Strategies for Actinobacteria Isolation, Cultivation, and Metabolite Production that Are Biologically Important
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
40321516
PubMed Central
PMC12044489
DOI
10.1021/acsomega.5c01344
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Novel antimicrobial agents are urgently needed to combat antimicrobial resistance from multidrug-resistant organisms. Actinobacteria are key sources of bioactive metabolites with diverse biological activities. Despite their contributions to drug discovery, the process from strain identification to drug manufacturing faces many challenges, especially the rediscovery of known compounds. Recent technological and scientific advancements have accelerated drug development. Efforts to isolate and screen rare actinobacterial species could yield novel bioactive compounds. This review summarizes techniques for selectively isolating rare actinobacteria, improving bioactive metabolite production, and discovering potential strains. Notably, new genomic strategies and new discoveries regarding spectroscopic signature-based bioactive natural products containing specific structural motifs are also discussed. Furthermore, this review updates the compounds derived from rare actinobacteria and their biological applications.
Department of Biology Faculty of Science Chiang Mai University Chiang Mai 50200 Thailand
Graduate School Walailak University Thasala Thai Buri Nakhon Si Thammarat 80160 Thailand
Institute of Microbiology Czech Academy of Sciences Videnska 1083 14200 Prague Czech Republic
School of Pharmacy Walailak University Thasala Thai Buri Nakhon Si Thammarat 80160 Thailand
Zobrazit více v PubMed
Hei Y.; Zhang H.; Tan N.; Zhou Y.; Wei X.; Hu C.; Liu Y.; Wang L.; Qi J.; Gao J.-M. Antimicrobial activity and biosynthetic potential of cultivable actinomycetes associated with lichen symbiosis from Qinghai-Tibet Plateau. Microbiol Res. 2021, 244, 12665210.1016/j.micres.2020.126652. PubMed DOI
Subramani R.; Sipkema D. Marine rare actinomycetes: A promising source of structurally diverse and unique novel natural products. Mar. Drugs. 2019, 17 (5), 249.10.3390/md17050249. PubMed DOI PMC
Barka E. A.; Vatsa P.; Sanchez L.; Gaveau-Vaillant N.; Jacquard C.; Klenk H.-P.; Clément C.; Ouhdouch Y.; van Wezel G. P. Taxonomy, physiology, and natural products of actinobacteria. Microbiol. Mol. Biol. Rev. 2016, 80 (1), 1–43. 10.1128/mmbr.00019-15. PubMed DOI PMC
Azman A. S.; Mawang C. I.; Khairat J. E.; AbuBakar S. Actinobacteria-a promising natural source of anti-biofilm agents. Int. J. Microbiol. 2019, 22 (4), 403–409. 10.1007/s10123-019-00066-4. PubMed DOI
Zhao X. Q.; Xu X. N.; Chen L. Y. Production of enzymes from marine actinobacteria. Adv. Food Nutr. Res. 2016, 78, 137–151. 10.1016/bs.afnr.2016.06.002. PubMed DOI
Sanjivkumar M.; Silambarasan T.; Palavesam A.; Immanuel G. Biosynthesis, purification and characterization of β-1,4-xylanase from a novel mangrove associated actinobacterium Streptomyces olivaceus (MSU3) and its applications. Protein Expr. Purif. 2017, 130, 1–12. 10.1016/j.pep.2016.09.017. PubMed DOI
Thakrar F. J.; Singh S. P. Catalytic, thermodynamic and structural properties of an immobilized and highly thermostable alkaline protease from a haloalkaliphilic actinobacteria, Nocardiopsis alba TATA-5. Bioresour. Technol. 2019, 278, 150–158. 10.1016/j.biortech.2019.01.058. PubMed DOI
Ossai J.; Khatabi B.; Nybo S. E.; Kharel M. K. Renewed interests in the discovery of bioactive actinomycete metabolites driven by emerging technologies. J. Appl. Microbiol. 2022, 132 (1), 59–77. 10.1111/jam.15225. PubMed DOI PMC
