Acute Histological Chorioamnionitis and Birth Weight in Pregnancies With Preterm Prelabor Rupture of Membranes: A Retrospective Cohort Study

. 2022 ; 13 () : 861785. [epub] 20220304

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35308217

Aim: To assess the association between the birth weight of newborns from pregnancies with preterm prelabor rupture of membranes (PPROM) and the presence of acute histological chorioamnionitis (HCA) with respect to the: i) fetal and maternal inflammatory responses and ii) acute inflammation of the amnion. Material and Methods: This retrospective cohort study included 818 women with PPROM. A histopathological examination of the placenta was performed. Fetal inflammatory response was defined as the presence of any neutrophils in umbilical cord (histological grades 1-4) and/or chorionic vasculitis (histological grade 4 for the chorionic plate). Maternal inflammatory response was defined as the presence of histological grade 3-4 for the chorion-decidua and/or grade 3 for the chorionic plate and/or grade 1-4 for the amnion. Acute inflammation of the amnion was defined as the presence of any neutrophils in the amnion (histological grade 1-4 for the amnion). Birth weights of newborns were expressed as percentiles derived from INTERGROWTH-21st standards for the i) estimated fetal weight and ii) newborn birth weight. Results: No difference in percentiles of birth weights of newborns was found among the women with the women with HCA with fetal inflammatory response, with HCA with maternal inflammatory response and those without HCA. Women with HCA with acute inflammation of the amnion had lower percentiles of birth weights of newborns, derived from the estimated fetal weight standards, than women with HCA without acute inflammation of the amnion and those with the absence of HCA in the crude (with acute inflammation: median 46, without acute inflammation: median 52, the absence of HCA: median 55; p = 0.004) and adjusted (p = 0.02) analyses. The same subset of pregnancies exhibited the highest rate of newborns with a birth weight of ≤25 percentile. When percentiles were derived from the newborn weight standards, no differences in birth weights were observed among the subgroups. Conclusion: Acute inflammation of the amnion was associated with a lower birth weight in PPROM pregnancies, expressed as percentiles derived from the estimated fetal weight standards.

Zobrazit více v PubMed

Amarilyo G., Oren A., Mimouni F. B., Ochshorn Y., Deutsch V., Mandel D. (2011). Increased Cord Serum Inflammatory Markers in Small-For-Gestational-Age Neonates. J. Perinatol 31, 30–32. 10.1038/jp.2010.53 PubMed DOI

Aviram A., Sherman C., Kingdom J., Zaltz A., Barrett J., Melamed N. (2019). Defining Early vs Late Fetal Growth Restriction by Placental Pathology. Acta Obstet. Gynecol. Scand. 98, 365–373. 10.1111/aogs.13499 PubMed DOI

Cobo T., Kacerovsky M., Palacio M., Hornychova H., Hougaard D. M., Skogstrand K., et al. (2012). Intra-amniotic Inflammatory Response in Subgroups of Women with Preterm Prelabor Rupture of the Membranes. PLoS One 7, e43677. 10.1371/journal.pone.0043677 PubMed DOI PMC

Collins P. L., Idriss E., Moore J. J. (1993). Human Fetal Membranes Inhibit Spontaneous Uterine Contractions. J. Clin. Endocrinol. Metab. 77, 1479–1484. 10.1210/jcem.77.6.8263130 PubMed DOI

Curtis N. E., King R. G., Moseley J. M., Ho P. W., Rice G. E., Wlodek M. E. (2000). Preterm Fetal Growth Restriction Is Associated with Increased Parathyroid Hormone-Related Protein Expression in the Fetal Membranes. Am. J. Obstet. Gynecol. 183, 700–705. 10.1067/mob.2000.106593 PubMed DOI

Digiulio D. B., Gervasi M. T., Romero R., Vaisbuch E., Mazaki-Tovi S., Kusanovic J. P., et al. (2010). Microbial Invasion of the Amniotic Cavity in Pregnancies with Small-For-Gestational-Age Fetuses. J. Perinat Med. 38, 495–502. 10.1515/jpm.2010.076 PubMed DOI PMC

