Strategies for Actinobacteria Isolation, Cultivation, and Metabolite Production that Are Biologically Important

. 2025 Apr 29 ; 10 (16) : 15923-15934. [epub] 20250418

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40321516

Novel antimicrobial agents are urgently needed to combat antimicrobial resistance from multidrug-resistant organisms. Actinobacteria are key sources of bioactive metabolites with diverse biological activities. Despite their contributions to drug discovery, the process from strain identification to drug manufacturing faces many challenges, especially the rediscovery of known compounds. Recent technological and scientific advancements have accelerated drug development. Efforts to isolate and screen rare actinobacterial species could yield novel bioactive compounds. This review summarizes techniques for selectively isolating rare actinobacteria, improving bioactive metabolite production, and discovering potential strains. Notably, new genomic strategies and new discoveries regarding spectroscopic signature-based bioactive natural products containing specific structural motifs are also discussed. Furthermore, this review updates the compounds derived from rare actinobacteria and their biological applications.

Zobrazit více v PubMed

Hei Y.; Zhang H.; Tan N.; Zhou Y.; Wei X.; Hu C.; Liu Y.; Wang L.; Qi J.; Gao J.-M. Antimicrobial activity and biosynthetic potential of cultivable actinomycetes associated with lichen symbiosis from Qinghai-Tibet Plateau. Microbiol Res. 2021, 244, 12665210.1016/j.micres.2020.126652. PubMed DOI

Subramani R.; Sipkema D. Marine rare actinomycetes: A promising source of structurally diverse and unique novel natural products. Mar. Drugs. 2019, 17 (5), 249.10.3390/md17050249. PubMed DOI PMC

Barka E. A.; Vatsa P.; Sanchez L.; Gaveau-Vaillant N.; Jacquard C.; Klenk H.-P.; Clément C.; Ouhdouch Y.; van Wezel G. P. Taxonomy, physiology, and natural products of actinobacteria. Microbiol. Mol. Biol. Rev. 2016, 80 (1), 1–43. 10.1128/mmbr.00019-15. PubMed DOI PMC

Azman A. S.; Mawang C. I.; Khairat J. E.; AbuBakar S. Actinobacteria-a promising natural source of anti-biofilm agents. Int. J. Microbiol. 2019, 22 (4), 403–409. 10.1007/s10123-019-00066-4. PubMed DOI

Zhao X. Q.; Xu X. N.; Chen L. Y. Production of enzymes from marine actinobacteria. Adv. Food Nutr. Res. 2016, 78, 137–151. 10.1016/bs.afnr.2016.06.002. PubMed DOI

Sanjivkumar M.; Silambarasan T.; Palavesam A.; Immanuel G. Biosynthesis, purification and characterization of β-1,4-xylanase from a novel mangrove associated actinobacterium Streptomyces olivaceus (MSU3) and its applications. Protein Expr. Purif. 2017, 130, 1–12. 10.1016/j.pep.2016.09.017. PubMed DOI

Thakrar F. J.; Singh S. P. Catalytic, thermodynamic and structural properties of an immobilized and highly thermostable alkaline protease from a haloalkaliphilic actinobacteria, Nocardiopsis alba TATA-5. Bioresour. Technol. 2019, 278, 150–158. 10.1016/j.biortech.2019.01.058. PubMed DOI

Ossai J.; Khatabi B.; Nybo S. E.; Kharel M. K. Renewed interests in the discovery of bioactive actinomycete metabolites driven by emerging technologies. J. Appl. Microbiol. 2022, 132 (1), 59–77. 10.1111/jam.15225. PubMed DOI PMC

Yang Z.; He J.; Wei X.; Ju J.; Ma J. Exploration and genome mining of natural products from marine Streptomyces. Appl. Microbiol. 2020, 104 (1), 67–76. 10.1007/s00253-019-10227-0. PubMed DOI

Kawahara T.; Izumikawa M.; Kozone I.; Hashimoto J.; Kagaya N.; Koiwai H.; Komatsu M.; Fujie M.; Sato N.; Ikeda H.; et al. Neothioviridamide, a polythioamide compound produced by heterologous expression of a Streptomyces sp. cryptic RiPP biosynthetic gene cluster. J. Nat. Prod. 2018, 81 (2), 264–269. 10.1021/acs.jnatprod.7b00607. PubMed DOI

Xiao F.; Li H.; Xu M.; Li T.; Wang J.; Sun C.; Hong K.; Li W. Staurosporine derivatives generated by pathway engineering in a heterologous host and their cytotoxic selectivity. J. Nat. Prod. 2018, 81 (8), 1745–1751. 10.1021/acs.jnatprod.8b00103. PubMed DOI

Caesar L. K.; Montaser R.; Keller N. P.; Kelleher N. L. Metabolomics and genomics in natural products research: Complementary tools for targeting new chemical entities. J. Nat. Prod. 2021, 38 (11), 2041–2065. 10.1039/D1NP00036E. PubMed DOI PMC

Newman D. J.; Cragg G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83 (3), 770–803. 10.1021/acs.jnatprod.9b01285. PubMed DOI

Hegemann J. D.; Birkelbach J.; Walesch S.; Müller R. Current developments in antibiotic discovery: Global microbial diversity as a source for evolutionary optimized anti-bacterials. EMBO Rep. 2023, 24 (1), e5618410.15252/embr.202256184. PubMed DOI PMC

Diez C. Biological aspects involves in the degradation of organic pollutants. J. Soil Sci. Plant Nutr. 2010, 10, 244–267. 10.4067/S0718-95162010000100004. DOI

Wang X.; Lu Y.; Shaaban K. A.; Wang G.; Xia X.; Zhu Y. Editorial: Bioactive natural products from microbes: Isolation, characterization, biosynthesis and structure modification. Front. Chem. 2022, 10, 88362.10.3389/fchem.2022.883652. PubMed DOI PMC

Lee N.; Hwang S.; Kim J.; Cho S.; Palsson B.; Cho B.-K. Mini review: Genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Comput. Struct. Biotechnol. J. 2020, 18, 1548–1556. 10.1016/j.csbj.2020.06.024. PubMed DOI PMC