Yang Z.; He J.; Wei X.; Ju J.; Ma J. Exploration and genome mining of natural products from marine Streptomyces. Appl. Microbiol. 2020, 104 (1), 67–76. 10.1007/s00253-019-10227-0. PubMed DOI
Kawahara T.; Izumikawa M.; Kozone I.; Hashimoto J.; Kagaya N.; Koiwai H.; Komatsu M.; Fujie M.; Sato N.; Ikeda H.; et al. Neothioviridamide, a polythioamide compound produced by heterologous expression of a Streptomyces sp. cryptic RiPP biosynthetic gene cluster. J. Nat. Prod. 2018, 81 (2), 264–269. 10.1021/acs.jnatprod.7b00607. PubMed DOI
Xiao F.; Li H.; Xu M.; Li T.; Wang J.; Sun C.; Hong K.; Li W. Staurosporine derivatives generated by pathway engineering in a heterologous host and their cytotoxic selectivity. J. Nat. Prod. 2018, 81 (8), 1745–1751. 10.1021/acs.jnatprod.8b00103. PubMed DOI
Caesar L. K.; Montaser R.; Keller N. P.; Kelleher N. L. Metabolomics and genomics in natural products research: Complementary tools for targeting new chemical entities. J. Nat. Prod. 2021, 38 (11), 2041–2065. 10.1039/D1NP00036E. PubMed DOI PMC
Newman D. J.; Cragg G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83 (3), 770–803. 10.1021/acs.jnatprod.9b01285. PubMed DOI
Hegemann J. D.; Birkelbach J.; Walesch S.; Müller R. Current developments in antibiotic discovery: Global microbial diversity as a source for evolutionary optimized anti-bacterials. EMBO Rep. 2023, 24 (1), e5618410.15252/embr.202256184. PubMed DOI PMC
Diez C. Biological aspects involves in the degradation of organic pollutants. J. Soil Sci. Plant Nutr. 2010, 10, 244–267. 10.4067/S0718-95162010000100004. DOI
Wang X.; Lu Y.; Shaaban K. A.; Wang G.; Xia X.; Zhu Y. Editorial: Bioactive natural products from microbes: Isolation, characterization, biosynthesis and structure modification. Front. Chem. 2022, 10, 88362.10.3389/fchem.2022.883652. PubMed DOI PMC
Lee N.; Hwang S.; Kim J.; Cho S.; Palsson B.; Cho B.-K. Mini review: Genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Comput. Struct. Biotechnol. J. 2020, 18, 1548–1556. 10.1016/j.csbj.2020.06.024. PubMed DOI PMC
Gomez-Escribano J. P.; Alt S.; Bibb M. J. Next generation sequencing of actinobacteria for the discovery of novel natural products. Mar. Drugs. 2016, 14 (4), 78.10.3390/md14040078. PubMed DOI PMC
Blin K.; Shaw S.; Augustijn H. E.; Reitz Z. L.; Biermann F.; Alanjary M.; Fetter A.; Terlouw B. R.; Metcalf W. W.; Helfrich E. J. N.; et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023, 51 (W1), W46–W50. 10.1093/nar/gkad344. PubMed DOI PMC
Wolfender J.-L.; Marti G.; Thomas A.; Bertrand S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A 2015, 1382, 136–164. 10.1016/j.chroma.2014.10.091. PubMed DOI
Wang M.; Carver J. J.; Phelan V. V.; Sanchez L. M.; Garg N.; Peng Y.; Nguyen D. D.; Watrous J.; Kapono C. A.; Luzzatto-Knaan T.; et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 2016, 34 (8), 828–837. 10.1038/nbt.3597. PubMed DOI PMC
Nuñez Santiago I.; Machushynets N. V.; Mladic M.; van Bergeijk D. A.; Elsayed S. S.; Hankemeier T.; van Wezel G. P. nanoRAPIDS as an analytical pipeline for the discovery of novel bioactive metabolites in complex culture extracts at the nanoscale. Commun. Chem. 2024, 7 (1), 71.10.1038/s42004-024-01153-y. PubMed DOI PMC
Dührkop K.; Fleischauer M.; Ludwig M.; Aksenov A. A.; Melnik A. V.; Meusel M.; Dorrestein P. C.; Rousu J.; Böcker S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods. 2019, 16 (4), 299–302. 10.1038/s41592-019-0344-8. PubMed DOI
Mildau K.; Ehlers H.; Oesterle I.; Pristner M.; Warth B.; Doppler M.; Bueschl C.; Zanghellini J.; van der Hooft J. J. J. Tailored mass spectral data exploration using the SpecXplore interactive dashboard. Anal. Chem. 2024, 96 (15), 5798–5806. 10.1021/acs.analchem.3c04444. PubMed DOI PMC