Figueras F., Gratacos E. (2014). Stage-based Approach to the Management of Fetal Growth Restriction. Prenat Diagn. 34, 655–659. 10.1002/pd.4412 PubMed DOI

Ganguly E., Kammala A. K., Benson M., Richardson L. S., Han A., Menon R. (2021). Organic Anion Transporting Polypeptide 2B1 in Human Fetal Membranes: A Novel Gatekeeper for Drug Transport during Pregnancy? Front. Pharmacol. 12, 771818. 10.3389/fphar.2021.771818 PubMed DOI PMC

Gazzolo D., Marinoni E., Di Iorio R., Lituania M., Marras M., Bruschettini M., et al. (2006). High Maternal Blood S100B Concentrations in Pregnancies Complicated by Intrauterine Growth Restriction and Intraventricular Hemorrhage. Clin. Chem. 52, 819–826. 10.1373/clinchem.2005.060665 PubMed DOI

Goldstein J. A., Gallagher K., Beck C., Kumar R., Gernand A. D. (2020). Maternal-Fetal Inflammation in the Placenta and the Developmental Origins of Health and Disease. Front. Immunol. 11, 531543. 10.3389/fimmu.2020.531543 PubMed DOI PMC

Hahn-zoric M., Hagberg H., Kjellmer I., Ellis J., Wennergren M., Hanson L. A. (2002). Aberrations in Placental Cytokine mRNA Related to Intrauterine Growth Retardation. Pediatr. Res. 51, 201–206. 10.1203/00006450-200202000-00013 PubMed DOI

Kammala A., Benson M., Ganguly E., Richardson L., Menon R. (2022). Functional Role and Regulation of Permeability-Glycoprotein (P-Gp) in the Fetal Membrane during Drug Transportation. Am. J. Reprod. Immunol. 87, e13515. 10.1111/aji.13515 PubMed DOI PMC

Kim C. J., Romero R., Chaemsaithong P., Chaiyasit N., Yoon B. H., Kim Y. M. (2015). Acute Chorioamnionitis and Funisitis: Definition, Pathologic Features, and Clinical Significance. Am. J. Obstet. Gynecol. 213, S29–S52. 10.1016/j.ajog.2015.08.040 PubMed DOI PMC

Kiserud T., Piaggio G., Carroli G., Widmer M., Carvalho J., Neerup Jensen L., et al. (2017). The World Health Organization Fetal Growth Charts: A Multinational Longitudinal Study of Ultrasound Biometric Measurements and Estimated Fetal Weight. Plos Med. 14, e1002220. 10.1371/journal.pmed.1002220 PubMed DOI PMC

Lai H., Nie L., Zeng X., Xin S., Wu M., Yang B., et al. (2020). Enhancement of Heat Shock Protein 70 Attenuates Inducible Nitric Oxide Synthase in Preeclampsia Complicated with Fetal Growth Restriction. J. Matern. Fetal Neonatal. Med. 2020, 1–9. 10.1080/14767058.2020.1789965 PubMed DOI

Lausten-thomsen U., Olsen M., Greisen G., Schmiegelow K. (2014). Inflammatory Markers in Umbilical Cord Blood from Small-For-Gestational-Age Newborns. Fetal Pediatr. Pathol. 33, 114–118. 10.3109/15513815.2013.879239 PubMed DOI

Levy M., Kovo M., Feldstein O., Dekalo A., Schreiber L., Levanon O., et al. (2021). The Effect of Concomitant Histologic Chorioamnionitis in Pregnancies Complicated by Fetal Growth Restriction. Placenta 104, 51–56. 10.1016/j.placenta.2020.11.009 PubMed DOI

Marsál K., Persson P. H., Lilja H., Selbing A., Sultan B., Sultan B. (1996). Intrauterine Growth Curves Based on Ultrasonically Estimated Foetal Weights. Acta Paediatr. 85, 843–848. 10.1111/j.1651-2227.1996.tb14164.x PubMed DOI

