Inhibition of Mitochondrial Metabolism Leads to Selective Eradication of Cells Adapted to Acidic Microenvironment
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-11688S
Czech Science Foundation
PubMed
34639130
PubMed Central
PMC8509312
DOI
10.3390/ijms221910790
PII: ijms221910790
Knihovny.cz E-zdroje
- Klíčová slova
- CPI-613, acidosis, bioenergetics, cancer, lactate, mitochondria, photodynamic therapy, tetracycline, therapy, tumor microenvironment,
- MeSH
- acidóza patofyziologie MeSH
- citrátový cyklus účinky léků MeSH
- energetický metabolismus MeSH
- fyziologická adaptace MeSH
- glukosa metabolismus MeSH
- glykolýza MeSH
- kapryláty farmakologie MeSH
- koncentrace vodíkových iontů MeSH
- kyselina mléčná metabolismus MeSH
- lidé MeSH
- mitochondrie účinky léků metabolismus patologie MeSH
- nádorové buňky kultivované MeSH
- nádorové mikroprostředí * MeSH
- nádory farmakoterapie metabolismus patologie MeSH
- oxidační stres MeSH
- protinádorové látky farmakologie MeSH
- sulfidy farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- devimistat MeSH Prohlížeč
- glukosa MeSH
- kapryláty MeSH
- kyselina mléčná MeSH
- protinádorové látky MeSH
- sulfidy MeSH
Metabolic transformation of cancer cells leads to the accumulation of lactate and significant acidification in the tumor microenvironment. Both lactate and acidosis have a well-documented impact on cancer progression and negative patient prognosis. Here, we report that cancer cells adapted to acidosis are significantly more sensitive to oxidative damage induced by hydrogen peroxide, high-dose ascorbate, and photodynamic therapy. Higher lactate concentrations abrogate the sensitization. Mechanistically, acidosis leads to a drop in antioxidant capacity caused by a compromised supply of nicotinamide adenine dinucleotide phosphate (NADPH) derived from glucose metabolism. However, lactate metabolism in the Krebs cycle restores NADPH supply and antioxidant capacity. CPI-613 (devimistat), an anticancer drug candidate, selectively eradicates the cells adapted to acidosis through inhibition of the Krebs cycle and induction of oxidative stress while completely abrogating the protective effect of lactate. Simultaneous cell treatment with tetracycline, an inhibitor of the mitochondrial proteosynthesis, further enhances the cytotoxic effect of CPI-613 under acidosis and in tumor spheroids. While there have been numerous attempts to treat cancer by neutralizing the pH of the tumor microenvironment, we alternatively suggest considering tumor acidosis as the Achilles' heel of cancer as it enables selective therapeutic induction of lethal oxidative stress.
Zobrazit více v PubMed
Liberti M.V., Locasale J.W. The warburg effect: How does it benefit cancer cells? Trends Biochem. Sci. 2016;41:211–218. doi: 10.1016/j.tibs.2015.12.001. PubMed DOI PMC
Becker H.M. Carbonic anhydrase ix and acid transport in cancer. Br. J. Cancer. 2020;122:157–167. doi: 10.1038/s41416-019-0642-z. PubMed DOI PMC
Martinez-Outschoorn U.E., Peiris-Pagés M., Pestell R.G., Sotgia F., Lisanti M.P. Cancer metabolism: A therapeutic perspective. Nat. Rev. Clin. Oncol. 2017;14:11–31. doi: 10.1038/nrclinonc.2016.60. PubMed DOI
Roland C.L., Arumugam T., Deng D., Liu S.H., Philip B., Gomez S., Burns W.R., Ramachandran V., Wang H., Cruz-Monserrate Z., et al. Cell surface lactate receptor gpr81 is crucial for cancer cell survival. Cancer Res. 2014;74:5301–5310. doi: 10.1158/0008-5472.CAN-14-0319. PubMed DOI PMC
LeBleu V.S., O’Connell J.T., Gonzalez Herrera K.N., Wikman H., Pantel K., Haigis M.C., de Carvalho F.M., Damascena A., Domingos Chinen L.T., Rocha R.M., et al. Pgc-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 2014;16:992–1003. doi: 10.1038/ncb3039. PubMed DOI PMC