Shin Y.-H.; Im J. H.; Kang I.; Kim E.; Jang S. C.; Cho E.; Shin D.; Hwang S.; Du Y. E.; Huynh T.-H.; et al. Genomic and spectroscopic signature-based discovery of natural macrolactams. J. Am. Chem. Soc. 2023, 145 (3), 1886–1896. 10.1021/jacs.2c11527. PubMed DOI
Amin D. H.; Abdallah N. A.; Abolmaaty A.; Tolba S.; Wellington E. M. H. Microbiological and molecular insights on rare Actinobacteria harboring bioactive prospective. Bull. Natl. Res. Cent. 2020, 44 (1), 5.10.1186/s42269-019-0266-8. DOI
Jose P. A.; Maharshi A.; Jha B. Actinobacteria in natural products research: Progress and prospects. Microbiol. Res. 2021, 246, 12670810.1016/j.micres.2021.126708. PubMed DOI
Li J.; Zhao G.-Z.; Huang H.-Y.; Qin S.; Zhu W.-Y.; Zhao L.-X.; Xu L.-H.; Zhang S.; Li W.-J.; Strobel G. Isolation and characterization of culturable endophytic actinobacteria associated with Artemisia annua L. A. Van. Leeuw. J. Microb. 2012, 101, 515–527. 10.1007/s10482-011-9661-3. PubMed DOI
Salam N.; Xian W.-D.; Asem M. D.; Xiao M.; Li W.-J. From ecophysiology to cultivation methodology: Filling the knowledge gap between uncultured and cultured microbes. Mar. Life sci. Technol. 2021, 3 (2), 132–147. 10.1007/s42995-020-00064-w. PubMed DOI PMC
Austin B. The value of cultures to modern microbiology. A. Van. Leeuw. J. Microb. 2017, 110 (10), 1247–1256. 10.1007/s10482-017-0840-8. PubMed DOI
Song H. S.; Kim Y. B.; Kim J. Y.; Roh S. W.; Whon T. W. Advances in culturomics research on the human gut microbiome: optimizing medium composition and culture techniques for enhanced microbial discovery. J. Microbiol Biotechnol. 2024, 34 (4), 757.10.4014/jmb.2311.11024. PubMed DOI PMC
Modolon F.; Schultz J.; Duarte G.; Vilela C. L. S.; Thomas T.; Peixoto R. S. In situ devices can culture the microbial dark matter of corals. iScience 2023, 26 (12), 10837410.1016/j.isci.2023.108374. PubMed DOI PMC
Almasi F.; Kafshnouchi M.; Mohammadipanah F.; Hamedi J. Fruit wrapping kraft coated paper promotes the isolation of actinobacteria using ex situ and in situ methods. Folia Microbiol. (Praha) 2021, 66 (6), 1047–1054. 10.1007/s12223-021-00907-8. PubMed DOI
Nichols D.; Cahoon N.; Trakhtenberg E. M.; Pham L.; Mehta A.; Belanger A.; Kanigan T.; Lewis K.; Epstein S. S. Use of ichip for high-throughput in situ cultivation of ″uncultivable″ microbial species. Appl. Environ. Microbiol. 2010, 76 (8), 2445–2450. 10.1128/AEM.01754-09. PubMed DOI PMC
Jung D.; Seo E.-Y.; Epstein S. S.; Joung Y.; Han J.; Parfenova V. V.; Belykh O. I.; Gladkikh A. S.; Ahn T. S. Application of a new cultivation technology, I-tip, for studying microbial diversity in freshwater sponges of Lake Baikal, Russia. FEMS Microbiol. Ecol. 2014, 90 (2), 417–423. 10.1111/1574-6941.12399. PubMed DOI
Dam H. T.; Vollmers J.; Sobol M. S.; Cabezas A.; Kaster A.-K. Targeted cell sorting combined with single cell genomics captures low abundant microbial dark matter with higher sensitivity than metagenomics. Front. Microbiol. 2020, 11, 1377.10.3389/fmicb.2020.01377. PubMed DOI PMC
Tian D.; Wang C.; Liu Y.; Zhang Y.; Caliari A.; Lu H.; Xia Y.; Xu B.; Xu J.; Yomo T. Cell sorting-directed selection of bacterial cells in bigger sizes analyzed by imaging flow cytometry during experimental evolution. Int. J. Mol. Sci. 2023, 24 (4), 3243.10.3390/ijms24043243. PubMed DOI PMC
Kurm V.; van der Putten W. H.; Hol W. H. G. Cultivation-success of rare soil bacteria is not influenced by incubation time and growth medium. PLoS One 2019, 14 (1), e021007310.1371/journal.pone.0210073. PubMed DOI PMC
