Postbiotics, Metabolic Signaling, and Cancer
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
21-11688S
Grantová Agentura České Republiky
PubMed
33799580
PubMed Central
PMC8000401
DOI
10.3390/molecules26061528
PII: molecules26061528
Knihovny.cz E-zdroje
- Klíčová slova
- GPR81, SCFA, colorectal cancer, functional food, intestinal metabolome, microbiome,
- MeSH
- beta-glukany farmakologie MeSH
- butyráty farmakologie MeSH
- kyselina mléčná farmakologie MeSH
- kyseliny mastné těkavé metabolismus farmakologie MeSH
- lidé MeSH
- metabolom MeSH
- nádory dietoterapie metabolismus MeSH
- potravní doplňky mikrobiologie MeSH
- prebiotika mikrobiologie MeSH
- probiotika metabolismus farmakologie MeSH
- střevní mikroflóra účinky léků MeSH
- sulfan farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- beta-glukany MeSH
- butyráty MeSH
- kyselina mléčná MeSH
- kyseliny mastné těkavé MeSH
- prebiotika MeSH
- sulfan MeSH
Postbiotics are health-promoting microbial metabolites delivered as a functional food or a food supplement. They either directly influence signaling pathways of the body or indirectly manipulate metabolism and the composition of intestinal microflora. Cancer is the second leading cause of death worldwide and even though the prognosis of patients is improving, it is still poor in the substantial part of the cases. The preventable nature of cancer and the importance of a complex multi-level approach in anticancer therapy motivate the search for novel avenues of establishing the anticancer environment in the human body. This review summarizes the principal findings demonstrating the usefulness of both natural and synthetic sources of postbotics in the prevention and therapy of cancer. Specifically, the effects of crude cell-free supernatants, the short-chain fatty acid butyrate, lactic acid, hydrogen sulfide, and β-glucans are described. Contradictory roles of postbiotics in healthy and tumor tissues are highlighted. In conclusion, the application of postbiotics is an efficient complementary strategy to combat cancer.
Zobrazit více v PubMed
Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821. PubMed DOI PMC
Bäckhed F., Ley R.E., Sonnenburg J.L., Peterson D.A., Gordon J.I. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–1920. doi: 10.1126/science.1104816. PubMed DOI
Karasov W.H., Martínez del Rio C., Caviedes-Vidal E. Ecological physiology of diet and digestive systems. Annu. Rev. Physiol. 2011;73:69–93. doi: 10.1146/annurev-physiol-012110-142152. PubMed DOI
Claus S.P., Guillou H., Ellero-Simatos S. The gut microbiota: A major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes. 2016;2:16003. doi: 10.1038/npjbiofilms.2016.3. PubMed DOI PMC
LeBlanc J.G., Milani C., de Giori G.S., Sesma F., van Sinderen D., Ventura M. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr. Opin. Biotechnol. 2013;24:160–168. doi: 10.1016/j.copbio.2012.08.005. PubMed DOI
Hooper L.V., Littman D.R., Macpherson A.J. Interactions between the microbiota and the immune system. Science. 2012;336:1268–1273. doi: 10.1126/science.1223490. PubMed DOI PMC
Żółkiewicz J., Marzec A., Ruszczyński M., Feleszko W. Postbiotics-A Step Beyond Pre- and Probiotics. Nutrients. 2020;12:2189. doi: 10.3390/nu12082189. PubMed DOI PMC
Wikoff W.R., Anfora A.T., Liu J., Schultz P.G., Lesley S.A., Peters E.C., Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA. 2009;106:3698–3703. doi: 10.1073/pnas.0812874106. PubMed DOI PMC
Sartor R.B. Gut microbiota: Diet promotes dysbiosis and colitis in susceptible hosts. Nat. Rev. Gastroenterol. Hepatol. 2012;9:561–562. doi: 10.1038/nrgastro.2012.157. PubMed DOI
Tlaskalová-Hogenová H., Stěpánková R., Kozáková H., Hudcovic T., Vannucci L., Tučková L., Rossmann P., Hrnčíř T., Kverka M., Zákostelská Z., et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: Contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol. 2011;8:110–120. doi: 10.1038/cmi.2010.67. PubMed DOI PMC
Tsilingiri K., Barbosa T., Penna G., Caprioli F., Sonzogni A., Viale G., Rescigno M. Probiotic and postbiotic activity in health and disease: Comparison on a novel polarised ex-vivo organ culture model. Gut. 2012;61:1007–1015. doi: 10.1136/gutjnl-2011-300971. PubMed DOI
Escamilla J., Lane M., Maitin V. Cell-Free Supernatants from Probiotic Lactobacillus casei and Lactobacillus rhamnosus GG Decrease Colon Cancer Cell Invasion In Vitro. Nutr. Cancer. 2012;64:871–878. doi: 10.1080/01635581.2012.700758. PubMed DOI
Sauer J., Richter K.K., Pool-Zobel B.L. Physiological concentrations of butyrate favorably modulate genes of oxidative and metabolic stress in primary human colon cells. J. Nutr. Biochem. 2007;18:736–745. doi: 10.1016/j.jnutbio.2006.12.012. PubMed DOI