Gomez-Escribano J. P.; Alt S.; Bibb M. J. Next generation sequencing of actinobacteria for the discovery of novel natural products. Mar. Drugs. 2016, 14 (4), 78.10.3390/md14040078. PubMed DOI PMC

Blin K.; Shaw S.; Augustijn H. E.; Reitz Z. L.; Biermann F.; Alanjary M.; Fetter A.; Terlouw B. R.; Metcalf W. W.; Helfrich E. J. N.; et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023, 51 (W1), W46–W50. 10.1093/nar/gkad344. PubMed DOI PMC

Wolfender J.-L.; Marti G.; Thomas A.; Bertrand S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A 2015, 1382, 136–164. 10.1016/j.chroma.2014.10.091. PubMed DOI

Wang M.; Carver J. J.; Phelan V. V.; Sanchez L. M.; Garg N.; Peng Y.; Nguyen D. D.; Watrous J.; Kapono C. A.; Luzzatto-Knaan T.; et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 2016, 34 (8), 828–837. 10.1038/nbt.3597. PubMed DOI PMC

Nuñez Santiago I.; Machushynets N. V.; Mladic M.; van Bergeijk D. A.; Elsayed S. S.; Hankemeier T.; van Wezel G. P. nanoRAPIDS as an analytical pipeline for the discovery of novel bioactive metabolites in complex culture extracts at the nanoscale. Commun. Chem. 2024, 7 (1), 71.10.1038/s42004-024-01153-y. PubMed DOI PMC

Dührkop K.; Fleischauer M.; Ludwig M.; Aksenov A. A.; Melnik A. V.; Meusel M.; Dorrestein P. C.; Rousu J.; Böcker S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods. 2019, 16 (4), 299–302. 10.1038/s41592-019-0344-8. PubMed DOI

Mildau K.; Ehlers H.; Oesterle I.; Pristner M.; Warth B.; Doppler M.; Bueschl C.; Zanghellini J.; van der Hooft J. J. J. Tailored mass spectral data exploration using the SpecXplore interactive dashboard. Anal. Chem. 2024, 96 (15), 5798–5806. 10.1021/acs.analchem.3c04444. PubMed DOI PMC

Shin Y.-H.; Im J. H.; Kang I.; Kim E.; Jang S. C.; Cho E.; Shin D.; Hwang S.; Du Y. E.; Huynh T.-H.; et al. Genomic and spectroscopic signature-based discovery of natural macrolactams. J. Am. Chem. Soc. 2023, 145 (3), 1886–1896. 10.1021/jacs.2c11527. PubMed DOI

Amin D. H.; Abdallah N. A.; Abolmaaty A.; Tolba S.; Wellington E. M. H. Microbiological and molecular insights on rare Actinobacteria harboring bioactive prospective. Bull. Natl. Res. Cent. 2020, 44 (1), 5.10.1186/s42269-019-0266-8. DOI

Jose P. A.; Maharshi A.; Jha B. Actinobacteria in natural products research: Progress and prospects. Microbiol. Res. 2021, 246, 12670810.1016/j.micres.2021.126708. PubMed DOI

Li J.; Zhao G.-Z.; Huang H.-Y.; Qin S.; Zhu W.-Y.; Zhao L.-X.; Xu L.-H.; Zhang S.; Li W.-J.; Strobel G. Isolation and characterization of culturable endophytic actinobacteria associated with Artemisia annua L. A. Van. Leeuw. J. Microb. 2012, 101, 515–527. 10.1007/s10482-011-9661-3. PubMed DOI

Salam N.; Xian W.-D.; Asem M. D.; Xiao M.; Li W.-J. From ecophysiology to cultivation methodology: Filling the knowledge gap between uncultured and cultured microbes. Mar. Life sci. Technol. 2021, 3 (2), 132–147. 10.1007/s42995-020-00064-w. PubMed DOI PMC

Austin B. The value of cultures to modern microbiology. A. Van. Leeuw. J. Microb. 2017, 110 (10), 1247–1256. 10.1007/s10482-017-0840-8. PubMed DOI

Song H. S.; Kim Y. B.; Kim J. Y.; Roh S. W.; Whon T. W. Advances in culturomics research on the human gut microbiome: optimizing medium composition and culture techniques for enhanced microbial discovery. J. Microbiol Biotechnol. 2024, 34 (4), 757.10.4014/jmb.2311.11024. PubMed DOI PMC

Modolon F.; Schultz J.; Duarte G.; Vilela C. L. S.; Thomas T.; Peixoto R. S. In situ devices can culture the microbial dark matter of corals. iScience 2023, 26 (12), 10837410.1016/j.isci.2023.108374. PubMed DOI PMC

Almasi F.; Kafshnouchi M.; Mohammadipanah F.; Hamedi J. Fruit wrapping kraft coated paper promotes the isolation of actinobacteria using ex situ and in situ methods. Folia Microbiol. (Praha) 2021, 66 (6), 1047–1054. 10.1007/s12223-021-00907-8. PubMed DOI

Nichols D.; Cahoon N.; Trakhtenberg E. M.; Pham L.; Mehta A.; Belanger A.; Kanigan T.; Lewis K.; Epstein S. S. Use of ichip for high-throughput in situ cultivation of ″uncultivable″ microbial species. Appl. Environ. Microbiol. 2010, 76 (8), 2445–2450. 10.1128/AEM.01754-09. PubMed DOI PMC

Jung D.; Seo E.-Y.; Epstein S. S.; Joung Y.; Han J.; Parfenova V. V.; Belykh O. I.; Gladkikh A. S.; Ahn T. S. Application of a new cultivation technology, I-tip, for studying microbial diversity in freshwater sponges of Lake Baikal, Russia. FEMS Microbiol. Ecol. 2014, 90 (2), 417–423. 10.1111/1574-6941.12399. PubMed DOI

Dam H. T.; Vollmers J.; Sobol M. S.; Cabezas A.; Kaster A.-K. Targeted cell sorting combined with single cell genomics captures low abundant microbial dark matter with higher sensitivity than metagenomics. Front. Microbiol. 2020, 11, 1377.10.3389/fmicb.2020.01377. PubMed DOI PMC