Wilson M. C.; Mori T.; Rückert C.; Uria A. R.; Helf M. J.; Takada K.; Gernert C.; Steffens U. A. E.; Heycke N.; Schmitt S.; et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 2014, 506 (7486), 58–62. 10.1038/nature12959. PubMed DOI
Zhang Y.-Q.; Tian X.-P.; Tisa L. S.; Nouioui I.; Li W.-J. Editorial: A focus on actinobacteria: Diversity, distribution, and secondary metabolites. Front. Microbiol. 2022, 13, 90236010.3389/fmicb.2022.902360. PubMed DOI PMC
Xie F.; Pathom-Aree W. Actinobacteria from desert: Diversity and biotechnological applications. Front. Microbiol. 2021, 12, 76553110.3389/fmicb.2021.765531. PubMed DOI PMC
Hayakawa M.; Sadakata T.; Kajiura T.; Nonomura H. New methods for the highly selective isolation of Micromonospora and Microbispora from soil. J. Ferment. Bioeng. 1991, 72, 320–326. 10.1016/0922-338X(91)90080-Z. DOI
Zitouni A.; Lamari L.; Boudjella H.; Badji B.; Sabaou N.; Gaouar A.; Mathieu F.; Lebrihi A.; Labeda D. P. Saccharothrix algeriensis sp. nov., isolated from Saharan soil. Int. J. Syst. Evol. Microbiol. 2004, 54, 1377–1381. 10.1099/ijs.0.02679-0. PubMed DOI
Bredholdt H.; Galatenko O. A.; Engelhardt K.; Fjaervik E.; Terekhova L. P.; Zotchev S. B. Rare actinomycete bacteria from the shallow water sediments of the Trondheim fjord, Norway: Isolation, diversity and biological activity. Environ. Microbiol. 2007, 9, 2756–2764. 10.1111/j.1462-2920.2007.01387.x. PubMed DOI
Ezeobiora C. E.; Igbokwe N. H.; Amin D. H.; Enwuru N. V.; Okpalanwa C. F.; Mendie U. E. Uncovering the biodiversity and biosynthetic potentials of rare actinomycetes. Future J. Pharm. Sci. 2022, 8 (1), 23.10.1186/s43094-022-00410-y. DOI
Tamura T.; Hayakawa M.; Hatano K. A new genus of the order Actinomycetales, Virgosporangium gen. nov., with descriptions of Virgosporangium ochraceum sp. nov. and Virgosporangium aurantiacum sp. nov. Int. J. Syst. Evol. Microbiol. 2001, 51, 1809–1816. 10.1099/00207713-51-5-1809. PubMed DOI
Tiwari K.; Gupta R. K. Diversity and isolation of rare actinomycetes: an overview. Crit. Rev. Microbiol. 2013, 39 (3), 256–294. 10.3109/1040841X.2012.709819. PubMed DOI
Suzuki S.; Okuda T.; Komatsubara S. Selective isolation and distribution of Sporichthya strains in soil. Appl. Environ. Microbiol. 1999, 65, 1930–1935. 10.1128/AEM.65.5.1930-1935.1999. PubMed DOI PMC
Hayakawa M.; Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J. Ferment. Technol. 1987, 65 (5), 501–509. 10.1016/0385-6380(87)90108-7. DOI
Hussain A.; Rather M. A.; Dar M. S.; Aga M. A.; Ahmad N.; Manzoor A.; Qayum A.; Shah A.; Mushtaq S.; Ahmad Z.; et al. Novel bioactive molecules from Lentzea violacea strain AS 08 using one strain-many compounds (OSMAC) approach. Bioorg. Med. Chem. Lett. 2017, 27 (11), 2579–2582. 10.1016/j.bmcl.2017.03.075. PubMed DOI
Hayakawa M.; Momose Y.; Yamazaki T.; Nonomura H. A method for the selective isolation of Microtetraspora glauca and related four-spored actinomycetes from soil. J. Appl. Bacteriol. 1996, 80 (4), 375–386. 10.1111/j.1365-2672.1996.tb03232.x. DOI
Suzuki S.-i.; Takahashi K.; Okuda T.; Komatsubara S. Selective isolation of Actinobispora on gellan gum plates. Can. J. Microbiol. 1998, 44, 1–5. 10.1139/w97-117. DOI
Suzuki Si. Establishment and use of gellan gum media for selective isolation and distribution survey of specific rare actinomycetes. Actinomycetol 2001, 15 (2), 55–60. 10.3209/saj.15_55. DOI
Pathom-Aree W.; Stach J. E.; Ward A. C.; Horikoshi K.; Bull A. T.; Goodfellow M. Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 2006, 10 (3), 181–189. 10.1007/s00792-005-0482-z. PubMed DOI
Ruttanasutja P.; Pathom-aree W. Selective isolation of cultivable actinomycetes from Thai coastal marine sediment. Chiang Mai J. Sci. 2015, 42 (1), 88–103.