Matulova J., Kacerovsky M., Bolehovska R., Stranik J., Spacekr R., Burckova H., et al. (2021). Birth Weight and Intra-amniotic Inflammatory and Infection-Related Complications in Pregnancies with Preterm Prelabor Rupture of Membranes: a Retrospective Cohort Study. J. Matern. Fetal Neonatal. Med. 2021, 1. 10.1080/14767058.2021.1956458 PubMed DOI

Menon R. (2016). Human Fetal Membranes at Term: Dead Tissue or Signalers of Parturition? Placenta 44, 1–5. 10.1016/j.placenta.2016.05.013 PubMed DOI PMC

Menon R., Moore J. J. (2020). Fetal Membranes, Not a Mere Appendage of the Placenta, but a Critical Part of the Fetal-Maternal Interface Controlling Parturition. Obstet. Gynecol. Clin. North. Am. 47, 147–162. 10.1016/j.ogc.2019.10.004 PubMed DOI

Menon R., Peltier M. R. (2020). Novel Insights into the Regulatory Role of Nuclear Factor (Erythroid-Derived 2)-Like 2 in Oxidative Stress and Inflammation of Human Fetal Membranes. Int. J. Mol. Sci. 21. 10.3390/ijms21176139 PubMed DOI PMC

Mercer B. M. (2003). Preterm Premature Rupture of the Membranes. Obstet. Gynecol. 101, 178–193. 10.1016/s0029-7844(02)02366-9 PubMed DOI

Mercer B. M. (2005). Preterm Premature Rupture of the Membranes: Current Approaches to Evaluation and Management. Obstet. Gynecol. Clin. North. Am. 32, 411–428. 10.1016/j.ogc.2005.03.003 PubMed DOI

Mifsud W., Sebire N. J. (2014). Placental Pathology in Early-Onset and Late-Onset Fetal Growth Restriction. Fetal Diagn. Ther. 36, 117–128. 10.1159/000359969 PubMed DOI

Moormann A. M., Sullivan A. D., Rochford R. A., Chensue S. W., Bock P. J., Nyirenda T., et al. (1999). Malaria and Pregnancy: Placental Cytokine Expression and its Relationship to Intrauterine Growth Retardation. J. Infect. Dis. 180, 1987–1993. 10.1086/315135 PubMed DOI

Murthi P., Kee M. W., Gude N. M., Brennecke S. P., Kalionis B. (2005). Fetal Growth Restriction Is Associated with Increased Apoptosis in the Chorionic Trophoblast Cells of Human Fetal Membranes. Placenta 26, 329–338. 10.1016/j.placenta.2004.07.006 PubMed DOI

Musilova I., Kutová R., Pliskova L., Stepan M., Menon R., Jacobsson B., et al. (2015). Intraamniotic Inflammation in Women with Preterm Prelabor Rupture of Membranes. PLoS One 10, e0133929. 10.1371/journal.pone.0133929 PubMed DOI PMC

Musilova I., Pliskova L., Gerychova R., Janku P., Simetka O., Matlak P., et al. (2017). Maternal white Blood Cell Count Cannot Identify the Presence of Microbial Invasion of the Amniotic Cavity or Intra-amniotic Inflammation in Women with Preterm Prelabor Rupture of Membranes. PLoS One 12, e0189394. 10.1371/journal.pone.0189394 PubMed DOI PMC

Nicolaides K. H., Wright D., Syngelaki A., Wright A., Akolekar R. (2018). Fetal Medicine Foundation Fetal and Neonatal Population Weight Charts. Ultrasound Obstet. Gynecol. 52, 44–51. 10.1002/uog.19073 PubMed DOI

Novac M. V., Niculescu M., Manolea M. M., Dijmărescu A. L., Iliescu D. G., Novac M. B., et al. (2018). Placental Findings in Pregnancies Complicated with IUGR - Histopathological and Immunohistochemical Analysis. Rom. J. Morphol. Embryol. 59, 715–720. PubMed