Tian D.; Wang C.; Liu Y.; Zhang Y.; Caliari A.; Lu H.; Xia Y.; Xu B.; Xu J.; Yomo T. Cell sorting-directed selection of bacterial cells in bigger sizes analyzed by imaging flow cytometry during experimental evolution. Int. J. Mol. Sci. 2023, 24 (4), 3243.10.3390/ijms24043243. PubMed DOI PMC

Kurm V.; van der Putten W. H.; Hol W. H. G. Cultivation-success of rare soil bacteria is not influenced by incubation time and growth medium. PLoS One 2019, 14 (1), e021007310.1371/journal.pone.0210073. PubMed DOI PMC

Wilson M. C.; Mori T.; Rückert C.; Uria A. R.; Helf M. J.; Takada K.; Gernert C.; Steffens U. A. E.; Heycke N.; Schmitt S.; et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 2014, 506 (7486), 58–62. 10.1038/nature12959. PubMed DOI

Zhang Y.-Q.; Tian X.-P.; Tisa L. S.; Nouioui I.; Li W.-J. Editorial: A focus on actinobacteria: Diversity, distribution, and secondary metabolites. Front. Microbiol. 2022, 13, 90236010.3389/fmicb.2022.902360. PubMed DOI PMC

Xie F.; Pathom-Aree W. Actinobacteria from desert: Diversity and biotechnological applications. Front. Microbiol. 2021, 12, 76553110.3389/fmicb.2021.765531. PubMed DOI PMC

Hayakawa M.; Sadakata T.; Kajiura T.; Nonomura H. New methods for the highly selective isolation of Micromonospora and Microbispora from soil. J. Ferment. Bioeng. 1991, 72, 320–326. 10.1016/0922-338X(91)90080-Z. DOI

Zitouni A.; Lamari L.; Boudjella H.; Badji B.; Sabaou N.; Gaouar A.; Mathieu F.; Lebrihi A.; Labeda D. P. Saccharothrix algeriensis sp. nov., isolated from Saharan soil. Int. J. Syst. Evol. Microbiol. 2004, 54, 1377–1381. 10.1099/ijs.0.02679-0. PubMed DOI

Bredholdt H.; Galatenko O. A.; Engelhardt K.; Fjaervik E.; Terekhova L. P.; Zotchev S. B. Rare actinomycete bacteria from the shallow water sediments of the Trondheim fjord, Norway: Isolation, diversity and biological activity. Environ. Microbiol. 2007, 9, 2756–2764. 10.1111/j.1462-2920.2007.01387.x. PubMed DOI

Ezeobiora C. E.; Igbokwe N. H.; Amin D. H.; Enwuru N. V.; Okpalanwa C. F.; Mendie U. E. Uncovering the biodiversity and biosynthetic potentials of rare actinomycetes. Future J. Pharm. Sci. 2022, 8 (1), 23.10.1186/s43094-022-00410-y. DOI

Tamura T.; Hayakawa M.; Hatano K. A new genus of the order Actinomycetales, Virgosporangium gen. nov., with descriptions of Virgosporangium ochraceum sp. nov. and Virgosporangium aurantiacum sp. nov. Int. J. Syst. Evol. Microbiol. 2001, 51, 1809–1816. 10.1099/00207713-51-5-1809. PubMed DOI

Tiwari K.; Gupta R. K. Diversity and isolation of rare actinomycetes: an overview. Crit. Rev. Microbiol. 2013, 39 (3), 256–294. 10.3109/1040841X.2012.709819. PubMed DOI

Suzuki S.; Okuda T.; Komatsubara S. Selective isolation and distribution of Sporichthya strains in soil. Appl. Environ. Microbiol. 1999, 65, 1930–1935. 10.1128/AEM.65.5.1930-1935.1999. PubMed DOI PMC

Hayakawa M.; Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J. Ferment. Technol. 1987, 65 (5), 501–509. 10.1016/0385-6380(87)90108-7. DOI

Hussain A.; Rather M. A.; Dar M. S.; Aga M. A.; Ahmad N.; Manzoor A.; Qayum A.; Shah A.; Mushtaq S.; Ahmad Z.; et al. Novel bioactive molecules from Lentzea violacea strain AS 08 using one strain-many compounds (OSMAC) approach. Bioorg. Med. Chem. Lett. 2017, 27 (11), 2579–2582. 10.1016/j.bmcl.2017.03.075. PubMed DOI

Hayakawa M.; Momose Y.; Yamazaki T.; Nonomura H. A method for the selective isolation of Microtetraspora glauca and related four-spored actinomycetes from soil. J. Appl. Bacteriol. 1996, 80 (4), 375–386. 10.1111/j.1365-2672.1996.tb03232.x. DOI

Suzuki S.-i.; Takahashi K.; Okuda T.; Komatsubara S. Selective isolation of Actinobispora on gellan gum plates. Can. J. Microbiol. 1998, 44, 1–5. 10.1139/w97-117. DOI

Suzuki Si. Establishment and use of gellan gum media for selective isolation and distribution survey of specific rare actinomycetes. Actinomycetol 2001, 15 (2), 55–60. 10.3209/saj.15_55. DOI

Pathom-Aree W.; Stach J. E.; Ward A. C.; Horikoshi K.; Bull A. T.; Goodfellow M. Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 2006, 10 (3), 181–189. 10.1007/s00792-005-0482-z. PubMed DOI

Ruttanasutja P.; Pathom-aree W. Selective isolation of cultivable actinomycetes from Thai coastal marine sediment. Chiang Mai J. Sci. 2015, 42 (1), 88–103.