Abrahamse S.L., Pool-Zobel B.L., Rechkemmer G. Potential of short chain fatty acids to modulate the induction of DNA damage and changes in the intracellular calcium concentration by oxidative stress in isolated rat distal colon cells. Carcinogenesis. 1999;20:629–634. doi: 10.1093/carcin/20.4.629. PubMed DOI
Hague A., Paraskeva C. The short-chain fatty acid butyrate induces apoptosis in colorectal tumour cell lines. Eur. J. Cancer Prev. 1995;4:359–364. doi: 10.1097/00008469-199510000-00005. PubMed DOI
Hague A., Elder D.J., Hicks D.J., Paraskeva C. Apoptosis in colorectal tumour cells: Induction by the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate. Int. J. Cancer. 1995;60:400–406. doi: 10.1002/ijc.2910600322. PubMed DOI
Śliżewska K., Markowiak-Kopeć P., Śliżewska W. The Role of Probiotics in Cancer Prevention. Cancers. 2020;13:13. doi: 10.3390/cancers13010020. PubMed DOI PMC
Dos Reis S.A., da Conceição L.L., Siqueira N.P., Rosa D.D., da Silva L.L., Peluzio M.D. Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr. Res. 2017;37:1–19. doi: 10.1016/j.nutres.2016.11.009. PubMed DOI
Perillo F., Amoroso C., Strati F., Giuffrè M.R., Díaz-Basabe A., Lattanzi G., Facciotti F. Gut Microbiota Manipulation as a Tool for Colorectal Cancer Management: Recent Advances in Its Use for Therapeutic Purposes. Int. J. Mol. Sci. 2020;21:5389. doi: 10.3390/ijms21155389. PubMed DOI PMC
Cheng Y., Ling Z., Li L. The Intestinal Microbiota and Colorectal Cancer. Front. Immunol. 2020;11:615056. doi: 10.3389/fimmu.2020.615056. PubMed DOI PMC
Ding S., Hu C., Fang J., Liu G. The Protective Role of Probiotics against Colorectal Cancer. Oxid. Med. Cell. Longev. 2020;2020:8884583. doi: 10.1155/2020/8884583. PubMed DOI PMC
Fong W., Li Q., Yu J. Gut microbiota modulation: A novel strategy for prevention and treatment of colorectal cancer. Oncogene. 2020;39:4925–4943. doi: 10.1038/s41388-020-1341-1. PubMed DOI PMC
Zelenka J., Koncošová M., Ruml T. Targeting of stress response pathways in the prevention and treatment of cancer. Biotechnol. Adv. 2018;36:583–602. doi: 10.1016/j.biotechadv.2018.01.007. PubMed DOI
Wang W., Fang D., Zhang H., Wangchuk D., Du J., Jiang L. Sodium butyrate selectively kills cancer cells and inhibits migration in colorectal cancer by targeting thioredoxin-1. Oncotargets Ther. 2020;13:4691–4704. doi: 10.2147/OTT.S235575. PubMed DOI PMC
Cao X., Xie Z., Yang Y., Whiteman M., Moore P.K., Bian J. A review of hydrogen sulfide synthesis, metabolism, and measurment: Is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid. Redox Signal. 2019;31:1–38. doi: 10.1089/ars.2017.7058. PubMed DOI PMC
Fay J.R., Steele V., Crowell J.A. Energy homeostasis and cancer prevention: The AMP-activated protein kinase. Cancer Prev. Res. 2009;2:301–309. doi: 10.1158/1940-6207.CAPR-08-0166. PubMed DOI
Wang N., Liu H., Liu G., Li M., He X., Yin C., Tu Q., Shen X., Bai W., Wang Q., et al. Yeast β-glucan exerts antitumour activity in liver cancer through impairing autophagy and lysosomal function, promoting reactive oxygen species production and apoptosis. Redox Biol. 2020;32:101495. doi: 10.1016/j.redox.2020.101495. PubMed DOI PMC
Zhang W., Feng Y., Guo Q., Xu H., Li X., Guan Y., Geng N., Wang P., Cao L., O’Rouke B.P., et al. SIRT1 modulates cell cycle progression by regulating CHK2 acetylation—phosphorylation. Cell Death Differ. 2020;27:482–496. doi: 10.1038/s41418-019-0369-7. PubMed DOI PMC
Sun B., Jia Y., Yang S., Zhao N., Hu Y., Hong J., Gao S., Zhao R. Sodium butyrate protects against high-fat diet-induced oxidative stress in rat liver by promoting expression of nuclear factor E2-related factor 2. Br. J. Nutr. 2019;122:400–410. doi: 10.1017/S0007114519001399. PubMed DOI
Bahmani S., Azarpira N., Moazamian E. Anti-colon cancer activity of Bifidobacterium metabolites on colon cancer cell line SW742. Turk. J. Gastroenterol. 2019;30:835–842. doi: 10.5152/tjg.2019.18451. PubMed DOI PMC
Kim Y., Lee D., Kim D., Cho J., Yang J., Chung M., Kim K., Ha N. Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by Bifidobacterium adolescentis SPM0212. Arch. Pharm. Res. 2008;31:468–473. doi: 10.1007/s12272-001-1180-y. PubMed DOI
Leeman M.F., Curran S., Murray G.I. New insights into the roles of matrix metalloproteinases in colorectal cancer development and progression. J. Pathol. 2003;201:528–534. doi: 10.1002/path.1466. PubMed DOI
Yu Q.H., Yang Q. Diversity of tight junctions (TJs) between gastrointestinal epithelial cells and their function in maintaining the mucosal barrier. Cell Biol. Int. 2009;33:78–82. doi: 10.1016/j.cellbi.2008.09.007. PubMed DOI
Yue Y., Ye K., Lu J., Wang X., Zhang S., Liu L., Yang B., Nassar K., Xu X., Pang X., et al. Probiotic strain Lactobacillus plantarum YYC-3 prevents colon cancer in mice by regulating the tumour microenvironment. Biomed. Pharmacother. 2020;127:110159. doi: 10.1016/j.biopha.2020.110159. PubMed DOI