Pacora P., Chaiworapongsa T., Maymon E., Kim Y. M., Gomez R., Yoon B. H., et al. (2002). Funisitis and Chorionic Vasculitis: the Histological Counterpart of the Fetal Inflammatory Response Syndrome. J. Matern. Fetal Neonatal. Med. 11, 18–25. 10.1080/jmf.11.1.18.25 PubMed DOI

Papageorghiou A. T., Ohuma E. O., Altman D. G., Todros T., Cheikh Ismail L., Lambert A., et al. (2014). International Standards for Fetal Growth Based on Serial Ultrasound Measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet 384, 869–879. 10.1016/S0140-6736(14)61490-2 PubMed DOI

Park C. W., Moon K. C., Park J. S., Jun J. K., Romero R., Yoon B. H. (2009). The Involvement of Human Amnion in Histologic Chorioamnionitis Is an Indicator that a Fetal and an Intra-amniotic Inflammatory Response Is More Likely and Severe: Clinical Implications. Placenta 30, 56–61. 10.1016/j.placenta.2008.09.017 PubMed DOI PMC

Raghupathy R., Al-Azemi M., Azizieh F. (2012). Intrauterine Growth Restriction: Cytokine Profiles of Trophoblast Antigen-Stimulated Maternal Lymphocytes. Clin. Dev. Immunol. 2012, 734865. 10.1155/2012/734865 PubMed DOI PMC

Redline R. W. (2006). Inflammatory Responses in the Placenta and Umbilical Cord. Semin. Fetal Neonatal. Med. 11, 296–301. 10.1016/j.siny.2006.02.011 PubMed DOI

Ross K. M., Carroll J. E., Dunkel Schetter C., Hobel C., Cole S. W. (2019). Pro-inflammatory Immune Cell Gene Expression during the Third Trimester of Pregnancy Is Associated with Shorter Gestational Length and Lower Birthweight. Am. J. Reprod. Immunol. 82, e13190. 10.1111/aji.13190 PubMed DOI

Salafia C. M., Minior V. K., Pezzullo J. C., Popek E. J., Rosenkrantz T. S., Vintzileos A. M. (1995). Intrauterine Growth Restriction in Infants of Less Than Thirty-Two Weeks' Gestation: Associated Placental Pathologic Features. Am. J. Obstet. Gynecol. 173, 1049–1057. 10.1016/0002-9378(95)91325-4 PubMed DOI

Salafia C. M., Vintzileos A. M., Silberman L., Bantham K. F., Vogel C. A. (1992). Placental Pathology of Idiopathic Intrauterine Growth Retardation at Term. Am. J. Perinatol 9, 179–184. 10.1055/s-2007-999316 PubMed DOI

Salafia C. M., Weigl C., Silberman L. (1989). The Prevalence and Distribution of Acute Placental Inflammation in Uncomplicated Term Pregnancies. Obstet. Gynecol. 73, 383–389. 10.1016/0020-7292(89)90252-x PubMed DOI

Salomon L. J., Bernard J. P., Ville Y. (2007). Estimation of Fetal Weight: Reference Range at 20-36 Weeks' Gestation and Comparison with Actual Birth-Weight Reference Range. Ultrasound Obstet. Gynecol. 29, 550–555. 10.1002/uog.4019 PubMed DOI

Shahin H. I., Radnaa E., Tantengco O. A. G., Kechichian T., Kammala A. K., Sheller-Miller S., et al. (2021). Microvesicles and Exosomes Released by Amnion Epithelial Cells under Oxidative Stress Cause Inflammatory Changes in Uterine Cells†. Biol. Reprod. 105, 464–480. 10.1093/biolre/ioab088 PubMed DOI PMC

Sharps M. C., Baker B. C., Guevara T., Bischof H., Jones R. L., Greenwood S. L., et al. (2020). Increased Placental Macrophages and a Pro-inflammatory Profile in Placentas and Maternal Serum in Infants with a Decreased Growth Rate in the Third Trimester of Pregnancy. Am. J. Reprod. Immunol. 84, e13267. 10.1111/aji.13267 PubMed DOI