Bredholt H.; Fjærvik E.; Johnsen G.; Zotchev S. B. Actinomycetes from sediments in the Trondheim Fjord, Norway: Diversity and biological activity. Mar. Drugs. 2008, 6, 12–24. 10.3390/md6010012. PubMed DOI PMC

Dai H.-Q.; Wang J.; Xin Y.-H.; Pei G.; Tang S.-K.; Ren B.; Ward A.; Ruan J.-S.; Li W.-J.; Zhang L.-X. Verrucosispora sediminis sp. nov., a cyclodipeptide-producing actinomycete from deep-sea sediment. Int. J. Syst. Evol. Microbiol. 2010, 60, 1807–1812. 10.1099/ijs.0.017053-0. PubMed DOI

Peng X.-Y.; Wu J.-T.; Shao C.-L.; Li Z.-Y.; Chen M.; Wang C.-Y. Co-culture: Stimulate the metabolic potential and explore the molecular diversity of natural products from microorganisms. Mar. Life Sci.Technol. 2021, 3 (3), 363–374. 10.1007/s42995-020-00077-5. PubMed DOI PMC

D’Onofrio A.; Crawford J. M.; Stewart E. J.; Witt K.; Gavrish E.; Epstein S.; Clardy J.; Lewis K. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem. Biol. 2010, 17 (3), 254–264. 10.1016/j.chembiol.2010.02.010. PubMed DOI PMC

McArthur K. A.; Mitchell S. S.; Tsueng G.; Rheingold A.; White D. J.; Grodberg J.; Lam K. S.; Potts B. C. Lynamicins A-E, chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete. J. Nat. Prod. 2008, 71 (10), 1732–1737. 10.1021/np800286d. PubMed DOI

KÜSter E.; Williams S. T. Selection of media for isolation of Streptomyces. Nature 1964, 202 (4935), 928–929. 10.1038/202928a0. PubMed DOI

Takahashi Y.; Omura S. Isolation of new actinomycete strains for the screening of new bioactive compounds. J. Gen. Appl. Microbiol. 2003, 49 (3), 141–154. 10.2323/jgam.49.141. PubMed DOI

Hesselman M. C.; Odoni D. I.; Ryback B. M.; de Groot S.; van Heck R. G. A.; Keijsers J.; Kolkman P.; Nieuwenhuijse D.; van Nuland Y. M.; Sebus E.; et al. A multi-platform flow device for microbial (co-) cultivation and microscopic analysis. PLoS One 2012, 7 (5), e3698210.1371/journal.pone.0036982. PubMed DOI PMC

Plugge C. M.; Stams A. M. Enrichment of thermophilic syntrophic anaerobic glutamate-degrading consortia using a dialysis membrane reactor. Microb. Ecol. 2002, 43 (3), 378–387. 10.1007/s00248-001-0047-3. PubMed DOI

Singh V.; Haque S.; Niwas R.; Srivastava A.; Pasupuleti M.; Tripathi C. K. M. Strategies for fermentation medium optimization: An in-depth review. Front. Microbiol. 2017, 7, 2087.10.3389/fmicb.2016.02087. PubMed DOI PMC

Hayakawa M. Studies on the isolation and distribution of rare actinomycetes in soil. Actinomycetologica 2008, 22 (1), 12–19. 10.3209/saj.SAJ220103. DOI

Fang B.-Z.; Salam N.; Han M.-X.; Jiao J.-Y.; Cheng J.; Wei D.-Q.; Xiao M.; Li W.-J. Insights on the effects of heat pretreatment, pH, and calcium salts on isolation of rare actinobacteria from karstic caves. Front. Microbiol. 2017, 8, 1535.10.3389/fmicb.2017.01535. PubMed DOI PMC

Rangseekaew P.; Pathom-aree W. Cave actinobacteria as producers of bioactive metabolites. Front. Microbiol. 2019, 10, 387.10.3389/fmicb.2019.00387. PubMed DOI PMC

Shavyrkina N. A.; Skiba E. A.; Kazantseva A. E.; Gladysheva E. K.; Budaeva V. V.; Bychin N. V.; Gismatulina Y. A.; Kashcheyeva E. I.; Mironova G. F.; Korchagina A. A.; et al. Static culture combined with aeration in biosynthesis of bacterial cellulose. Polymers 2021, 13 (23), 4241.10.3390/polym13234241. PubMed DOI PMC

Pan R.; Bai X.; Chen J.; Zhang H.; Wang H. Exploring structural diversity of microbe secondary metabolites using OSMAC strategy. Front. Microbiol. 2019, 10, 294.10.3389/fmicb.2019.00294. PubMed DOI PMC

Zhang Q. W.; Lin L. G.; Ye W. C. Techniques for extraction and isolation of natural products. Chinese Med. 2018, 13 (1), 20.10.1186/s13020-018-0177-x. PubMed DOI PMC

Shi T.; Li Y. J.; Wang Z. M.; Wang Y. F.; Wang B.; Shi D. Y. New pyrroline isolated from Antarctic krill-derived actinomycetes Nocardiopsis sp. LX-1 combining with molecular networking. Mar. drugs. 2023, 21 (2), 127.10.3390/md21020127. PubMed DOI PMC

Palomo S.; González I.; De la Cruz M.; Martín J.; Tormo J. R.; Anderson M.; Hill R. T.; Vicente F.; Reyes F.; Genilloud O. Sponge-derived Kocuria and Micrococcus spp. as sources of the new thiazolyl peptide antibiotic kocurin. Mar. Drugs. 2013, 11 (4), 1071–1086. 10.3390/md11041071. PubMed DOI PMC

Sunga M. J.; Teisan S.; Tsueng G.; Macherla V. R.; Lam K. S. Seawater requirement for the production of lipoxazolidinones by marine actinomycete strain NPS8920. J. Ind. Microbiol. Biotechnol. 2008, 35 (7), 761–765. 10.1007/s10295-008-0344-7. PubMed DOI

Chen J.; Frediansyah A.; Männle D.; Straetener J.; Brötz-Oesterhelt H.; Ziemert N.; Kaysser L.; Gross H. New Nocobactin derivatives with antimuscarinic activity, Terpenibactins A-C, revealed by genome mining of Nocardia terpenica IFM 0406. ChemBioChem. 2020, 21 (15), 2205–2213. 10.1002/cbic.202000062. PubMed DOI PMC

Liu L.; Liu Y.; Liu S.; Nikandrova A. A.; Imamutdinova A. N.; Lukianov D. A.; Osterman I. A.; Sergiev P. V.; Zhang B.; Zhang D.; et al. Bioprospecting for the soil-derived actinobacteria and bioactive secondary metabolites on the Western Qinghai-Tibet Plateau. Front. Microbiol. 2023, 14, 124700110.3389/fmicb.2023.1247001. PubMed DOI PMC