Bredholt H.; Fjærvik E.; Johnsen G.; Zotchev S. B. Actinomycetes from sediments in the Trondheim Fjord, Norway: Diversity and biological activity. Mar. Drugs. 2008, 6, 12–24. 10.3390/md6010012. PubMed DOI PMC
Dai H.-Q.; Wang J.; Xin Y.-H.; Pei G.; Tang S.-K.; Ren B.; Ward A.; Ruan J.-S.; Li W.-J.; Zhang L.-X. Verrucosispora sediminis sp. nov., a cyclodipeptide-producing actinomycete from deep-sea sediment. Int. J. Syst. Evol. Microbiol. 2010, 60, 1807–1812. 10.1099/ijs.0.017053-0. PubMed DOI
Peng X.-Y.; Wu J.-T.; Shao C.-L.; Li Z.-Y.; Chen M.; Wang C.-Y. Co-culture: Stimulate the metabolic potential and explore the molecular diversity of natural products from microorganisms. Mar. Life Sci.Technol. 2021, 3 (3), 363–374. 10.1007/s42995-020-00077-5. PubMed DOI PMC
D’Onofrio A.; Crawford J. M.; Stewart E. J.; Witt K.; Gavrish E.; Epstein S.; Clardy J.; Lewis K. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem. Biol. 2010, 17 (3), 254–264. 10.1016/j.chembiol.2010.02.010. PubMed DOI PMC
McArthur K. A.; Mitchell S. S.; Tsueng G.; Rheingold A.; White D. J.; Grodberg J.; Lam K. S.; Potts B. C. Lynamicins A-E, chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete. J. Nat. Prod. 2008, 71 (10), 1732–1737. 10.1021/np800286d. PubMed DOI
KÜSter E.; Williams S. T. Selection of media for isolation of Streptomyces. Nature 1964, 202 (4935), 928–929. 10.1038/202928a0. PubMed DOI
Takahashi Y.; Omura S. Isolation of new actinomycete strains for the screening of new bioactive compounds. J. Gen. Appl. Microbiol. 2003, 49 (3), 141–154. 10.2323/jgam.49.141. PubMed DOI
Hesselman M. C.; Odoni D. I.; Ryback B. M.; de Groot S.; van Heck R. G. A.; Keijsers J.; Kolkman P.; Nieuwenhuijse D.; van Nuland Y. M.; Sebus E.; et al. A multi-platform flow device for microbial (co-) cultivation and microscopic analysis. PLoS One 2012, 7 (5), e3698210.1371/journal.pone.0036982. PubMed DOI PMC
Plugge C. M.; Stams A. M. Enrichment of thermophilic syntrophic anaerobic glutamate-degrading consortia using a dialysis membrane reactor. Microb. Ecol. 2002, 43 (3), 378–387. 10.1007/s00248-001-0047-3. PubMed DOI
Singh V.; Haque S.; Niwas R.; Srivastava A.; Pasupuleti M.; Tripathi C. K. M. Strategies for fermentation medium optimization: An in-depth review. Front. Microbiol. 2017, 7, 2087.10.3389/fmicb.2016.02087. PubMed DOI PMC
Hayakawa M. Studies on the isolation and distribution of rare actinomycetes in soil. Actinomycetologica 2008, 22 (1), 12–19. 10.3209/saj.SAJ220103. DOI
Fang B.-Z.; Salam N.; Han M.-X.; Jiao J.-Y.; Cheng J.; Wei D.-Q.; Xiao M.; Li W.-J. Insights on the effects of heat pretreatment, pH, and calcium salts on isolation of rare actinobacteria from karstic caves. Front. Microbiol. 2017, 8, 1535.10.3389/fmicb.2017.01535. PubMed DOI PMC
Rangseekaew P.; Pathom-aree W. Cave actinobacteria as producers of bioactive metabolites. Front. Microbiol. 2019, 10, 387.10.3389/fmicb.2019.00387. PubMed DOI PMC
Shavyrkina N. A.; Skiba E. A.; Kazantseva A. E.; Gladysheva E. K.; Budaeva V. V.; Bychin N. V.; Gismatulina Y. A.; Kashcheyeva E. I.; Mironova G. F.; Korchagina A. A.; et al. Static culture combined with aeration in biosynthesis of bacterial cellulose. Polymers 2021, 13 (23), 4241.10.3390/polym13234241. PubMed DOI PMC