Sheller-miller S., Menon R. (2020). Isolation and Characterization of Human Amniotic Fluid-Derived Exosomes. Methods Enzymol. 645, 181–194. 10.1016/bs.mie.2020.07.006 PubMed DOI

Shepherd M. C., Radnaa E., Tantengco O. A., Kechichian T., Urrabaz-Garza R., Kammala A. K., et al. (2021). Extracellular Vesicles from Maternal Uterine Cells Exposed to Risk Factors Cause Fetal Inflammatory Response. Cell Commun Signal 19, 100. 10.1186/s12964-021-00782-3 PubMed DOI PMC

Stirnemann J., Villar J., Salomon L. J., Ohuma E., Ruyan P., Altman D. G., et al. (2017). International Estimated Fetal Weight Standards of the INTERGROWTH-21st Project. Ultrasound Obstet. Gynecol. 49, 478–486. 10.1002/uog.17347 PubMed DOI PMC

Street M. E., Grossi E., Volta C., Faleschini E., Bernasconi S. (2008). Placental Determinants of Fetal Growth: Identification of Key Factors in the Insulin-like Growth Factor and Cytokine Systems Using Artificial Neural Networks. BMC Pediatr. 8, 24. 10.1186/1471-2431-8-24 PubMed DOI PMC

Street M. E., Seghini P., Fieni S., Ziveri M. A., Volta C., Martorana D., et al. (2006). Changes in Interleukin-6 and IGF System and Their Relationships in Placenta and Cord Blood in Newborns with Fetal Growth Restriction Compared with Controls. Eur. J. Endocrinol. 155, 567–574. 10.1530/eje.1.02251 PubMed DOI

Tantengco O. A. G., Radnaa E., Shahin H., Kechichian T., Menon R. (2021). Cross Talk: Trafficking and Functional Impact of Maternal Exosomes at the Feto-Maternal Interface under normal and Pathologic States†. Biol. Reprod. 105, 1562–1576. 10.1093/biolre/ioab181 PubMed DOI

Tyson R. W., Staat B. C. (2008). The Intrauterine Growth-Restricted Fetus and Placenta Evaluation. Semin. Perinatol 32, 166–171. 10.1053/j.semperi.2008.02.005 PubMed DOI

Villar J., Cheikh Ismail L., Victora C. G., Ohuma E. O., Bertino E., Altman D. G., et al. (2014a). International Standards for Newborn Weight, Length, and Head Circumference by Gestational Age and Sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet 384, 857–868. 10.1016/S0140-6736(14)60932-6 PubMed DOI

Villar J., Papageorghiou A. T., Pang R., Ohuma E. O., Cheikh Ismail L., Barros F. C., et al. (2014b). The Likeness of Fetal Growth and Newborn Size across Non-isolated Populations in the INTERGROWTH-21st Project: the Fetal Growth Longitudinal Study and Newborn Cross-Sectional Study. Lancet Diabetes Endocrinol. 2, 781–792. 10.1016/S2213-8587(14)70121-4 PubMed DOI

Wang H., Hu Y. F., Hao J. H., Chen Y. H., Su P. Y., Wang Y., et al. (2015). Maternal Zinc Deficiency during Pregnancy Elevates the Risks of Fetal Growth Restriction: a Population-Based Birth Cohort Study. Sci. Rep. 5, 11262. 10.1038/srep11262 PubMed DOI PMC

Williams M. C., O'Brien W. F., Nelson R. N., Spellacy W. N. (2000). Histologic Chorioamnionitis Is Associated with Fetal Growth Restriction in Term and Preterm Infants. Am. J. Obstet. Gynecol. 183, 1094–1099. 10.1067/mob.2000.108866 PubMed DOI

Zenerino C., Nuzzo A. M., Giuffrida D., Biolcati M., Zicari A., Todros T., et al. (2017). The HMGB1/RAGE Pro-inflammatory Axis in the Human Placenta: Modulating Effect of Low Molecular Weight Heparin. Molecules 22, 22111997. 10.3390/molecules22111997 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...