Siddharth S.; Aswathanarayan J. B.; Kuruburu M. G.; Madhunapantula S. R.; Vittal R. R. Diketopiperazine derivative from marine actinomycetes Nocardiopsis sp. SCA30 with antimicrobial activity against MRSA. Arch. Microbiol. 2021, 203 (10), 6173–6181. 10.1007/s00203-021-02582-2. PubMed DOI

Watson D. J.; Wiesner L.; Matimela T.; Beukes D.; Meyers P. R. Tandem LC-MS identification of antitubercular compounds in zones of growth inhibition produced by South African filamentous actinobacteria. Molecules 2023, 28 (11), 4276.10.3390/molecules28114276. PubMed DOI PMC

Xie Y.; Chen J.; Wang B.; Chen T.; Chen J.; Zhang Y.; Liu X.; Chen Q. Activation and enhancement of caerulomycin A biosynthesis in marine-derived Actinoalloteichus sp. AHMU CJ021 by combinatorial genome mining strategies. Microb. Cell Factories. 2020, 19 (1), 159.10.1186/s12934-020-01418-w. PubMed DOI PMC

Shen Q.; Dai G.; Li A.; Liu Y.; Zhong G.; Li X.; Ren X.; Sui H.; Fu J.; Jiao N.; Zhang Y.; Bian X.; Zhou H. Genome-guided discovery of highly oxygenated aromatic polyketides, Saccharothrixins D–M, from the rare marine actinomycete Saccharothrix sp. D09. J. Nat. Prod. 2021, 84 (11), 2875–2884. 10.1021/acs.jnatprod.1c00617. PubMed DOI

Tarantini F. S.; Brunati M.; Taravella A.; Carrano L.; Parenti F.; Hong K. W.; Williams P.; Chan K. G.; Heeb S.; Chan W. C. Actinomadura graeca sp. nov.: A novel producer of the macrocyclic antibiotic zelkovamycin. PLoS One 2021, 16 (11), e026041310.1371/journal.pone.0260413. PubMed DOI PMC

El-Hawary S. S.; Hassan M. A.; Hudhud A. O.; Abdelmohsen U. R.; Mohammed R. Elicitation for activation of the actinomycete genome’s cryptic secondary metabolite gene clusters. RSC Adv. 2023, 13 (9), 5778–5795. 10.1039/D2RA08222E. PubMed DOI PMC

Alwali A. Y.; Parkinson E. I. Small molecule inducers of actinobacteria natural product biosynthesis. J. Ind. Microbiol. Biotechnol. 2023, 50 (1), kuad01910.1093/jimb/kuad019. PubMed DOI PMC

Tomm H. A.; Ucciferri L.; Ross A. C. Advances in microbial culturing conditions to activate silent biosynthetic gene clusters for novel metabolite production. J. Ind. Microbiol. Biotechnol. 2019, 46, 1381–1400. 10.1007/s10295-019-02198-y. PubMed DOI

Dashti Y.; Grkovic T.; Abdelmohsen U. R.; Hentschel U.; Quinn R. J. Actinomycete metabolome induction/suppression with N-acetylglucosamine. J. Nat. Prod. 2017, 80 (4), 828–836. 10.1021/acs.jnatprod.6b00673. PubMed DOI

Mohammadipanah F.; Kermani F.; Salimi F. Awakening the secondary metabolite pathways of Promicromonospora kermanensis using physicochemical and biological elicitors. Appl. Biochem. Biotechnol. 2020, 192 (4), 1224–1237. 10.1007/s12010-020-03361-3. PubMed DOI

Ratcliff W. C.; Denison R. F. Microbiology. Alternative actions for antibiotics. Science 2011, 332 (6029), 547–548. 10.1126/science.1205970. PubMed DOI

Imai Y.; Sato S.; Tanaka Y.; Ochi K.; Hosaka T. Lincomycin at subinhibitory concentrations potentiates secondary metabolite production by Streptomyces spp. Appl. Environ. Microbiol. 2015, 81 (11), 3869–3879. 10.1128/AEM.04214-14. PubMed DOI PMC

Takahashi Y. Isolation of hitherto-uncultivated microorganisms- Application of radical scavengers. J. Gen. Appl. Microbiol. 2024, 70 (2), 1.10.2323/jgam.2024.02.002. PubMed DOI

Abdelmohsen U. R.; Grkovic T.; Balasubramanian S.; Kamel M. S.; Quinn R. J.; Hentschel U. Elicitation of secondary metabolism in actinomycetes. Biotechnol. Adv. 2015, 33 (6), 798–811. 10.1016/j.biotechadv.2015.06.003. PubMed DOI

Moody S. Microbial co-culture: Harnessing intermicrobial signaling for the production of novel antimicrobials. Future Microbiol. 2014, 9, 575–578. 10.2217/fmb.14.25. PubMed DOI

Kim J. H.; Lee N.; Hwang S.; Kim W.; Lee Y.; Cho S.; Palsson B. O.; Cho B. K. Discovery of novel secondary metabolites encoded in actinomycete genomes through coculture. J. Ind. Microbiol. Biotechnol. 2021, 48, 3–4. 10.1093/jimb/kuaa001. PubMed DOI PMC

Kurosawa K.; Ghiviriga I.; Sambandan T. G.; Lessard P. A.; Barbara J. E.; Rha C.; Sinskey A. J. Rhodostreptomycins, antibiotics biosynthesized following horizontal gene transfer from Streptomyces padanus to Rhodococcus fascians. J. Am. Chem. 2008, 130 (4), 1126–1127. 10.1021/ja077821p. PubMed DOI

Khokhlov A. S.; Tovarova I. I.; Borisova L. N.; Pliner S. A.; Shevchenko L. N.; Kornitskaia E. [The A-factor, responsible for streptomycin biosynthesis by mutant strains of Actinomyces streptomycini]. Dokl Akad Nauk SSSR. 1967, 177 (1), 232–235. PubMed

Gräfe U.; Schade W.; Eritt I.; Fleck W. F.; Radics L. A new inducer of anthracycline biosynthesis from Streptomyces viridochromogenes. J. Antibiot (Tokyo). 1982, 35 (12), 1722–1723. 10.7164/antibiotics.35.1722. PubMed DOI

