L-Lactate Protects Skin Fibroblasts against Aging-Associated Mitochondrial Dysfunction via Mitohormesis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26171114
PubMed Central
PMC4478408
DOI
10.1155/2015/351698
Knihovny.cz E-zdroje
- MeSH
- fibroblasty cytologie účinky léků metabolismus MeSH
- fosforylace účinky léků MeSH
- glutathion metabolismus MeSH
- játra metabolismus MeSH
- konfokální mikroskopie MeSH
- kultivované buňky MeSH
- kyselina mléčná farmakologie MeSH
- mitochondriální DNA metabolismus MeSH
- mitochondrie účinky léků genetika metabolismus MeSH
- myši MeSH
- oxidační stres účinky léků MeSH
- peroxid vodíku metabolismus MeSH
- potkani Wistar MeSH
- PPAR gama genetika metabolismus MeSH
- PPARGC1A MeSH
- proteinkinasy aktivované AMP metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- stárnutí * MeSH
- TOR serin-threoninkinasy metabolismus MeSH
- transkripční faktory genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glutathion MeSH
- kyselina mléčná MeSH
- mitochondriální DNA MeSH
- peroxid vodíku MeSH
- PPAR gama MeSH
- Ppargc1a protein, rat MeSH Prohlížeč
- PPARGC1A MeSH
- proteinkinasy aktivované AMP MeSH
- reaktivní formy kyslíku MeSH
- TOR serin-threoninkinasy MeSH
- transkripční faktory MeSH
A moderate elevation of reactive oxygen species (ROS) production and a mild inhibition of mitochondrial respiratory chain have been associated with a health promotion and a lifespan extension in several animal models of aging. Here, we tested whether this phenomenon called mitohormesis could be mediated by L-lactate. The treatment with 5 mM L-lactate significantly increased H2O2 production and slightly inhibited the respiration in cultured skin fibroblasts and in isolated mitochondria. The L-lactate exposure was associated with oxidation of intracellular glutathione, phosphorylation of 5'AMP-activated protein kinase (AMPK), and induction of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) transcription. A replicative aging of fibroblasts (L0) with a constant (LC), or intermittent 5 mM L-lactate (LI) in media showed that the high-passage LI fibroblasts have higher respiration, lower H2O2 release, and lower secretion of L-lactate compared to L0 and LC. This protection against mitochondrial dysfunction in LI cells was associated with lower activity of mechanistic target of rapamycin complex 1 (mTORC1), less signs of cellular senescence, and increased autophagy compared to L0 and LC. In conclusion, we demonstrated that intermittent but not constant exposure to L-lactate triggers mitohormesis, prevents aging-associated mitochondrial dysfunction, and improves other markers of aging.
Zobrazit více v PubMed
U. S. National Institute of Aging and World Health Organization. Global Health and Aging. Geneva, Switzerland: World Health Organization; 2011.
Harman D. The biologic clock: the mitochondria? Journal of the American Geriatrics Society. 1972;20(4):145–147. doi: 10.1111/j.1532-5415.1972.tb00787.x. PubMed DOI
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxidants & Redox Signaling. 2013;19(12):1420–1445. doi: 10.1089/ars.2012.5148. PubMed DOI PMC
Ristow M. Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nature Medicine. 2014;20(7):709–711. doi: 10.1038/nm.3624. PubMed DOI
Kawagishi H., Finkel T. Unraveling the truth about antioxidants: ROS and disease: finding the right balance. Nature Medicine. 2014;20(7):711–713. doi: 10.1038/nm.3625. PubMed DOI
Yan L. J. Positive oxidative stress in aging and aging-related disease tolerance. Redox Biology. 2014;2(1):165–169. doi: 10.1016/j.redox.2014.01.002. PubMed DOI PMC
Yun J., Finkel T. Mitohormesis. Cell Metabolism. 2014;19(5):757–766. doi: 10.1016/j.cmet.2014.01.011. PubMed DOI PMC
Ristow M., Schmeisser K. Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS) Dose-Response. 2014;12(2):288–341. doi: 10.2203/dose-response.13-035.ristow. PubMed DOI PMC
Hwang A. B., Ryu E. A., Artan M., et al. Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans . Proceedings of the National Academy of Sciences of the United States of America. 2014;111(42):E4458–E4467. doi: 10.1073/pnas.1411199111. PubMed DOI PMC