An J., Ha E.M. Combination Therapy of Lactobacillus plantarum Supernatant and 5-Fluouracil Increases Chemosensitivity in Colorectal Cancer Cells. J. Microbiol. Biotechnol. 2016;26:1490–1503. doi: 10.4014/jmb.1605.05024. PubMed DOI
Topping D.L., Clifton P.M. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 2001;81:1031–1064. doi: 10.1152/physrev.2001.81.3.1031. PubMed DOI
Bergman E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990;70:567–590. doi: 10.1152/physrev.1990.70.2.567. PubMed DOI
Bultman S.J. Molecular pathways: Gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clin. Cancer Res. 2014;20:799–803. doi: 10.1158/1078-0432.CCR-13-2483. PubMed DOI PMC
Ahmad M.S., Krishnan S., Ramakrishna B.S., Mathan M., Pulimood A.B., Murthy S.N. Butyrate and glucose metabolism by colonocytes in experimental colitis in mice. Gut. 2000;46:493–499. doi: 10.1136/gut.46.4.493. PubMed DOI PMC
Chen H.M., Yu Y.N., Wang J.L., Lin Y.W., Kong X., Yang C.Q., Yang L., Liu Z.J., Yuan Y.Z., Liu F., et al. Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am. J. Clin. Nutr. 2013;97:1044–1052. doi: 10.3945/ajcn.112.046607. PubMed DOI
Charney A.N., Micic L., Egnor R.W. Nonionic diffusion of short-chain fatty acids across rat colon. Am. J. Physiol. 1998;274:G518–G524. doi: 10.1152/ajpgi.1998.274.3.G518. PubMed DOI
Hadjiagapiou C., Schmidt L., Dudeja P.K., Layden T.J., Ramaswamy K. Mechanism(s) of butyrate transport in Caco-2 cells: Role of monocarboxylate transporter 1. Am. J. Physiol. Gastrointest. Liver Physiol. 2000;279:G775–G780. doi: 10.1152/ajpgi.2000.279.4.G775. PubMed DOI
Ganapathy V., Thangaraju M., Prasad P.D., Martin P.M., Singh N. Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Curr. Opin. Pharmacol. 2013;13:869–874. doi: 10.1016/j.coph.2013.08.006. PubMed DOI
Cuff M., Dyer J., Jones M., Shirazi-Beechey S. The human colonic monocarboxylate transporter Isoform 1: Its potential importance to colonic tissue homeostasis. Gastroenterology. 2005;128:676–686. doi: 10.1053/j.gastro.2004.12.003. PubMed DOI
Thibault R., De Coppet P., Daly K., Bourreille A., Cuff M., Bonnet C., Mosnier J.F., Galmiche J.P., Shirazi-Beechey S., Segain J.P. Down-regulation of the monocarboxylate transporter 1 is involved in butyrate deficiency during intestinal inflammation. Gastroenterology. 2007;133:1916–1927. doi: 10.1053/j.gastro.2007.08.041. PubMed DOI
Lambert D.W., Wood I.S., Ellis A., Shirazi-Beechey S.P. Molecular changes in the expression of human colonic nutrient transporters during the transition from normality to malignancy. Br. J. Cancer. 2002;86:1262–1269. doi: 10.1038/sj.bjc.6600264. PubMed DOI PMC
Koukourakis M.I., Giatromanolaki A., Harris A.L., Sivridis E. Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: A metabolic survival role for tumor-associated stroma. Cancer Res. 2006;66:632–637. doi: 10.1158/0008-5472.CAN-05-3260. PubMed DOI
Heidor R., Ortega J.F., de Conti A., Ong T.P., Moreno F.S. Anticarcinogenic actions of tributyrin, a butyric acid prodrug. Curr. Drug Targets. 2012;13:1720–1729. doi: 10.2174/138945012804545443. PubMed DOI
Gupta N., Martin P.M., Prasad P.D., Ganapathy V. SLC5A8 (SMCT1)-mediated transport of butyrate forms the basis for the tumor suppressive function of the transporter. Life Sci. 2006;78:2419–2425. doi: 10.1016/j.lfs.2005.10.028. PubMed DOI
Borthakur A., Anbazhagan A.N., Kumar A., Raheja G., Singh V., Ramaswamy K., Dudeja P.K. The probiotic Lactobacillus plantarum counteracts TNF-{alpha}-induced downregulation of SMCT1 expression and function. Am. J. Physiol. Gastrointest. Liver Physiol. 2010;299:G928–G934. doi: 10.1152/ajpgi.00279.2010. PubMed DOI PMC
Ganapathy V., Thangaraju M., Gopal E., Martin P., Itagaki S., Miyauchi S., Prasad P. Sodium-coupled Monocarboxylate Transporters in Normal Tissues and in Cancer. AAPS J. 2008;10:193–199. doi: 10.1208/s12248-008-9022-y. PubMed DOI PMC
Doshi M., Takiue Y., Saito H., Hosoyamada M. The Increased Protein Level of URAT1 was Observed in Obesity/Metabolic Syndrome Model Mice. Nucleosides Nucleotides Nucleic Acids. 2011;30:1290–1294. doi: 10.1080/15257770.2011.603711. PubMed DOI
Whitman S.P., Hackanson B., Liyanarachchi S., Liu S., Rush L.J., Maharry K., Margeson D., Davuluri R., Wen J., Witte T., et al. DNA hypermethylation and epigenetic silencing of the tumor suppressor gene, SLC5A8, in acute myeloid leukemia with the MLL partial tandem duplication. Blood. 2008;112:2013–2016. doi: 10.1182/blood-2008-01-128595. PubMed DOI PMC
Dohgen M., Hayahshi H., Yajima T., Suzuki Y. Stimulation of Bicarbonate Secretion by Luminal Short-Chain Fatty Acid in the Rat and Human Colon In Vitro. Jpn. J. Physiol. 1994;44:519–531. doi: 10.2170/jjphysiol.44.519. PubMed DOI