Tyurin A. P.; Alferova V. A.; Korshun V. A. Chemical Elicitors of Antibiotic Biosynthesis in Actinomycetes. Microorganisms 2018, 6 (2), 52.10.3390/microorganisms6020052. PubMed DOI PMC

Hoshino S.; Ozeki M.; Awakawa T.; Morita H.; Onaka H.; Abe I. Catenulobactins A and B, heterocyclic peptides from culturing Catenuloplanes sp. with a mycolic acid-containing bacterium. J. Nat. Prod. 2018, 81 (9), 2106–2110. 10.1021/acs.jnatprod.8b00261. PubMed DOI

Abdelmohsen U. R.; Grkovic T.; Balasubramanian S.; Kamel M. S.; Quinn R. J.; Hentschel U. Elicitation of secondary metabolism in actinomycetes. Biotechnol. Adv. 2015, 33 (6), 798–811. 10.1016/j.biotechadv.2015.06.003. PubMed DOI

Kumsiri B.; Pekkoh J.; Pathom-aree W.; Lumyong S.; Pumas C. Synergistic effect of co-culture of microalga and actinomycete in diluted chicken manure digestate for lipid production. Algal Res. 2018, 33, 239–247. 10.1016/j.algal.2018.05.020. DOI

LaSarre B.; Federle M. J. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol. Mol. Biol. Rev. 2013, 77 (1), 73–111. 10.1128/MMBR.00046-12. PubMed DOI PMC

Zhou J.-F.; Liang Z.-W.; Yin K.-Y.; Wang Y.; Li W.; Wang T.; Chen H.; Tan X.-J.; Tanveer M.; Zhou J.-W.; Guo Z.-Y. Quorum sensing inhibitor: An effective strategy to attenuate the virulence and drug resistance of Pseudomonas aeruginosa. Food Med. Homol. 2024, 1.10.26599/FMH.2025.9420066. DOI

Derewacz D. K.; Covington B. C.; McLean J. A.; Bachmann B. O. Mapping microbial response metabolomes for induced natural product discovery. ACS Chem. Biol. 2015, 10 (9), 1998–2006. 10.1021/acschembio.5b00001. PubMed DOI PMC

Adnani N.; Chevrette M. G.; Adibhatla S. N.; Zhang F.; Yu Q.; Braun D. R.; Nelson J.; Simpkins S. W.; McDonald B. R.; Myers C. L.; et al. Coculture of marine invertebrate-associated bacteria and interdisciplinary technologies enable biosynthesis and discovery of a new antibiotic, Keyicin. ACS Chem. Biol. 2017, 12 (12), 3093–3102. 10.1021/acschembio.7b00688. PubMed DOI PMC

Hoshino S.; Okada M.; Awakawa T.; Asamizu S.; Onaka H.; Abe I. Mycolic acid containing bacterium stimulates tandem cyclization of polyene macrolactam in a lake sediment derived Rare Actinomycete. Org. Lett. 2017, 19 (18), 4992–4995. 10.1021/acs.orglett.7b02508. PubMed DOI

Hoshino S.; Ozeki M.; Awakawa T.; Morita H.; Onaka H.; Abe I. Catenulobactins A and B, heterocyclic peptides from culturing Catenuloplanes sp. with a mycolic acid-containing bacterium. J. Nat. Prod. 2018, 81 (9), 2106–2110. 10.1021/acs.jnatprod.8b00261. PubMed DOI

Hoshino S.; Wong C. P.; Ozeki M.; Zhang H.; Hayashi F.; Awakawa T.; Asamizu S.; Onaka H.; Abe I. Umezawamides, new bioactive polycyclic tetramate macrolactams isolated from a combined-culture of Umezawaea sp. and mycolic acid-containing bacterium. J. Antibiot. 2018, 71 (7), 653–657. 10.1038/s41429-018-0040-4. PubMed DOI

Hoshino S.; Ozeki M.; Wong C. P.; Zhang H.; Hayashi F.; Awakawa T.; Morita H.; Onaka H.; Abe I. Mirilactams C-E, Novel polycyclic macrolactams isolated from combined-culture of Actinosynnema mirum NBRC 14064 and mycolic acid-containing bacterium. Chem. Pharm. Bull. 2018, 66 (6), 660–667. 10.1248/cpb.c18-00143. PubMed DOI

Dashti Y.; Grkovic T.; Abdelmohsen U. R.; Hentschel U.; Quinn R. J. Production of induced secondary metabolites by a co-culture of sponge-associated actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Marin. Drugs. 2014, 12 (5), 3046–3059. 10.3390/md12053046. PubMed DOI PMC

Alhadrami H. A.; Thissera B.; Hassan M. H. A.; Behery F. A.; Ngwa C. J.; Hassan H. M.; Pradel G.; Abdelmohsen U. R.; Rateb M. E. Bio-guided isolation of antimalarial metabolites from the coculture of two Red Sea sponge-derived Actinokineospora and Rhodococcus spp. Mar. Drugs. 2021, 19 (2), 109.10.3390/md19020109. PubMed DOI PMC

El-Hawary S. S.; Sayed A. M.; Mohammed R.; Khanfar M. A.; Rateb M. E.; Mohammed T. A.; Hajjar D.; Hassan H. M.; Gulder T. A.; Abdelmohsen U. R. New Pim-1 kinase inhibitor from the co-culture of two sponge-associated actinomycetes. Front. Chem. 2018, 6, 538.10.3389/fchem.2018.00538. PubMed DOI PMC

Shamikh Y. I.; El Shamy A. A.; Gaber Y.; Abdelmohsen U. R.; Madkour H. A.; Horn H.; Hassan H. M.; Elmaidomy A. H.; Alkhalifah D. H. M.; Hozzein W. N. Actinomycetes from the Red Sea sponge Coscinoderma mathewsi: Isolation, diversity, and potential for bioactive compounds discovery. Microorganisms 2020, 8 (5), 783.10.3390/microorganisms8050783. PubMed DOI PMC