Blatt S., Voelxen N., Sagheb K., Pabst A.M., Walenta S., Schroeder T., Mueller-Klieser W., Ziebart T. Lactate as a predictive marker for tumor recurrence in patients with head and neck squamous cell carcinoma (hnscc) post radiation: A prospective study over 15 years. Clin. Oral Investig. 2016;20:2097–2104. doi: 10.1007/s00784-015-1699-6. PubMed DOI
Walenta S., Wetterling M., Lehrke M., Schwickert G., Sundfør K., Rofstad E.K., Mueller-Klieser W. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 2000;60:916–921. PubMed
Thews O., Riemann A. Tumor ph and metastasis: A malignant process beyond hypoxia. Cancer Metastasis Rev. 2019;38:113–129. doi: 10.1007/s10555-018-09777-y. PubMed DOI
Robey I.F., Baggett B.K., Kirkpatrick N.D., Roe D.J., Dosescu J., Sloane B.F., Hashim A.I., Morse D.L., Raghunand N., Gatenby R.A., et al. Bicarbonate increases tumor ph and inhibits spontaneous metastases. J. Cancer Res. 2009;69:2260–2268. doi: 10.1158/0008-5472.CAN-07-5575. PubMed DOI PMC
Gottfried E., Kunz-Schughart L.A., Ebner S., Mueller-Klieser W., Hoves S., Andreesen R., Mackensen A., Kreutz M. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood. 2006;107:2013–2021. doi: 10.1182/blood-2005-05-1795. PubMed DOI
Colegio O.R., Chu N.Q., Szabo A.L., Chu T., Rhebergen A.M., Jairam V., Cyrus N., Brokowski C.E., Eisenbarth S.C., Phillips G.M., et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 2014;513:559–563. doi: 10.1038/nature13490. PubMed DOI PMC
Lee D.C., Sohn H.A., Park Z.Y., Oh S., Kang Y.K., Lee K.M., Kang M., Jang Y.J., Yang S.J., Hong Y.K., et al. A lactate-induced response to hypoxia. Cell. 2015;161:595–609. doi: 10.1016/j.cell.2015.03.011. PubMed DOI
McDonald P.C., Chia S., Bedard P.L., Chu Q., Lyle M., Tang L., Singh M., Zhang Z., Supuran C.T., Renouf D.J., et al. A phase 1 study of slc-0111, a novel inhibitor of carbonic anhydrase ix, in patients with advanced solid tumors. Am. J. Clin. Oncol. 2020;43:484–490. doi: 10.1097/COC.0000000000000691. PubMed DOI PMC
Lou Y., McDonald P.C., Oloumi A., Chia S., Ostlund C., Ahmadi A., Kyle A., Auf dem Keller U., Leung S., Huntsman D., et al. Targeting tumor hypoxia: Suppression of breast tumor growth and metastasis by novel carbonic anhydrase ix inhibitors. Cancer Res. 2011;71:3364–3376. doi: 10.1158/0008-5472.CAN-10-4261. PubMed DOI
Le A., Cooper C.R., Gouw A.M., Dinavahi R., Maitra A., Deck L.M., Royer R.E., Vander Jagt D.L., Semenza G.L., Dang C.V. Inhibition of lactate dehydrogenase a induces oxidative stress and inhibits tumor progression. Proc. Natl. Acad. Sci. USA. 2010;107:2037–2042. doi: 10.1073/pnas.0914433107. PubMed DOI PMC
Xie H., Hanai J., Ren J.G., Kats L., Burgess K., Bhargava P., Signoretti S., Billiard J., Duffy K.J., Grant A., et al. Targeting lactate dehydrogenase--a inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells. Cell Metab. 2014;19:795–809. doi: 10.1016/j.cmet.2014.03.003. PubMed DOI PMC
Doherty J.R., Cleveland J.L. Targeting lactate metabolism for cancer therapeutics. J. Clin. Investig. 2013;123:3685–3692. doi: 10.1172/JCI69741. PubMed DOI PMC
Bola B.M., Chadwick A.L., Michopoulos F., Blount K.G., Telfer B.A., Williams K.J., Smith P.D., Critchlow S.E., Stratford I.J. Inhibition of monocarboxylate transporter-1 (mct1) by azd3965 enhances radiosensitivity by reducing lactate transport. Mol. Cancer Ther. 2014;13:2805–2816. doi: 10.1158/1535-7163.MCT-13-1091. PubMed DOI PMC
Kuo T.C., Huang K.Y., Yang S.C., Wu S., Chung W.C., Chang Y.L., Hong T.M., Wang S.P., Chen H.Y., Hsiao T.H., et al. Monocarboxylate transporter 4 is a therapeutic target in non-small cell lung cancer with aerobic glycolysis preference. Mol. Ther. Oncolytics. 2020;18:189–201. doi: 10.1016/j.omto.2020.06.012. PubMed DOI PMC