Dietrich C.G., Vehr A.-K., Martin I.V., Gaßler N., Rath T., Roeb E., Schmitt J., Trautwein C., Geier A. Downregulation of breast cancer resistance protein in colon adenomas reduces cellular xenobiotic resistance and leads to accumulation of a food-derived carcinogen. Int. J. Cancer. 2011;129:546–552. doi: 10.1002/ijc.25958. PubMed DOI
Gupta N., Martin P.M., Miyauchi S., Ananth S., Herdman A.V., Martindale R.G., Podolsky R., Ganapathy V. Down-regulation of BCRP/ABCG2 in colorectal and cervical cancer. Biochem. Biophys. Res. Commun. 2006;343:571–577. doi: 10.1016/j.bbrc.2006.02.172. PubMed DOI
Liu H.G., Pan Y.F., You J., Wang O.C., Huang K.T., Zhang X.H. Expression of ABCG2 and its significance in colorectal cancer. Asian Pac. J. Cancer Prev. 2010;11:845–848. PubMed
Nakanishi T., Ross D.D. Breast cancer resistance protein (BCRP/ABCG2): Its role in multidrug resistance and regulation of its gene expression. Chin. J. Cancer. 2012;31:73–99. doi: 10.5732/cjc.011.10320. PubMed DOI PMC
Nakamura S., Haga S., Kimura K., Matsuyama S. Propionate and butyrate induce gene expression of monocarboxylate transporter 4 and cluster of differentiation 147 in cultured rumen epithelial cells derived from preweaning dairy calves. J. Anim. Sci. 2018;96:4902–4911. doi: 10.1093/jas/sky334. PubMed DOI PMC
Gonçalves P., Martel F. Butyrate and colorectal cancer: The role of butyrate transport. Curr. Drug. Metab. 2013;14:994–1008. doi: 10.2174/1389200211314090006. PubMed DOI
Hamer H.M., Jonkers D., Venema K., Vanhoutvin S., Troost F.J., Brummer R.J. Review article: The role of butyrate on colonic function. Aliment. Pharmacol. Ther. 2008;27:104–119. doi: 10.1111/j.1365-2036.2007.03562.x. PubMed DOI
Donohoe D.R., Garge N., Zhang X., Sun W., O’Connell T.M., Bunger M.K., Bultman S.J. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13:517–526. doi: 10.1016/j.cmet.2011.02.018. PubMed DOI PMC
Donohoe D.R., Collins L.B., Wali A., Bigler R., Sun W., Bultman S.J. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell. 2012;48:612–626. doi: 10.1016/j.molcel.2012.08.033. PubMed DOI PMC
Burgess D.J. Warburg behind the butyrate paradox? Nat. Rev. Cancer. 2012;12:798–799. doi: 10.1038/nrc3401. PubMed DOI
Davie J.R. Inhibition of histone deacetylase activity by butyrate. J. Nutr. 2003;133:2485s–2493s. doi: 10.1093/jn/133.7.2485S. PubMed DOI
Sengupta S., Muir J.G., Gibson P.R. Does butyrate protect from colorectal cancer? J. Gastroenterol. Hepatol. 2006;21:209–218. doi: 10.1111/j.1440-1746.2006.04213.x. PubMed DOI
Rosignoli P., Fabiani R., De Bartolomeo A., Spinozzi F., Agea E., Pelli M.A., Morozzi G. Protective activity of butyrate on hydrogen peroxide-induced DNA damage in isolated human colonocytes and HT29 tumour cells. Carcinogenesis. 2001;22:1675–1680. doi: 10.1093/carcin/22.10.1675. PubMed DOI
Pool-Zobel B.L., Selvaraju V., Sauer J., Kautenburger T., Kiefer J., Richter K.K., Soom M., Wölfl S. Butyrate may enhance toxicological defence in primary, adenoma and tumor human colon cells by favourably modulating expression of glutathione S-transferases genes, an approach in nutrigenomics. Carcinogenesis. 2005;26:1064–1076. doi: 10.1093/carcin/bgi059. PubMed DOI
Stein J., Schröder O., Bonk M., Oremek G., Lorenz M., Caspary W.F. Induction of glutathione-S-transferase-pi by short-chain fatty acids in the intestinal cell line Caco-2. Eur. J. Clin. Investig. 1996;26:84–87. doi: 10.1046/j.1365-2362.1996.113252.x. PubMed DOI
Ebert M.N., Klinder A., Peters W.H., Schäferhenrich A., Sendt W., Scheele J., Pool-Zobel B.L. Expression of glutathione S-transferases (GSTs) in human colon cells and inducibility of GSTM2 by butyrate. Carcinogenesis. 2003;24:1637–1644. doi: 10.1093/carcin/bgg122. PubMed DOI
Liu E.Y., Ryan K.M. Autophagy and cancer--issues we need to digest. J. Cell Sci. 2012;125:2349–2358. doi: 10.1242/jcs.093708. PubMed DOI
Luo S., Li Z., Mao L., Chen S., Sun S. Sodium butyrate induces autophagy in colorectal cancer cells through LKB1/AMPK signaling. J. Physiol. Biochem. 2019;75:53–63. doi: 10.1007/s13105-018-0651-z. PubMed DOI
Zhang J., Yi M., Zha L., Chen S., Li Z., Li C., Gong M., Deng H., Chu X., Chen J., et al. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis. PLoS ONE. 2016;11:e0147218. doi: 10.1371/journal.pone.0147218. PubMed DOI PMC
Sawada N. Tight junction-related human diseases. Pathol. Int. 2013;63:1–12. doi: 10.1111/pin.12021. PubMed DOI PMC
Lester B.R., McCarthy J.B. Tumor cell adhesion to the extracellular matrix and signal transduction mechanisms implicated in tumor cell motility, invasion and metastasis. Cancer Metastasis Rev. 1992;11:31–44. doi: 10.1007/BF00047601. PubMed DOI
Rudzki Z., Jothy S. CD44 and the adhesion of neoplastic cells. Mol. Pathol. 1997;50:57–71. doi: 10.1136/mp.50.2.57. PubMed DOI PMC
Zeng H., Briske-Anderson M. Prolonged butyrate treatment inhibits the migration and invasion potential of HT1080 tumor cells. J. Nutr. 2005;135:291–295. doi: 10.1093/jn/135.2.291. PubMed DOI