S Hifnawy M.; Hassan H. M.; Mohammed R.; M Fouda M.; Sayed A. M.; A Hamed A.; F AbouZid S.; Rateb M. E.; Alhadrami H. A.; Abdelmohsen U. R. Induction of antibacterial metabolites by co-cultivation of two Red-Sea-sponge-associated actinomycetes Micromonospora sp. UR56 and Actinokinespora sp. EG49. Mar. Drugs. 2020, 18 (5), 243.10.3390/md18050243. PubMed DOI PMC

Genilloud O. Mining actinomycetes for novel antibiotics in the omics era: Are we ready to exploit this new paradigm?. Antibiotics 2018, 7 (4), 85.10.3390/antibiotics7040085. PubMed DOI PMC

Zhang M. M.; Wang Y.; Ang E. L.; Zhao H. Engineering microbial hosts for production of bacterial natural products. Nat. Prod. Rep. 2016, 33 (8), 963–987. 10.1039/C6NP00017G. PubMed DOI PMC

Mao D.; Okada B. K.; Wu Y.; Xu F.; Seyedsayamdost M. R. Recent advances in activating silent biosynthetic gene clusters in bacteria. Curr. Opin. Microbiol. 2018, 45, 156–163. 10.1016/j.mib.2018.05.001. PubMed DOI PMC

Selim M. M.; Abdelhamid S. A.; Mohamed S. S. Secondary metabolites and biodiversity of actinomycetes. J. Genet. Eng. Biotechnol. 2021, 19 (1), 72.10.1186/s43141-021-00156-9. PubMed DOI PMC

Spohn M.; Kirchner N.; Kulik A.; Jochim A.; Wolf F.; Muenzer P.; Borst O.; Gross H.; Wohlleben W.; Stegmann E. Overproduction of Ristomycin A by activation of a silent gene cluster in Amycolatopsis japonicum MG417-CF17. Antimicrob. Agents Chemother. 2014, 58, 6185–6196. 10.1128/AAC.03512-14. PubMed DOI PMC

Zhang M. M.; Wong F. T.; Wang Y.; Luo S.; Lim Y. H.; Heng E.; Yeo W. L.; Cobb R. E; Enghiad B.; Ang E. L.; Zhao H. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat. Chem. Biol. 2017, 13, 607–609. 10.1038/nchembio.2341. PubMed DOI PMC

Luo Y.; Huang H.; Liang J.; Wang M.; Lu L.; Shao Z.; Cobb R. E.; Zhao H. Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nat. Commun. 2013, 4 (1), 2894.10.1038/ncomms3894. PubMed DOI PMC

Stackebrandt E.; Schumann P.. Introduction to the Taxonomy of Actinobacteria. In The Prokaryotes: Vol. 3: Archaea. Bacteria: Firmicutes, Actinomycetes.; Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E., Eds.; Springer, New York, 2006; pp 297–321. 10.1007/0-387-30743-5_16. DOI

Land M.; Hauser L.; Jun S.-R.; Nookaew I.; Leuze M. R.; Ahn T.-H.; Karpinets T.; Lund O.; Kora G.; Wassenaar T.; et al. Insights from 20 years of bacterialgenome sequencing. Funct. Integr. Genomics. 2015, 15 (2), 141–161. 10.1007/s10142-015-0433-4. PubMed DOI PMC

Bartoš O.; Chmel M.; Swierczková I. The overlooked evolutionary dynamics of 16S rRNA revises its role as the “gold standard” for bacterial species identification. Sci. Rep. 2024, 14 (1), 9067.10.1038/s41598-024-59667-3. PubMed DOI PMC

Chun J.; Lee J. H.; Jung Y.; Kim M.; Kim S.; Kim B. K.; Lim Y. W. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 2007, 57, 2259–2261. 10.1099/ijs.0.64915-0. PubMed DOI

Maidak B. L.; Larsen N.; McCaughey M. J.; Overbeek R.; Olsen G. J.; Fogel K.; Blandy J.; Woese C. R. The ribosomal database project. Nucleic Acids Res. 1994, 22 (17), 3485–3487. 10.1093/nar/22.17.3485. PubMed DOI PMC

Cole J. R.; Wang Q.; Fish J. A.; Chai B.; McGarrell D. M.; Sun Y.; Brown C. T.; Porras-Alfaro A.; Kuske C. R.; Tiedje J. M. Ribosomal database project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014, 42, D633–D642. 10.1093/nar/gkt1244. PubMed DOI PMC

Nouioui I.; Carro L.; García-López M.; Meier-Kolthoff J. P.; Woyke T.; Kyrpides N. C.; Pukall R.; Klenk H. P.; Goodfellow M.; Göker M. Genome-based taxonomic classification of the phylum actinobacteria. Front. Microbiol. 2018, 9, 2007.10.3389/fmicb.2018.02007. PubMed DOI PMC

Joshi C. J.; Ke W.; Drangowska-Way A.; O’Rourke E. J.; Lewis N. E. What are housekeeping genes?. PLoS Comput. Biol. 2022, 18 (7), e101029510.1371/journal.pcbi.1010295. PubMed DOI PMC

Meier-Kolthoff J. P.; Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10 (1), 2182.10.1038/s41467-019-10210-3. PubMed DOI PMC

Richter M.; Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Nat. Acad. Sci. 2009, 106 (45), 19126–19131. 10.1073/pnas.0906412106. PubMed DOI PMC

Charlop-Powers Z.; Milshteyn A.; Brady S. F. Metagenomic small molecule discovery methods. Curr. Opin Microbiol. 2014, 19, 70–75. 10.1016/j.mib.2014.05.021. PubMed DOI PMC

Milshteyn A.; Schneider J. S.; Brady S. F. Mining the metabiome: Identifying novel natural products from microbial communities. J. Biol. Chem. 2014, 21 (9), 1211–1223. 10.1016/j.chembiol.2014.08.006. PubMed DOI PMC

Shokralla S.; Spall J. L.; Gibson J. F.; Hajibabaei M. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 2012, 21 (8), 1794–1805. 10.1111/j.1365-294X.2012.05538.x. PubMed DOI

Niu G. Genomics-driven natural product discovery in actinomycetes. Trends Biotechnol. 2018, 36 (3), 238–241. 10.1016/j.tibtech.2017.10.009. PubMed DOI