Pan R.; Bai X.; Chen J.; Zhang H.; Wang H. Exploring structural diversity of microbe secondary metabolites using OSMAC strategy. Front. Microbiol. 2019, 10, 294.10.3389/fmicb.2019.00294. PubMed DOI PMC
Zhang Q. W.; Lin L. G.; Ye W. C. Techniques for extraction and isolation of natural products. Chinese Med. 2018, 13 (1), 20.10.1186/s13020-018-0177-x. PubMed DOI PMC
Shi T.; Li Y. J.; Wang Z. M.; Wang Y. F.; Wang B.; Shi D. Y. New pyrroline isolated from Antarctic krill-derived actinomycetes Nocardiopsis sp. LX-1 combining with molecular networking. Mar. drugs. 2023, 21 (2), 127.10.3390/md21020127. PubMed DOI PMC
Palomo S.; González I.; De la Cruz M.; Martín J.; Tormo J. R.; Anderson M.; Hill R. T.; Vicente F.; Reyes F.; Genilloud O. Sponge-derived Kocuria and Micrococcus spp. as sources of the new thiazolyl peptide antibiotic kocurin. Mar. Drugs. 2013, 11 (4), 1071–1086. 10.3390/md11041071. PubMed DOI PMC
Sunga M. J.; Teisan S.; Tsueng G.; Macherla V. R.; Lam K. S. Seawater requirement for the production of lipoxazolidinones by marine actinomycete strain NPS8920. J. Ind. Microbiol. Biotechnol. 2008, 35 (7), 761–765. 10.1007/s10295-008-0344-7. PubMed DOI
Chen J.; Frediansyah A.; Männle D.; Straetener J.; Brötz-Oesterhelt H.; Ziemert N.; Kaysser L.; Gross H. New Nocobactin derivatives with antimuscarinic activity, Terpenibactins A-C, revealed by genome mining of Nocardia terpenica IFM 0406. ChemBioChem. 2020, 21 (15), 2205–2213. 10.1002/cbic.202000062. PubMed DOI PMC
Liu L.; Liu Y.; Liu S.; Nikandrova A. A.; Imamutdinova A. N.; Lukianov D. A.; Osterman I. A.; Sergiev P. V.; Zhang B.; Zhang D.; et al. Bioprospecting for the soil-derived actinobacteria and bioactive secondary metabolites on the Western Qinghai-Tibet Plateau. Front. Microbiol. 2023, 14, 124700110.3389/fmicb.2023.1247001. PubMed DOI PMC
Siddharth S.; Aswathanarayan J. B.; Kuruburu M. G.; Madhunapantula S. R.; Vittal R. R. Diketopiperazine derivative from marine actinomycetes Nocardiopsis sp. SCA30 with antimicrobial activity against MRSA. Arch. Microbiol. 2021, 203 (10), 6173–6181. 10.1007/s00203-021-02582-2. PubMed DOI
Watson D. J.; Wiesner L.; Matimela T.; Beukes D.; Meyers P. R. Tandem LC-MS identification of antitubercular compounds in zones of growth inhibition produced by South African filamentous actinobacteria. Molecules 2023, 28 (11), 4276.10.3390/molecules28114276. PubMed DOI PMC
Xie Y.; Chen J.; Wang B.; Chen T.; Chen J.; Zhang Y.; Liu X.; Chen Q. Activation and enhancement of caerulomycin A biosynthesis in marine-derived Actinoalloteichus sp. AHMU CJ021 by combinatorial genome mining strategies. Microb. Cell Factories. 2020, 19 (1), 159.10.1186/s12934-020-01418-w. PubMed DOI PMC
Shen Q.; Dai G.; Li A.; Liu Y.; Zhong G.; Li X.; Ren X.; Sui H.; Fu J.; Jiao N.; Zhang Y.; Bian X.; Zhou H. Genome-guided discovery of highly oxygenated aromatic polyketides, Saccharothrixins D–M, from the rare marine actinomycete Saccharothrix sp. D09. J. Nat. Prod. 2021, 84 (11), 2875–2884. 10.1021/acs.jnatprod.1c00617. PubMed DOI
Tarantini F. S.; Brunati M.; Taravella A.; Carrano L.; Parenti F.; Hong K. W.; Williams P.; Chan K. G.; Heeb S.; Chan W. C. Actinomadura graeca sp. nov.: A novel producer of the macrocyclic antibiotic zelkovamycin. PLoS One 2021, 16 (11), e026041310.1371/journal.pone.0260413. PubMed DOI PMC
