Fruit wrapping kraft coated paper promotes the isolation of actinobacteria using ex situ and in situ methods

. 2021 Dec ; 66 (6) : 1047-1054. [epub] 20210906

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34487325
Odkazy

PubMed 34487325
DOI 10.1007/s12223-021-00907-8
PII: 10.1007/s12223-021-00907-8
Knihovny.cz E-zdroje

Designing novel isolation methods could enhance the diversification of the available bacterial strains to biotechnology. In this study, the new ex situ and in situ cultivation methods are introduced for the isolation of actinobacteria. In the ex situ experiments, the soil suspension was spread on the isolation media located above some ordinary papers in immediate contact with the slurry of soil substrate and incubated for 16 weeks. The paper was wholly immersed in the cave soil for in situ cultivations, and the containers were buried under layers of soil in Hampoeil cave for 10 weeks. Fruit wrapping kraft coated paper, with 68.8% recovery of isolates, was a better choice in isolation of actinobacteria than other studied filter paper. Based on the molecular identification results, 19% of the isolates obtained from the in situ cultivation method had less than 98.5% similarity to known taxa of actinobacteria and potentially may represent new species. In contrast, in the standard cultivation method, 1.3% of the isolates had less than 98.5% similarity 16Sr RNA gene. This data shows that the introduced cultivation method is a promising technique for isolating less culturable or new actinobacteria.

Zobrazit více v PubMed

Almasi F, Mohammadipanah F, Adhami H et al (2018) Introduction of marine-derived Streptomyces sp. UTMC 1334 as a source of pyrrole derivatives with anti-acetylcholinesterase activity. J Appl Microbiol 125:1370–1382. https://doi.org/10.1111/jam.14043 PubMed DOI

Baral B, Akhgari A, Metsä-Ketelä M (2018) Activation of microbial secondary metabolic pathways: avenues and challenges. Synth Syst Biotechnol 3:163–178. https://doi.org/10.1016/j.synbio.2018.09.001 PubMed DOI PMC

Bodor A, Bounedjoum N, Vincze GRE et al (2020) Challenges of unculturable bacteria: environmental perspectives. Rev Environ Sci Bio 19:1–22. https://doi.org/10.1007/s11157-020-09522-4 DOI

Chaudhary DK, Khulan A, Kim J (2019) Development of a novel cultivation technique for uncultured soil bacteria. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-43182-x DOI

Cross KL, Campbell JH, Balachandran M et al (2019) Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat Biotechnol 37:1314–1321. https://doi.org/10.1038/s41587-019-0260-6 PubMed DOI PMC

Dagnon KL, Thellen C, Ratto JA et al (2010) Physical and thermal analysis of the degradation of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) coated paper in a constructed soil medium. J Polym Environ 18:510–522. https://doi.org/10.1007/s10924-010-0231-y DOI

de la Torre BG, Albericio F (2020) The pharmaceutical industry in 2019. An analysis of FDA drug approvals from the perspective of molecules. Molecules 25:745. https://doi.org/10.3390/molecules25030745 DOI PMC

Del Sol R, Armstrong I, Wright C et al (2007) Characterization of changes to the cell surface during the life cycle of Streptomyces coelicolor: atomic force microscopy of living cells. J Bacteriol 189:2219–2225. https://doi.org/10.1128/JB.01470-06 PubMed DOI

Drzyzga O (2012) The strengths and weaknesses of Gordonia: a review of an emerging genus with increasing biotechnological potential. Crit Rev Microbiol 38:300–316. https://doi.org/10.3109/1040841X.2012.668134 PubMed DOI

Evstigneeva A, Raoult D, Karpachevskiy L et al (2009) Amoeba co-culture of soil specimens recovered 33 different bacteria, including four new species and Streptococcus pneumoniae. Microbiology 155:657–664. https://doi.org/10.1099/mic.0.022970-0 PubMed DOI

Ferrari BC, Winsley T, Gillings M et al (2008) Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nat Protoc 3:1261–1269. https://doi.org/10.1038/nprot.2008.102 PubMed DOI