Wang D., Malo D., Hekimi S. Elevated mitochondrial reactive oxygen species generation affects the immune response via hypoxia-inducible factor-1alpha in long-lived Mclk1 +/– mouse mutants. Journal of Immunology. 2010;184(2):582–590. doi: 10.4049/jimmunol.0902352. PubMed DOI
Ristow M., Zarse K., Oberbach A., et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(21):8665–8670. doi: 10.1073/pnas.0903485106. PubMed DOI PMC
Liu C., Wu J., Zhu J., et al. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. The Journal of Biological Chemistry. 2009;284(5):2811–2822. doi: 10.1074/jbc.m806409200. PubMed DOI
Roland C. L., Arumugam T., Deng D., et al. Cell surface lactate receptor GPR81 is crucial for cancer cell survival. Cancer Research. 2014;74(18):5301–5310. doi: 10.1158/0008-5472.can-14-0319. PubMed DOI PMC
Hoque R., Farooq A., Ghani A., Gorelick F., Mehal W. Z. Lactate reduces liver and pancreatic injury in toll-like receptor- and inflammasome-mediated inflammation via gpr81-mediated suppression of innate immunity. Gastroenterology. 2014;146(7):1763–1774. doi: 10.1053/j.gastro.2014.03.014. PubMed DOI PMC
Tang F., Lane S., Korsak A., et al. Lactate-mediated glia-neuronal signalling in the mammalian brain. Nature Communications. 2014;5, article 3284 doi: 10.1038/ncomms4284. PubMed DOI PMC
Lauritzen K. H., Morland C., Puchades M., et al. Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cerebral Cortex. 2014;24(10):2784–2795. doi: 10.1093/cercor/bht136. PubMed DOI
Hashimoto T., Hussien R., Oommen S., Gohil K., Brooks G. A. Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. The FASEB Journal. 2007;21(10):2602–2612. doi: 10.1096/fj.07-8174com. PubMed DOI
Gambini J., Gomez-Cabrera M. C., Borras C., et al. Free [NADH]/[NAD+] regulates sirtuin expression. Archives of Biochemistry and Biophysics. 2011;512(1):24–29. doi: 10.1016/j.abb.2011.04.020. PubMed DOI
Lezi E., Lu J., Selfridge J. E., Burns J. M., Swerdlow R. H. Lactate administration reproduces specific brain and liver exercise-related changes. Journal of Neurochemistry. 2013;127(1):91–100. doi: 10.1111/jnc.12394. PubMed DOI PMC
Coco M., Caggia S., Musumeci G., et al. Sodium L-lactate differently affects brain-derived neurothrophic factor, inducible nitric oxide synthase, and heat shock protein 70 kDa production in human astrocytes and SH-SY5Y cultures. Journal of Neuroscience Research. 2013;91(2):313–320. doi: 10.1002/jnr.23154. PubMed DOI
Schiffer T., Schulte S., Sperlich B., Achtzehn S., Fricke H., Strüder H. K. Lactate infusion at rest increases BDNF blood concentration in humans. Neuroscience Letters. 2011;488(3):234–237. doi: 10.1016/j.neulet.2010.11.035. PubMed DOI
Sonveaux P., Copetti T., De Saedeleer C. J., et al. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS ONE. 2012;7(3) doi: 10.1371/journal.pone.0033418.e33418 PubMed DOI PMC
Samuvel D. J., Sundararaj K. P., Nareika A., Lopes-Virella M. F., Huang Y. Lactate boosts TLR4 signaling and NF-kappaB pathway-mediated gene transcription in macrophages via monocarboxylate transporters and MD-2 up-regulation. Journal of Immunology. 2009;182(4):2476–2484. doi: 10.4049/jimmunol.0802059. PubMed DOI PMC
LeBleu V. S., O’Connell J. T., Herrera K. N. G., et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nature Cell Biology. 2014;16(10):992–1003. doi: 10.1038/ncb3039. PubMed DOI PMC
Debacq-Chainiaux F., Erusalimsky J. D., Campisi J., Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nature Protocols. 2009;4(12):1798–1806. doi: 10.1038/nprot.2009.191. PubMed DOI
Koníčková R., Vaňková K., Vaníková J., et al. Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Annals of Hepatology. 2014;13(2):273–283. PubMed
Guo W., Jiang L., Bhasin S., Khan S. M., Swerdlow R. H. DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination. Mitochondrion. 2009;9(4):261–265. doi: 10.1016/j.mito.2009.03.003. PubMed DOI PMC