Barshishat M., Levi I., Benharroch D., Schwartz B. Butyrate down-regulates CD44 transcription and liver colonisation in a highly metastatic human colon carcinoma cell line. Br. J. Cancer. 2002;87:1314–1320. doi: 10.1038/sj.bjc.6600574. PubMed DOI PMC
Cousin F.J., Jouan-Lanhouet S., Dimanche-Boitrel M.-T., Corcos L., Jan G. Milk fermented by Propionibacterium freudenreichii induces apoptosis of HGT-1 human gastric cancer cells. PLoS ONE. 2012;7:e31892. doi: 10.1371/journal.pone.0031892. PubMed DOI PMC
Hague A., Manning A.M., Hanlon K.A., Huschtscha L.I., Hart D., Paraskeva C. Sodium butyrate induces apoptosis in human colonic tumour cell lines in a p53-independent pathway: Implications for the possible role of dietary fibre in the prevention of large-bowel cancer. Int. J. Cancer. 1993;55:498–505. doi: 10.1002/ijc.2910550329. PubMed DOI
Chirakkal H., Leech S.H., Brookes K.E., Prais A.L., Waby J.S., Corfe B.M. Upregulation of BAK by butyrate in the colon is associated with increased Sp3 binding. Oncogene. 2006;25:7192–7200. doi: 10.1038/sj.onc.1209702. PubMed DOI
Watkins S.M., Carter L.C., Mak J., Tsau J., Yamamoto S., German J.B. Butyric acid and tributyrin induce apoptosis in human hepatic tumour cells. J. Dairy Res. 1999;66:559–567. doi: 10.1017/S0022029999003830. PubMed DOI
Maier S., Reich E., Martin R., Bachem M., Altug V., Hautmann R.E., Gschwend J.E. Tributyrin induces differentiation, growth arrest and apoptosis in androgen-sensitive and androgen-resistant human prostate cancer cell lines. Int. J. Cancer. 2000;88:245–251. doi: 10.1002/1097-0215(20001015)88:2<245::AID-IJC16>3.0.CO;2-X. PubMed DOI
Yan J., Xu Y.-H. Tributyrin inhibits human gastric cancer SGC-7901 cell growth by inducing apoptosis and DNA synthesis arrest. World J. Gastroenterol. 2003;9:660–664. doi: 10.3748/wjg.v9.i4.660. PubMed DOI PMC
Giermasz A., Nowis D., Jalili A., Basak G., Marczak M., Makowski M., Czajka A., Młynarczuk I., Hoser G., Stok osa T., et al. Antitumor activity of tributyrin in murine melanoma model. Cancer Lett. 2001;164:143–148. doi: 10.1016/S0304-3835(01)00375-5. PubMed DOI
Kuefer R., Hofer M.D., Altug V., Zorn C., Genze F., Kunzi-Rapp K., Hautmann R.E., Gschwend J.E. Sodium butyrate and tributyrin induce in vivo growth inhibition and apoptosis in human prostate cancer. Br. J. Cancer. 2004;90:535–541. doi: 10.1038/sj.bjc.6601510. PubMed DOI PMC
Edelman M.J., Bauer K., Khanwani S., Tait N., Trepel J., Karp J., Nemieboka N., Chung E.-J., Van Echo D. Clinical and pharmacologic study of tributyrin: An oral butyrate prodrug. Cancer Chemother. Pharmacol. 2003;51:439–444. doi: 10.1007/s00280-003-0580-5. PubMed DOI
Kuroiwa-Trzmielina J., de Conti A., Scolastici C., Pereira D., Horst M.A., Purgatto E., Ong T.P., Moreno F.S. Chemoprevention of rat hepatocarcinogenesis with histone deacetylase inhibitors: Efficacy of tributyrin, a butyric acid prodrug. Int. J. Cancer. 2009;124:2520–2527. doi: 10.1002/ijc.24212. PubMed DOI
Glueck B., Han Y., Cresci G.A.M. Tributyrin Supplementation Protects Immune Responses and Vasculature and Reduces Oxidative Stress in the Proximal Colon of Mice Exposed to Chronic-Binge Ethanol Feeding. J. Immunol. Res. 2018;2018:9671919. doi: 10.1155/2018/9671919. PubMed DOI PMC
Cresci G., Nagy L.E., Ganapathy V. Lactobacillus GG and tributyrin supplementation reduce antibiotic-induced intestinal injury. JPEN J. Parenter. Enter. Nutr. 2013;37:763–774. doi: 10.1177/0148607113486809. PubMed DOI PMC
Halestrap A.P., Price N.T. The proton-linked monocarboxylate transporter (MCT) family: Structure, function and regulation. Biochem. J. 1999;343 Pt 2:281–299. doi: 10.1042/bj3430281. PubMed DOI PMC
Halestrap A.P. The SLC16 gene family—structure, role and regulation in health and disease. Mol. Asp. Med. 2013;34:337–349. doi: 10.1016/j.mam.2012.05.003. PubMed DOI
Halestrap A.P. The monocarboxylate transporter family--Structure and functional characterization. IUBMB Life. 2012;64:1–9. doi: 10.1002/iub.573. PubMed DOI
Ganapathy V., Gopal E., Miyauchi S., Prasad P.D. Biological functions of SLC5A8, a candidate tumour suppressor. Biochem. Soc. Trans. 2005;33:237–240. doi: 10.1042/BST0330237. PubMed DOI
Srinivas S.R., Gopal E., Zhuang L., Itagaki S., Martin P.M., Fei Y.J., Ganapathy V., Prasad P.D. Cloning and functional identification of slc5a12 as a sodium-coupled low-affinity transporter for monocarboxylates (SMCT2) Biochem. J. 2005;392:655–664. doi: 10.1042/BJ20050927. PubMed DOI PMC
Brooks G.A. Lactate as a fulcrum of metabolism. Redox Biol. 2020;35:101454. doi: 10.1016/j.redox.2020.101454. PubMed DOI PMC
Roland C.L., Arumugam T., Deng D., Liu S.H., Philip B., Gomez S., Burns W.R., Ramachandran V., Wang H., Cruz-Monserrate Z., et al. Cell Surface Lactate Receptor GPR81 Is Crucial for Cancer Cell Survival. Cancer Res. 2014;74:5301–5310. doi: 10.1158/0008-5472.CAN-14-0319. PubMed DOI PMC