Francisco OA, Glor HM, Khajehpour M (2020) Salt effects on hydrophobic solvation: is the observed salt specificity the result of excluded volume effects or water mediated ion-hydrophobe association? Chem Phys Chem 21:484–493. https://doi.org/10.1002/cphc.201901000 PubMed DOI

Gavrish E, Bollmann A, Epstein S et al (2008) A trap for in-situ cultivation of filamentous actinobacteria. J Microbiol Methods 72:257–262. https://doi.org/10.1016/j.mimet.2007.12.009 PubMed DOI PMC

Goldstein JI, Newbury DE, Echlin P et al (1992) Coating and conductivity techniques for SEM and microanalysis. In: Scanning electron microscopy and X-ray microanalysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0491-3_13

Guimarães TC, Gomes TS, Fernandes CD et al (2020) Antitumor microbial products by actinomycetes isolated from different environments. In: Arora PK (ed) Microbial technology for health and environment, 1st edn. Springer, Singapore, pp 113–160 DOI

Hahn MW, Koll U, Schmidt J (2019) Isolation and cultivation of bacteria. In: Hurst, Christon J (ed) The structure and function of aquatic microbial communities, 1 st edn. Springer, Switzerland AG, pp 313–351

Hamedi J, Imanparast S, Mohammadipanah F (2015) Molecular, chemical and biological screening of soil actinomycete isolates in seeking bioactive peptide metabolites. Iran J Microbiol 7:23–30 PubMed PMC

Hamedi J, Kafshnouchi M, Ranjbaran M (2019) A study on actinobacterial diversity of Hampoeil cave and screening of their biological activities. Saudi J Biol Sci 26:1587–1595. https://doi.org/10.1016/j.sjbs.2018.10.010 PubMed DOI

Jin Y, Gan G, Yu X et al (2017) Isolation of viable but non-culturable bacteria from printing and dyeing wastewater bioreactor based on resuscitation promoting factor. Curr Microbiol 74:787–797. https://doi.org/10.1007/s00284-017-1240-z PubMed DOI

Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129. https://doi.org/10.1126/science.1070633 PubMed DOI

Kato S, Yamagishi A, Daimon S et al (2018) Isolation of previously uncultured slow-growing bacteria by using a simple modification in the preparation of agar media. Appl Environ Microbiol 84:e00807-e818. https://doi.org/10.1128/AEM.00807-18 PubMed DOI PMC

Kodani S, Sato K, Hemmi H et al (2014) Isolation and structural determination of a new hydrophobic peptide venepeptide from Streptomyces venezuelae. J Antibiot 67:839–842. https://doi.org/10.1038/ja.2014.81 DOI

Kumar V, Bisht GS, Institu SBSP (2010) An improved method for isolation of genomic DNA from filamentous actinomycetes. Int J Eng Technol Manage Appl Sci 41:1383–1389. https://doi.org/10.1590/S0103-84782011000800014 DOI

Kurahashi M, Fukunaga Y, Sakiyama Y et al (2009) Iamia majanohamensis gen. nov., sp. nov., an actinobacterium isolated from sea cucumber Holothuria edulis, and proposal of Iamiaceae fam. nov. Int J Syst Evol Microbiol 59:869–873. https://doi.org/10.1099/ijs.0.005611-0 PubMed DOI

Lewis WH, Ettema TJ (2019) Culturing the uncultured. Nat Biotechnol 37:278–1279. https://doi.org/10.1038/s41587-019-0300-2 DOI

Mohammadipanah F, Matasyoh J, Hamedi J et al (2012) Persipeptides A and B, two cyclic peptides from Streptomyces sp. UTMC 1154. Bioorg Med Chem 20:335–339. https://doi.org/10.1016/j.bmc.2011.10.076 PubMed DOI

Orr IG, Hadar Y, Sivan A (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 65:97–104. https://doi.org/10.1007/s00253-004-1584-8 PubMed DOI

Overmann J, Abt B, Sikorski J (2017) Present and future of culturing bacteria. Annu Rev Microbiol 71:711–730. https://doi.org/10.1146/annurev-micro-090816-093449 PubMed DOI