Alán L., Špaček T., Zelenka J., et al. Assessment of mitochondrial DNA as an indicator of islet quality: an example in Goto Kakizaki rats. Transplantation Proceedings. 2011;43(9):3281–3284. doi: 10.1016/j.transproceed.2011.09.055. PubMed DOI
Votyakova T. V., Reynolds I. J. ΔΨm-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. Journal of Neurochemistry. 2001;79(2):266–277. doi: 10.1046/j.1471-4159.2001.00548.x. PubMed DOI
Emhoff C.-A. W., Messonnier L. A., Horning M. A., Fattor J. A., Carlson T. J., Brooks G. A. Direct and indirect lactate oxidation in trained and untrained men. Journal of Applied Physiology. 2013;115(6):829–838. doi: 10.1152/japplphysiol.00538.2013. PubMed DOI PMC
Lemons J. M. S., Feng X.-J., Bennett B. D., et al. Quiescent fibroblasts exhibit high metabolic activity. PLoS Biology. 2010;8(10) doi: 10.1371/journal.pbio.1000514.e1000514 PubMed DOI PMC
Adeva M., González-Lucán M., Seco M., Donapetry C. Enzymes involved in L-lactate metabolism in humans. Mitochondrion. 2013;13(6):615–629. doi: 10.1016/j.mito.2013.08.011. PubMed DOI
Mullen A., Hu Z., Shi X., et al. Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Reports. 2014;7(5):1679–1690. doi: 10.1016/j.celrep.2014.04.037. PubMed DOI PMC
de Bari L., Valenti D., Atlante A., Passarella S. L-Lactate generates hydrogen peroxide in purified rat liver mitochondria due to the putative L-lactate oxidase localized in the intermembrane space. FEBS Letters. 2010;584(11):2285–2290. doi: 10.1016/j.febslet.2010.03.038. PubMed DOI
Owusu-Ansah E., Song W., Perrimon N. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell. 2013;155(3):699–712. doi: 10.1016/j.cell.2013.09.021. PubMed DOI PMC
Jäer S., Handschin C., St-Pierre J., Spiegelman B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α . Proceedings of the National Academy of Sciences of the United States of America. 2007;104(29):12017–12022. doi: 10.1073/pnas.0705070104. PubMed DOI PMC
Wenz T., Rossi S. G., Rotundo R. L., Spiegelman B. M., Moraes C. T. Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(48):20405–20410. doi: 10.1073/pnas.0911570106. PubMed DOI PMC
Handschin C., Spiegelman B. M. The role of exercise and PGC1α in inflammation and chronic disease. Nature. 2008;454(7203):463–469. doi: 10.1038/nature07206. PubMed DOI PMC
Lagouge M., Larsson N. G. The role of mitochondrial DNA mutations and free radicals in disease and ageing. Journal of Internal Medicine. 2013;273(6):529–543. doi: 10.1111/joim.12055. PubMed DOI PMC
Ikeda Y., Sciarretta S., Nagarajan N., et al. New insights into the role of mitochondrial dynamics and autophagy during oxidative stress and aging in the heart. Oxidative Medicine and Cellular Longevity. 2014;2014:13. doi: 10.1155/2014/210934.210934 PubMed DOI PMC
Barbieri E., Agostini D., Polidori E., et al. The pleiotropic effect of physical exercise on mitochondrial dynamics in aging skeletal muscle. Oxidative Medicine and Cellular Longevity. 2015;2015:15. doi: 10.1155/2015/917085.917085 PubMed DOI PMC
Rattan S. I. S. Targeting the age-related occurrence, removal, and accumulation of molecular damage by hormesis. Annals of the New York Academy of Sciences. 2010;1197:28–32. doi: 10.1111/j.1749-6632.2010.05193.x. PubMed DOI
Zoncu R., Efeyan A., Sabatini D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Reviews Molecular Cell Biology. 2011;12(1):21–35. doi: 10.1038/nrm3025. PubMed DOI PMC
Sarbassov D. D., Sabatini D. M. Redox regulation of the nutrient-sensitive raptor-mTOR pathway and complex. The Journal of Biological Chemistry. 2005;280(47):39505–39509. doi: 10.1074/jbc.m506096200. PubMed DOI
Campisi J. Aging, cellular senescence, and cancer. Annual Review of Physiology. 2013;75:685–705. doi: 10.1146/annurev-physiol-030212-183653. PubMed DOI PMC
Wu J. J., Quijano C., Chen E., et al. Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging. 2009;1(4):425–437. PubMed PMC
Klionsky D. J., Abdalla F. C., Abeliovich H., et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8(4):445–544. PubMed PMC
Postbiotics, Metabolic Signaling, and Cancer
Hyperbilirubinemia Protects against Aging-Associated Inflammation and Metabolic Deterioration