El-Hawary S. S.; Hassan M. A.; Hudhud A. O.; Abdelmohsen U. R.; Mohammed R. Elicitation for activation of the actinomycete genome’s cryptic secondary metabolite gene clusters. RSC Adv. 2023, 13 (9), 5778–5795. 10.1039/D2RA08222E. PubMed DOI PMC
Alwali A. Y.; Parkinson E. I. Small molecule inducers of actinobacteria natural product biosynthesis. J. Ind. Microbiol. Biotechnol. 2023, 50 (1), kuad01910.1093/jimb/kuad019. PubMed DOI PMC
Tomm H. A.; Ucciferri L.; Ross A. C. Advances in microbial culturing conditions to activate silent biosynthetic gene clusters for novel metabolite production. J. Ind. Microbiol. Biotechnol. 2019, 46, 1381–1400. 10.1007/s10295-019-02198-y. PubMed DOI
Dashti Y.; Grkovic T.; Abdelmohsen U. R.; Hentschel U.; Quinn R. J. Actinomycete metabolome induction/suppression with N-acetylglucosamine. J. Nat. Prod. 2017, 80 (4), 828–836. 10.1021/acs.jnatprod.6b00673. PubMed DOI
Mohammadipanah F.; Kermani F.; Salimi F. Awakening the secondary metabolite pathways of Promicromonospora kermanensis using physicochemical and biological elicitors. Appl. Biochem. Biotechnol. 2020, 192 (4), 1224–1237. 10.1007/s12010-020-03361-3. PubMed DOI
Ratcliff W. C.; Denison R. F. Microbiology. Alternative actions for antibiotics. Science 2011, 332 (6029), 547–548. 10.1126/science.1205970. PubMed DOI
Imai Y.; Sato S.; Tanaka Y.; Ochi K.; Hosaka T. Lincomycin at subinhibitory concentrations potentiates secondary metabolite production by Streptomyces spp. Appl. Environ. Microbiol. 2015, 81 (11), 3869–3879. 10.1128/AEM.04214-14. PubMed DOI PMC
Takahashi Y. Isolation of hitherto-uncultivated microorganisms- Application of radical scavengers. J. Gen. Appl. Microbiol. 2024, 70 (2), 1.10.2323/jgam.2024.02.002. PubMed DOI
Abdelmohsen U. R.; Grkovic T.; Balasubramanian S.; Kamel M. S.; Quinn R. J.; Hentschel U. Elicitation of secondary metabolism in actinomycetes. Biotechnol. Adv. 2015, 33 (6), 798–811. 10.1016/j.biotechadv.2015.06.003. PubMed DOI
Moody S. Microbial co-culture: Harnessing intermicrobial signaling for the production of novel antimicrobials. Future Microbiol. 2014, 9, 575–578. 10.2217/fmb.14.25. PubMed DOI
Kim J. H.; Lee N.; Hwang S.; Kim W.; Lee Y.; Cho S.; Palsson B. O.; Cho B. K. Discovery of novel secondary metabolites encoded in actinomycete genomes through coculture. J. Ind. Microbiol. Biotechnol. 2021, 48, 3–4. 10.1093/jimb/kuaa001. PubMed DOI PMC
Kurosawa K.; Ghiviriga I.; Sambandan T. G.; Lessard P. A.; Barbara J. E.; Rha C.; Sinskey A. J. Rhodostreptomycins, antibiotics biosynthesized following horizontal gene transfer from Streptomyces padanus to Rhodococcus fascians. J. Am. Chem. 2008, 130 (4), 1126–1127. 10.1021/ja077821p. PubMed DOI
Khokhlov A. S.; Tovarova I. I.; Borisova L. N.; Pliner S. A.; Shevchenko L. N.; Kornitskaia E. [The A-factor, responsible for streptomycin biosynthesis by mutant strains of Actinomyces streptomycini]. Dokl Akad Nauk SSSR. 1967, 177 (1), 232–235. PubMed
Gräfe U.; Schade W.; Eritt I.; Fleck W. F.; Radics L. A new inducer of anthracycline biosynthesis from Streptomyces viridochromogenes. J. Antibiot (Tokyo). 1982, 35 (12), 1722–1723. 10.7164/antibiotics.35.1722. PubMed DOI
Tyurin A. P.; Alferova V. A.; Korshun V. A. Chemical Elicitors of Antibiotic Biosynthesis in Actinomycetes. Microorganisms 2018, 6 (2), 52.10.3390/microorganisms6020052. PubMed DOI PMC