de Bari L., Atlante A. Including the mitochondrial metabolism of L-lactate in cancer metabolic reprogramming. Cell. Mol. Life Sci. 2018;75:2763–2776. doi: 10.1007/s00018-018-2831-y. PubMed DOI PMC
Yang X., Lu Y., Hang J., Zhang J., Zhang T., Huo Y., Liu J., Lai S., Luo D., Wang L., et al. Lactate-Modulated Immunosuppression of Myeloid-Derived Suppressor Cells Contributes to the Radioresistance of Pancreatic Cancer. Cancer Immunol. Res. 2020;8:1440–1451. doi: 10.1158/2326-6066.CIR-20-0111. PubMed DOI
Raychaudhuri D., Bhattacharya R., Sinha B.P., Liu C.S.C., Ghosh A.R., Rahaman O., Bandopadhyay P., Sarif J., D’Rozario R., Paul S., et al. Lactate Induces Pro-tumor Reprogramming in Intratumoral Plasmacytoid Dendritic Cells. Front. Immunol. 2019;10:1878. doi: 10.3389/fimmu.2019.01878. PubMed DOI PMC
Brown T.P., Bhattacharjee P., Ramachandran S., Sivaprakasam S., Ristic B., Sikder M.O.F., Ganapathy V. The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment. Oncogene. 2020;39:3292–3304. doi: 10.1038/s41388-020-1216-5. PubMed DOI
Hashimoto T., Hussien R., Oommen S., Gohil K., Brooks G.A. Lactate sensitive transcription factor network in L6 cells: Activation of MCT1 and mitochondrial biogenesis. FASEB J. 2007;21:2602–2612. doi: 10.1096/fj.07-8174com. PubMed DOI
Zelenka J., Dvořák A., Alán L. L-Lactate Protects Skin Fibroblasts against Aging-Associated Mitochondrial Dysfunction via Mitohormesis. Oxid. Med. Cell. Longev. 2015;2015:351698. doi: 10.1155/2015/351698. PubMed DOI PMC
Tauffenberger A., Fiumelli H., Almustafa S., Magistretti P.J. Lactate and pyruvate promote oxidative stress resistance through hormetic ROS signaling. Cell Death Dis. 2019;10:653. doi: 10.1038/s41419-019-1877-6. PubMed DOI PMC
Walenta S., Mueller-Klieser W.F. Lactate: Mirror and motor of tumor malignancy. Semin. Radiat. Oncol. 2004;14:267–274. doi: 10.1016/j.semradonc.2004.04.004. PubMed DOI
Pérez-Tomás R., Pérez-Guillén I. Lactate in the Tumor Microenvironment: An Essential Molecule in Cancer Progression and Treatment. Cancers. 2020;12:3244. doi: 10.3390/cancers12113244. PubMed DOI PMC
Hoque R., Farooq A., Ghani A., Gorelick F., Mehal W.Z. Lactate reduces liver and pancreatic injury in Toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology. 2014;146:1763–1774. doi: 10.1053/j.gastro.2014.03.014. PubMed DOI PMC
Ranganathan P., Shanmugam A., Swafford D., Suryawanshi A., Bhattacharjee P., Hussein M.S., Koni P.A., Prasad P.D., Kurago Z.B., Thangaraju M., et al. GPR81, a Cell-Surface Receptor for Lactate, Regulates Intestinal Homeostasis and Protects Mice from Experimental Colitis. J. Immunol. 2018;200:1781–1789. doi: 10.4049/jimmunol.1700604. PubMed DOI PMC
Yang K., Xu J., Fan M., Tu F., Wang X., Ha T., Williams D.L., Li C. Lactate Suppresses Macrophage Pro-Inflammatory Response to LPS Stimulation by Inhibition of YAP and NF-κB Activation via GPR81-Mediated Signaling. Front. Immunol. 2020;11:587913. doi: 10.3389/fimmu.2020.587913. PubMed DOI PMC
Huang Y., Zhang J., Dong R., Ji X., Jiang Y., Cen J., Bai Z., Hong K., Li H., Chen J., et al. Lactate as a metabolite from probiotic Lactobacilli mitigates ethanol-induced gastric mucosal injury: An in vivo study. BMC Complement. Med. Ther. 2021;21:26. doi: 10.1186/s12906-020-03198-7. PubMed DOI PMC
Lee Y.S., Kim T.Y., Kim Y., Lee S.H., Kim S., Kang S.W., Yang J.Y., Baek I.J., Sung Y.H., Park Y.Y., et al. Microbiota-Derived Lactate Accelerates Intestinal Stem-Cell-Mediated Epithelial Development. Cell Host Microbe. 2018;24:833–846.e6. doi: 10.1016/j.chom.2018.11.002. PubMed DOI
Larsson S.C., Andersson S.O., Johansson J.E., Wolk A. Cultured milk, yogurt, and dairy intake in relation to bladder cancer risk in a prospective study of Swedish women and men. Am. J. Clin. Nutr. 2008;88:1083–1087. doi: 10.1093/ajcn/88.4.1083. PubMed DOI
Bermejo L.M., López-Plaza B., Santurino C., Cavero-Redondo I., Gómez-Candela C. Milk and Dairy Product Consumption and Bladder Cancer Risk: A Systematic Review and Meta-Analysis of Observational Studies. Adv. Nutr. 2019;10:S224–S238. doi: 10.1093/advances/nmy119. PubMed DOI PMC
Pala V., Sieri S., Berrino F., Vineis P., Sacerdote C., Palli D., Masala G., Panico S., Mattiello A., Tumino R., et al. Yogurt consumption and risk of colorectal cancer in the Italian European prospective investigation into cancer and nutrition cohort. Int. J. Cancer. 2011;129:2712–2719. doi: 10.1002/ijc.26193. PubMed DOI
Michels K.B., Willett W.C., Vaidya R., Zhang X., Giovannucci E. Yogurt consumption and colorectal cancer incidence and mortality in the Nurses’ Health Study and the Health Professionals Follow-Up Study. Am. J. Clin. Nutr. 2020;112:1566–1575. doi: 10.1093/ajcn/nqaa244. PubMed DOI PMC
Kampman E., Goldbohm R.A., van den Brandt P.A., van ‘t Veer P. Fermented dairy products, calcium, and colorectal cancer in The Netherlands Cohort Study. Cancer Res. 1994;54:3186–3190. PubMed