Hossain T. J. Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. Eur. J. Microbiol. Immunol. 2024, 14 (2), 97–115. 10.1556/1886.2024.00035. PubMed DOI PMC

Rütten A.; Kirchner T.; Musiol-Kroll E. M. Overview on strategies and assays for antibiotic discovery. Pharmaceuticals 2022, 15 (10), 1302.10.3390/ph15101302. PubMed DOI PMC

Balouiri M.; Sadiki M.; Ibnsouda S. K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6 (2), 71–79. 10.1016/j.jpha.2015.11.005. PubMed DOI PMC

Dueñas M. E.; Peltier-Heap R. E.; Leveridge M.; Annan R. S.; Büttner F. H.; Trost M. Advances in high-throughput mass spectrometry in drug discovery. EMBO Mol. Med. 2023, 15 (1), e14850.10.15252/emmm.202114850. PubMed DOI PMC

Szymański P.; Markowicz M.; Mikiciuk-Olasik E. Adaptation of high-throughput screening in drug discovery-toxicological screening tests. Int. J. Mol. Sci. 2012, 13 (1), 427–452. 10.3390/ijms13010427. PubMed DOI PMC

Chen Y.; Li E. M.; Xu L. Y. Guide to metabolomics analysis: A bioinformatics workflow. Metabolites 2022, 12 (4), 357.10.3390/metabo12040357. PubMed DOI PMC

Kapoore R. V.; Vaidyanathan S. Towards quantitative mass spectrometry-based metabolomics in microbial and mammalian systems. Philos. Trans. R. Soc. A 2016, 374, 2015036310.1098/rsta.2015.0363. PubMed DOI PMC

Ye D.; Li X.; Shen J.; Xia X. Microbial metabolomics: From novel technologies to diversified applications. TrAC Trends Anal. Chem. 2022, 148, 11654010.1016/j.trac.2022.116540. DOI

Yang J. Y.; Sanchez L. M.; Rath C. M.; Liu X.; Boudreau P. D.; Bruns N.; Glukhov E.; Wodtke A.; de Felicio R.; Fenner A.; et al. Molecular networking as a dereplication strategy. J. Nat. Prod. 2013, 76 (9), 1686–1699. 10.1021/np400413s. PubMed DOI PMC

Emwas A.-H.; Roy R.; McKay R. T.; Tenori L.; Saccenti E.; Gowda G. A. N.; Raftery D.; Alahmari F.; Jaremko L.; Jaremko M.; et al. NMR spectroscopy for metabolomics research. Metabolites 2019, 9 (7), 123.10.3390/metabo9070123. PubMed DOI PMC

Tawfike A. F.; Viegelmann C.; Edrada-Ebel R. Metabolomics and dereplication strategies in natural products. Methods Mol. Biol. 2013, 1055, 227–244. 10.1007/978-1-62703-577-4_17. PubMed DOI

Huber F.; Van der Burg S.; van der Hooft J. J.; Ridder L. MS2DeepScore: A novel deep learning similarity measure to compare tandem mass spectra. J. Cheminform. 2021, 13 (1), 84.10.1186/s13321-021-00558-4. PubMed DOI PMC

Quiros-Guerrero L. M.; Nothias L. F.; Gaudry A.; Marcourt L.; Allard P. M.; Rutz A.; David B.; Queiroz E. F.; Wolfender J. L. Inventa: A computational tool to discover structural novelty in natural extracts libraries. Front. Mol. Biosci. 2022, 9, 102833410.3389/fmolb.2022.1028334. PubMed DOI PMC

Morehouse N. J.; Clark T. N.; McMann E. J.; van Santen J. A.; Haeckl F. P. J.; Gray C. A.; Linington R. G. Annotation of natural product compound families using molecular networking topology and structural similarity fingerprinting. Nat. Commun. 2023, 14 (1), 308.10.1038/s41467-022-35734-z. PubMed DOI PMC

da Silva R. R.; Wang M.; Nothias L. F.; van der Hooft J. J. J.; Caraballo-Rodríguez A. M.; Fox E.; Balunas M. J.; Klassen J. L.; Lopes N. P.; Dorrestein P. C. Propagating annotations of molecular networks using in silico fragmentation. PLoS Comput. Biol. 2018, 14 (4), e1006089.10.1371/journal.pcbi.1006089. PubMed DOI PMC

Allard P. M.; Péresse T.; Bisson J.; Gindro K.; Marcourt L.; Pham V. C.; Roussi F.; Litaudon M.; Wolfender J. L. Integration of molecular networking and in-silico MS/MS fragmentation for natural products dereplication. Anal. Chem. 2016, 88 (6), 3317–3323. 10.1021/acs.analchem.5b04804. PubMed DOI

Ludwig M.; Nothias L.-F.; Dührkop K.; Koester I.; Fleischauer M.; Hoffmann M. A.; Petras D.; Vargas F.; Morsy M.; Aluwihare L.; et al. Database-independent molecular formula annotation using Gibbs sampling through ZODIAC. Nat. Mach. Intell. 2020, 2 (10), 629–641. 10.1038/s42256-020-00234-6. DOI

Dührkop K.; Nothias L.-F.; Fleischauer M.; Reher R.; Ludwig M.; Hoffmann M. A.; Petras D.; Gerwick W. H.; Rousu J.; Dorrestein P. C.; et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat. Biotechnol. 2021, 39 (4), 462–471. 10.1038/s41587-020-0740-8. PubMed DOI

Shin D.; Byun W. S.; Kang S.; Kang I.; Bae E. S.; An J. S.; Im J. H.; Park J.; Kim E.; Ko K.; et al. Targeted and logical discovery of piperazic acid-bearing natural products based on genomic and spectroscopic signatures. J. Am. Chem. Soc. 2023, 145 (36), 19676–19690. 10.1021/jacs.3c04699. PubMed DOI

Noureen N.; Cheema M. T.; Anwar S.; Hasnain S.; Sajid I. PCR-based screening approach: A rapid method to detect the biosynthetic potential of antimicrobials in actinobacterial strains. Polym. J. Microbiol. 2020, 69 (2), 139–149. 10.33073/pjm-2020-016. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...