Parris N, Sykes M, Dickey LC et al (2002) Recyclable zein-coated kraft paper and linerboard. Prog Paper Recycl 11:24–29

Petráčková D, Buriánková K, Tesařová E et al (2013) Surface hydrophobicity and roughness influences the morphology and biochemistry of streptomycetes during attached growth and differentiation. FEMS Microbiol Lett 342:147–156. https://doi.org/10.1111/1574-6968.12129 PubMed DOI

Polkade AV, Mantri SS, Patwekar UJ et al (2016) Quorum sensing: an under-explored phenomenon in the phylum Actinobacteria. Front Microbiol 7:131. https://doi.org/10.3389/fmicb.2016.00131 PubMed DOI PMC

Pridham TG, Anderson P, Foley C et al (1957) A selection of media for maintenance and taxonomic study of streptomycetes. Antibiot Annu 1956:947–953

Pulschen AA, Bendia AG, Fricker AD et al (2017) Isolation of uncultured bacteria from antarctica using long incubation periods and low nutritional media. Front Microbiol 8:1346. https://doi.org/10.3389/fmicb.2017.01346 PubMed DOI PMC

Ravi K, García-Hidalgo J, Brink DP et al (2019) Physiological characterization and sequence analysis of a syringate-consuming Actinobacterium. Biores Tchnol 285:121327. https://doi.org/10.1016/j.biortech.2019.121327 DOI

Raynal A, Karray F, Tuphile K et al (2006) Excisable cassettes: new tools for functional analysis of Streptomyces genomes. Appl Environ Microbiol 72:4839–4844. https://doi.org/10.1128/AEM.00167-06 PubMed DOI PMC

Reynaud C, Tapin-Lingua S, Elegir G et al (2013) Hydrophobic properties conferred to Kraft pulp by a laccase-catalysed treatment with lauryl gallate. J Biotechnol 167:302–308. https://doi.org/10.1016/j.jbiotec.2013.07.014 PubMed DOI

Salimi F, Hamedi J, Motevaseli E et al (2018) Isolation and screening of rare Actinobacteria, a new insight for finding natural products with antivascular calcification activity. J Appl Microbiol 124:254–266. https://doi.org/10.1111/jam.13605 PubMed DOI

Schofield C (2015) Antibiotics: current innovations and future trends. Caister Academic Press, U.K.

Singh AP, Dawson BS (2010) Probing the wood coating interface at high resolution. In: editors. Delamination in wood, wood products and wood-based composites, Springer, pp 145–157

Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231 DOI

Subramani R, Sipkema D (2019) Marine rare actinomycetes: a promising source of structurally diverse and unique novel natural products. Mar Drugs 17:249. https://doi.org/10.3390/md17050249 DOI PMC

Twede D (2005) The origins of paper based packaging. In: Conference on historical analysis and research in marketing proceedings, vol. 12, pp 288–300

Whitman WB, Goodfellow M, Kampfer P (2012) Bergey’s manual of systematic bacteriology: Volume 5, The Actinobacteria. Springer, New York

Wink J, Mohammadipanah F, Hamedi J (2017) Biology and biotechnology of actinobacteria. Springer, Berlin DOI

Zeinali M, Vossoughi M, Ardestani SK et al (2007) Hydrocarbon degradation by thermophilic Nocardia otitidiscaviarum strain TSH1: physiological aspects. J Basic Microbiol 47:534–539. https://doi.org/10.1002/jobm.200700283 PubMed DOI

Zhang B, Wu X, Tai X et al (2019) Variation in actinobacterial community ccomposition and potential function in different soil ecosystems belonging to the arid Heihe River Basin of Northwest China. Front Microbiol 10:2209–2220. https://doi.org/10.3389/fmicb.2019.02209 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Strategies for Actinobacteria Isolation, Cultivation, and Metabolite Production that Are Biologically Important

. 2025 Apr 29 ; 10 (16) : 15923-15934. [epub] 20250418

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...