Nimptsch K., Lee D.H., Zhang X., Song M., Farvid M.S., Rezende L.F.M., Cao Y., Chan A.T., Fuchs C., Meyerhardt J., et al. Dairy intake during adolescence and risk of colorectal adenoma later in life. Br. J. Cancer. 2021 doi: 10.1038/s41416-020-01203-x. PubMed DOI PMC
Rifkin S.B., Giardiello F.M., Zhu X., Hylind L.M., Ness R.M., Drewes J.L., Murff H.J., Spence E.H., Smalley W.E., Gills J.J., et al. Yogurt consumption and colorectal polyps. Br. J. Nutr. 2020;124:80–91. doi: 10.1017/S0007114520000550. PubMed DOI PMC
Liu M., Wu L., Montaut S., Yang G. Hydrogen Sulfide Signaling Axis as a Target for Prostate Cancer Therapeutics. Prostate Cancer. 2016;2016:8108549. doi: 10.1155/2016/8108549. PubMed DOI PMC
Ono K., Akaike T., Rahaman M., Kumagai Y., Wink D., Tantillo D., Hobbs A., Nagy P., Xian M., Lin J., et al. The Redox Chemistry and Chemical Biology of H2S, Hydropersulfides and Derived Species: Implications to Their Possible Biological Activity and Utility. Free Radic. Biol. Med. 2014;77:82–94. doi: 10.1016/j.freeradbiomed.2014.09.007. PubMed DOI PMC
Medani M., Collins D., Docherty N.G., Baird A.W., O’Connell P.R., Winter D.C. Emerging role of hydrogen sulfide in colonic physiology and pathophysiology. Inflamm. Bowel Dis. 2011;17:1620–1625. doi: 10.1002/ibd.21528. PubMed DOI
Tomasova L., Konopelski P., Ufnal M. Gut Bacteria and Hydrogen Sulfide: The New Old Players in Circulatory System Homeostasis. Molecules. 2016;21:1558. doi: 10.3390/molecules21111558. PubMed DOI PMC
Szabó C. Hydrogen sulphide and its therapeutic potential. Nat. Rev. Drug Discov. 2007;6:917–935. doi: 10.1038/nrd2425. PubMed DOI
Zhao Y., Biggs T.D., Xian M. Hydrogen sulfide (H2S) releasing agents: Chemistry and biological applications. Chem. Commun. 2014;50:11788–11805. doi: 10.1039/C4CC00968A. PubMed DOI PMC
Mustafa A.K., Sikka G., Gazi S.K., Steppan J., Jung S.M., Bhunia A.K., Barodka V.M., Gazi F.K., Barrow R.K., Wang R., et al. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ. Res. 2011;109:1259–1268. doi: 10.1161/CIRCRESAHA.111.240242. PubMed DOI PMC
Cai W.J., Wang M.J., Moore P.K., Jin H.M., Yao T., Zhu Y.C. The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc. Res. 2007;76:29–40. doi: 10.1016/j.cardiores.2007.05.026. PubMed DOI
Coletta C., Papapetropoulos A., Erdelyi K., Olah G., Módis K., Panopoulos P., Asimakopoulou A., Gerö D., Sharina I., Martin E., et al. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc. Natl. Acad. Sci. USA. 2012;109:9161–9166. doi: 10.1073/pnas.1202916109. PubMed DOI PMC
Florin T., Neale G., Gibson G.R., Christl S.U., Cummings J.H. Metabolism of dietary sulphate: Absorption and excretion in humans. Gut. 1991;32:766–773. doi: 10.1136/gut.32.7.766. PubMed DOI PMC
Wu Y.C., Wang X.J., Yu L., Chan F.K.L., Cheng A.S.L., Yu J., Sung J.J.Y., Wu W.K.K., Cho C.H. Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells. PLoS ONE. 2012;7:e37572. doi: 10.1371/journal.pone.0037572. PubMed DOI PMC
Szabo C., Coletta C., Chao C., Módis K., Szczesny B., Papapetropoulos A., Hellmich M.R. Tumor-derived hydrogen sulfide, produced by cystathionine-β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc. Natl. Acad. Sci. USA. 2013;110:12474–12479. doi: 10.1073/pnas.1306241110. PubMed DOI PMC
Szabo C., Hellmich M.R. Endogenously produced hydrogen sulfide supports tumor cell growth and proliferation. Cell Cycle. 2013;12:2915–2916. doi: 10.4161/cc.26064. PubMed DOI PMC
Ianaro A., Cirino G., Wallace J.L. Hydrogen sulfide-releasing anti-inflammatory drugs for chemoprevention and treatment of cancer. Pharmacol. Res. 2016;111:652–658. doi: 10.1016/j.phrs.2016.07.041. PubMed DOI
Wang R. Two’s company, three’s a crowd: Can H2S be the third endogenous gaseous transmitter? FASEB J. 2002;16:1792–1798. doi: 10.1096/fj.02-0211hyp. PubMed DOI
Cakmak Y.O. Provotella-derived hydrogen sulfide, constipation, and neuroprotection in Parkinson’s disease. Mov. Disord. 2015;30:1151. doi: 10.1002/mds.26258. PubMed DOI
Chwatko G., Forma E., Wilkosz J., Głowacki R., Jóźwiak P., Różański W., Bryś M., Krześlak A. Thiosulfate in urine as a facilitator in the diagnosis of prostate cancer for patients with prostate-specific antigen less or equal 10 ng/mL. Clin. Chem. Lab. Med. 2013;51:1825–1831. doi: 10.1515/cclm-2013-0069. PubMed DOI
Pei Y., Wu B., Cao Q., Wu L., Yang G. Hydrogen sulfide mediates the anti-survival effect of sulforaphane on human prostate cancer cells. Toxicol. Appl. Pharmacol. 2011;257:420–428. doi: 10.1016/j.taap.2011.09.026. PubMed DOI
Duan F., Li Y., Chen L., Zhou X., Chen J., Chen H., Li R. Sulfur inhibits the growth of androgen-independent prostate cancer in vivo. Oncol. Lett. 2015;9:437–441. doi: 10.3892/ol.2014.2700. PubMed DOI PMC