Gorrini C., Harris I.S., Mak T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013;12:931–947. doi: 10.1038/nrd4002. PubMed DOI
Zelenka J., Koncošová M., Ruml T. Targeting of stress response pathways in the prevention and treatment of cancer. Biotechnol. Adv. 2018;36:583–602. doi: 10.1016/j.biotechadv.2018.01.007. PubMed DOI
Piskounova E., Agathocleous M., Murphy M.M., Hu Z., Huddlestun S.E., Zhao Z., Leitch A.M., Johnson T.M., DeBerardinis R.J., Morrison S.J. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 2015;527:186–191. doi: 10.1038/nature15726. PubMed DOI PMC
Sayin V.I., Ibrahim M.X., Larsson E., Nilsson J.A., Lindahl P., Bergo M.O. Antioxidants accelerate lung cancer progression in mice. Sci. Transl. Med. 2014;6:221ra215. doi: 10.1126/scitranslmed.3007653. PubMed DOI
Lopes-Coelho F., Gouveia-Fernandes S., Gonçalves L.G., Nunes C., Faustino I., Silva F., Félix A., Pereira S.A., Serpa J. Hnf1β drives glutathione (gsh) synthesis underlying intrinsic carboplatin resistance of ovarian clear cell carcinoma (occc) Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2016;37:4813–4829. doi: 10.1007/s13277-015-4290-5. PubMed DOI
Hammad A., Namani A., Elshaer M., Wang X.J., Tang X. “Nrf2 addiction” in lung cancer cells and its impact on cancer therapy. Cancer Lett. 2019;467:40–49. doi: 10.1016/j.canlet.2019.09.016. PubMed DOI
Zelenka J., Dvořák A., Alán L. L-lactate protects skin fibroblasts against aging-associated mitochondrial dysfunction via mitohormesis. Oxidative Med. Cell. Longev. 2015;2015:351698. doi: 10.1155/2015/351698. PubMed DOI PMC
Zhao M., Liu Q., Gong Y., Xu X., Zhang C., Liu X., Zhang C., Guo H., Zhang X., Gong Y., et al. Gsh-dependent antioxidant defense contributes to the acclimation of colon cancer cells to acidic microenvironment. Cell Cycle. 2016;15:1125–1133. doi: 10.1080/15384101.2016.1158374. PubMed DOI PMC
Lamonte G., Tang X., Chen J.L., Wu J., Ding C.K., Keenan M.M., Sangokoya C., Kung H.N., Ilkayeva O., Boros L.G., et al. Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress. Cancer Metab. 2013;1:23. doi: 10.1186/2049-3002-1-23. PubMed DOI PMC
Gao J., Guo Z., Cheng J., Sun B., Yang J., Li H., Wu S., Dong F., Yan X. Differential metabolic responses in breast cancer cell lines to acidosis and lactic acidosis revealed by stable isotope assisted metabolomics. Sci. Rep. 2020;10:21967. doi: 10.1038/s41598-020-78955-2. PubMed DOI PMC
Hashimoto T., Hussien R., Oommen S., Gohil K., Brooks G.A. Lactate sensitive transcription factor network in l6 cells: Activation of mct1 and mitochondrial biogenesis. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2007;21:2602–2612. doi: 10.1096/fj.07-8174com. PubMed DOI
Tauffenberger A., Fiumelli H., Almustafa S., Magistretti P.J. Lactate and pyruvate promote oxidative stress resistance through hormetic ros signaling. Cell Death Dis. 2019;10:653. doi: 10.1038/s41419-019-1877-6. PubMed DOI PMC
Abrego J., Gunda V., Vernucci E., Shukla S.K., King R.J., Dasgupta A., Goode G., Murthy D., Yu F., Singh P.K. Got1-mediated anaplerotic glutamine metabolism regulates chronic acidosis stress in pancreatic cancer cells. Cancer Lett. 2017;400:37–46. doi: 10.1016/j.canlet.2017.04.029. PubMed DOI PMC
Porporato P.E., Payen V.L., De Saedeleer C.J., Préat V., Thissen J.P., Feron O., Sonveaux P. Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. Angiogenesis. 2012;15:581–592. doi: 10.1007/s10456-012-9282-0. PubMed DOI
Yang L., Hu X., Mo Y.Y. Acidosis promotes tumorigenesis by activating akt/nf-κb signaling. Cancer Metastasis Rev. 2019;38:179–188. doi: 10.1007/s10555-019-09785-6. PubMed DOI
