s0021-9258(17)37600-7 PubMed DOI
Xiong T., Qu Y., Cambier S., Mu D. (2011). The side effects of phototherapy for neonatal jaundice: what do we know? What should we do?. Eur. J. Pediatr. 170, 1247–1255. 10.1007/s00431-011-1454-1 PubMed DOI
Yamaguchi T., Shioji I., Sugimoto A., Komoda Y., Nakajima H. (1994). Chemical structure of a new family of bile pigments from human urine. J. Biochem. 116, 298–303. 10.1093/oxfordjournals.jbchem.a124523 PubMed DOI
Zelenka J., Dvorak A., Alan L., Zadinova M., Haluzik M., Vitek L. (2016). Hyperbilirubinemia protects against aging-associated inflammation and metabolic deterioration. Oxid. Med. Cell Longev. 2016, 6190609. 10.1155/2016/6190609 PubMed DOI PMC
Zelenka J., Muchova L., Zelenkova M., Vanova K., Vreman H. J., Wong R. J., et al. (2012). Intracellular accumulation of bilirubin as a defense mechanism against increased oxidative stress. Biochimie 94, 1821–1827. 10.1016/j.biochi.2012.04.0210.1016/j.biochi.2012.04.026 PubMed DOI
Zielinski L. P., Smith A. C., Smith A. G., Robinson A. J. (2016). Metabolic flexibility of mitochondrial respiratory chain disorders predicted by computer modelling. Mitochondrion 31, 45–55. 10.1016/j.mito.2016.09.003 PubMed DOI PMC
Zucker S. D., Vogel M. E., Kindel T. L., Smith D. L., Idelman G., Avissar U., et al. (2015). Bilirubin prevents acute DSS-induced colitis by inhibiting leukocyte infiltration and suppressing upregulation of inducible nitric oxide synthase. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G841–G854. 10.1152/ajpgi.00149.2014 PubMed DOI PMC
Mechanisms of Cardiovascular Changes of Phototherapy in Newborns with Hyperbilirubinemia
Cardiovascular changes during phototherapy in newborns