Arunkumar A., Vijayababu M.R., Gunadharini N., Krishnamoorthy G., Arunakaran J. Induction of apoptosis and histone hyperacetylation by diallyl disulfide in prostate cancer cell line PC-3. Cancer Lett. 2007;251:59–67. doi: 10.1016/j.canlet.2006.11.001. PubMed DOI
Sielicka-Dudzin A., Borkowska A., Herman-Antosiewicz A., Wozniak M., Jozwik A., Fedeli D., Antosiewicz J. Impact of JNK1, JNK2, and ligase Itch on reactive oxygen species formation and survival of prostate cancer cells treated with diallyl trisulfide. Eur. J. Nutr. 2012;51:573–581. doi: 10.1007/s00394-011-0241-0. PubMed DOI
Chiao J.W., Chung F.L., Kancherla R., Ahmed T., Mittelman A., Conaway C.C. Sulforaphane and its metabolite mediate growth arrest and apoptosis in human prostate cancer cells. Int. J. Oncol. 2002;20:631–636. doi: 10.3892/ijo.20.3.631. PubMed DOI
Borkowska A., Knap N., Antosiewicz J. Diallyl trisulfide is more cytotoxic to prostate cancer cells PC-3 than to noncancerous epithelial cell line PNT1A: A possible role of p66Shc signaling axis. Nutr. Cancer. 2013;65:711–717. doi: 10.1080/01635581.2013.789115. PubMed DOI
Arunkumar A., Vijayababu M.R., Venkataraman P., Senthilkumar K., Arunakaran J. Chemoprevention of rat prostate carcinogenesis by diallyl disulfide, an organosulfur compound of garlic. Biol. Pharm. Bull. 2006;29:375–379. doi: 10.1248/bpb.29.375. PubMed DOI
Cheung N.K., Modak S., Vickers A., Knuckles B. Orally administered beta-glucans enhance anti-tumor effects of monoclonal antibodies. Cancer Immunol. Immunother. 2002;51:557–564. doi: 10.1007/s00262-002-0321-3. PubMed DOI PMC
Wasser S.P., Weis A.L. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: A modern perspective. Crit. Rev. Immunol. 1999;19:65–96. PubMed
BeMiller J.A.B.J.N. (1→3)-β-d-Glucans as biological response modifiers: A review of structure-functional activity relationships. Carbohydr. Polym. 1995;28:3–14.
Yan J., Vetvicka V., Xia Y., Coxon A., Carroll M.C., Mayadas T.N., Ross G.D. Beta-glucan, a “specific” biologic response modifier that uses antibodies to target tumors for cytotoxic recognition by leukocyte complement receptor type 3 (CD11b/CD18) J. Immunol. 1999;163:3045–3052. PubMed
Hong F., Yan J., Baran J.T., Allendorf D.J., Hansen R.D., Ostroff G.R., Xing P.X., Cheung N.K., Ross G.D. Mechanism by which orally administered beta-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J. Immunol. 2004;173:797–806. doi: 10.4049/jimmunol.173.2.797. PubMed DOI
Li B., Cramer D., Wagner S., Hansen R., King C., Kakar S., Ding C., Yan J. Yeast glucan particles activate murine resident macrophages to secrete proinflammatory cytokines via MyD88- and Syk kinase-dependent pathways. Clin. Immunol. 2007;124:170–181. doi: 10.1016/j.clim.2007.05.002. PubMed DOI PMC
Gawronski M., Park J.T., Magee A.S., Conrad H. Microfibrillar structure of PGG-glucan in aqueous solution as triple-helix aggregates by small angle x-ray scattering. Biopolymers. 1999;50:569–578. doi: 10.1002/(SICI)1097-0282(199911)50:6<569::AID-BIP1>3.0.CO;2-B. PubMed DOI
Li B., Allendorf D.J., Hansen R., Marroquin J., Ding C., Cramer D.E., Yan J. Yeast beta-glucan amplifies phagocyte killing of iC3b-opsonized tumor cells via complement receptor 3-Syk-phosphatidylinositol 3-kinase pathway. J. Immunol. 2006;177:1661–1669. doi: 10.4049/jimmunol.177.3.1661. PubMed DOI
Hong F., Hansen R.D., Yan J., Allendorf D.J., Baran J.T., Ostroff G.R., Ross G.D. β-Glucan Functions as an Adjuvant for Monoclonal Antibody Immunotherapy by Recruiting Tumoricidal Granulocytes as Killer Cells. Cancer Res. 2003;63:9023–9031. PubMed
Liu J., Gunn L., Hansen R., Yan J. Combined yeast-derived beta-glucan with anti-tumor monoclonal antibody for cancer immunotherapy. Exp. Mol. Pathol. 2009;86:208–214. doi: 10.1016/j.yexmp.2009.01.006. PubMed DOI PMC
Vetvicka V., Thornton B.P., Ross G.D. Soluble beta-glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complement receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. J. Clin. Investig. 1996;98:50–61. doi: 10.1172/JCI118777. PubMed DOI PMC
Yan J., Větvička V., Xia Y., Hanikýřová M., Mayadas T.N., Ross G.D. Critical role of Kupffer cell CR3 (CD11b/CD18) in the clearance of IgM-opsonized erythrocytes or soluble β-glucan. Immunopharmacology. 2000;46:39–54. doi: 10.1016/S0162-3109(99)00157-5. PubMed DOI
Wilczak J., Błaszczyk K., Kamola D., Gajewska M., Harasym J.P., Jałosińska M., Gudej S., Suchecka D., Oczkowski M., Gromadzka-Ostrowska J. The effect of low or high molecular weight oat beta-glucans on the inflammatory and oxidative stress status in the colon of rats with LPS-induced enteritis. Food Funct. 2015;6:590–603. doi: 10.1039/C4FO00638K. PubMed DOI
Liu B., Lin Q., Yang T., Zeng L., Shi L., Chen Y., Luo F. Oat β-glucan ameliorates dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Food Funct. 2015;6:3454–3463. doi: 10.1039/C5FO00563A. PubMed DOI