Schoenfeld J.D., Alexander M.S., Waldron T.J., Sibenaller Z.A., Spitz D.R., Buettner G.R., Allen B.G., Cullen J.J. Pharmacological ascorbate as a means of sensitizing cancer cells to radio-chemotherapy while protecting normal tissue. Semin. Radiat. Oncol. 2019;29:25–32. doi: 10.1016/j.semradonc.2018.10.006. PubMed DOI PMC
Ying W. Nad+/nadh and nadp+/nadph in cellular functions and cell death: Regulation and biological consequences. Antioxid. Redox Signal. 2008;10:179–206. doi: 10.1089/ars.2007.1672. PubMed DOI
Chen X., Zhong Z., Xu Z., Chen L., Wang Y. 2′,7′-dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: Forty years of application and controversy. Free Radic. Res. 2010;44:587–604. doi: 10.3109/10715761003709802. PubMed DOI
Corbet C., Bastien E., Santiago de Jesus J.P., Dierge E., Martherus R., Vander Linden C., Doix B., Degavre C., Guilbaud C., Petit L., et al. Tgfβ2-induced formation of lipid droplets supports acidosis-driven emt and the metastatic spreading of cancer cells. Nat. Commun. 2020;11:454. doi: 10.1038/s41467-019-14262-3. PubMed DOI PMC
Corbet C., Pinto A., Martherus R., Santiago de Jesus J.P., Polet F., Feron O. Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation. Cell Metab. 2016;24:311–323. doi: 10.1016/j.cmet.2016.07.003. PubMed DOI
Pérez-Escuredo J., Dadhich R.K., Dhup S., Cacace A., Van Hée V.F., De Saedeleer C.J., Sboarina M., Rodriguez F., Fontenille M.J., Brisson L., et al. Lactate promotes glutamine uptake and metabolism in oxidative cancer cells. Cell Cycle. 2016;15:72–83. doi: 10.1080/15384101.2015.1120930. PubMed DOI PMC
Lamb R., Ozsvari B., Lisanti C.L., Tanowitz H.B., Howell A., Martinez-Outschoorn U.E., Sotgia F., Lisanti M.P. Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: Treating cancer like an infectious disease. Oncotarget. 2015;6:4569–4584. doi: 10.18632/oncotarget.3174. PubMed DOI PMC
Alistar A., Morris B.B., Desnoyer R., Klepin H.D., Hosseinzadeh K., Clark C., Cameron A., Leyendecker J., D’Agostino R., Jr., Topaloglu U., et al. Safety and tolerability of the first-in-class agent cpi-613 in combination with modified folfirinox in patients with metastatic pancreatic cancer: A single-centre, open-label, dose-escalation, phase 1 trial. Lancet. Oncol. 2017;18:770–778. doi: 10.1016/S1470-2045(17)30314-5. PubMed DOI PMC
Bellio C., DiGloria C., Spriggs D.R., Foster R., Growdon W.B., Rueda B.R. The metabolic inhibitor cpi-613 negates treatment enrichment of ovarian cancer stem cells. Cancers. 2019;11:1678. doi: 10.3390/cancers11111678. PubMed DOI PMC
Vasan K., Werner M., Chandel N.S. Mitochondrial metabolism as a target for cancer therapy. Cell Metab. 2020;32:341–352. doi: 10.1016/j.cmet.2020.06.019. PubMed DOI PMC
De Francesco E.M., Sotgia F., Lisanti M.P. Cancer stem cells (cscs): Metabolic strategies for their identification and eradication. Biochem. J. 2018;475:1611–1634. doi: 10.1042/BCJ20170164. PubMed DOI PMC
Hynek J., Koncošová M., Zelenka J., KříŽová I., Ruml T., Kubát P., Demel J., Lang K. Phosphinatophenylporphyrins tailored for high photodynamic efficacy. Org. Biomol. Chem. 2018;16:7274–7281. doi: 10.1039/C8OB01984C. PubMed DOI
Kirakci K., Zelenka J., Rumlová M., Cvačka J., Ruml T., Lang K. Cationic octahedral molybdenum cluster complexes functionalized with mitochondria-targeting ligands: Photodynamic anticancer and antibacterial activities. Biomater. Sci. 2019;7:1386–1392. doi: 10.1039/C8BM01564C. PubMed DOI
Darmostuk M., Jurášek M., Lengyel K., Zelenka J., Rumlová M., Drašar P., Ruml T. Conjugation of chlorins with spermine enhances phototoxicity to cancer cells in vitro. J. Photochem. Photobiol. BBiol. 2017;168:175–184. doi: 10.1016/j.jphotobiol.2017.02.012. PubMed DOI