Hoshino S.; Ozeki M.; Awakawa T.; Morita H.; Onaka H.; Abe I. Catenulobactins A and B, heterocyclic peptides from culturing Catenuloplanes sp. with a mycolic acid-containing bacterium. J. Nat. Prod. 2018, 81 (9), 2106–2110. 10.1021/acs.jnatprod.8b00261. PubMed DOI
Abdelmohsen U. R.; Grkovic T.; Balasubramanian S.; Kamel M. S.; Quinn R. J.; Hentschel U. Elicitation of secondary metabolism in actinomycetes. Biotechnol. Adv. 2015, 33 (6), 798–811. 10.1016/j.biotechadv.2015.06.003. PubMed DOI
Kumsiri B.; Pekkoh J.; Pathom-aree W.; Lumyong S.; Pumas C. Synergistic effect of co-culture of microalga and actinomycete in diluted chicken manure digestate for lipid production. Algal Res. 2018, 33, 239–247. 10.1016/j.algal.2018.05.020. DOI
LaSarre B.; Federle M. J. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol. Mol. Biol. Rev. 2013, 77 (1), 73–111. 10.1128/MMBR.00046-12. PubMed DOI PMC
Zhou J.-F.; Liang Z.-W.; Yin K.-Y.; Wang Y.; Li W.; Wang T.; Chen H.; Tan X.-J.; Tanveer M.; Zhou J.-W.; Guo Z.-Y. Quorum sensing inhibitor: An effective strategy to attenuate the virulence and drug resistance of Pseudomonas aeruginosa. Food Med. Homol. 2024, 1.10.26599/FMH.2025.9420066. DOI
Derewacz D. K.; Covington B. C.; McLean J. A.; Bachmann B. O. Mapping microbial response metabolomes for induced natural product discovery. ACS Chem. Biol. 2015, 10 (9), 1998–2006. 10.1021/acschembio.5b00001. PubMed DOI PMC
Adnani N.; Chevrette M. G.; Adibhatla S. N.; Zhang F.; Yu Q.; Braun D. R.; Nelson J.; Simpkins S. W.; McDonald B. R.; Myers C. L.; et al. Coculture of marine invertebrate-associated bacteria and interdisciplinary technologies enable biosynthesis and discovery of a new antibiotic, Keyicin. ACS Chem. Biol. 2017, 12 (12), 3093–3102. 10.1021/acschembio.7b00688. PubMed DOI PMC
Hoshino S.; Okada M.; Awakawa T.; Asamizu S.; Onaka H.; Abe I. Mycolic acid containing bacterium stimulates tandem cyclization of polyene macrolactam in a lake sediment derived Rare Actinomycete. Org. Lett. 2017, 19 (18), 4992–4995. 10.1021/acs.orglett.7b02508. PubMed DOI
Hoshino S.; Ozeki M.; Awakawa T.; Morita H.; Onaka H.; Abe I. Catenulobactins A and B, heterocyclic peptides from culturing Catenuloplanes sp. with a mycolic acid-containing bacterium. J. Nat. Prod. 2018, 81 (9), 2106–2110. 10.1021/acs.jnatprod.8b00261. PubMed DOI
Hoshino S.; Wong C. P.; Ozeki M.; Zhang H.; Hayashi F.; Awakawa T.; Asamizu S.; Onaka H.; Abe I. Umezawamides, new bioactive polycyclic tetramate macrolactams isolated from a combined-culture of Umezawaea sp. and mycolic acid-containing bacterium. J. Antibiot. 2018, 71 (7), 653–657. 10.1038/s41429-018-0040-4. PubMed DOI
Hoshino S.; Ozeki M.; Wong C. P.; Zhang H.; Hayashi F.; Awakawa T.; Morita H.; Onaka H.; Abe I. Mirilactams C-E, Novel polycyclic macrolactams isolated from combined-culture of Actinosynnema mirum NBRC 14064 and mycolic acid-containing bacterium. Chem. Pharm. Bull. 2018, 66 (6), 660–667. 10.1248/cpb.c18-00143. PubMed DOI
Dashti Y.; Grkovic T.; Abdelmohsen U. R.; Hentschel U.; Quinn R. J. Production of induced secondary metabolites by a co-culture of sponge-associated actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Marin. Drugs. 2014, 12 (5), 3046–3059. 10.3390/md12053046. PubMed DOI PMC
Alhadrami H. A.; Thissera B.; Hassan M. H. A.; Behery F. A.; Ngwa C. J.; Hassan H. M.; Pradel G.; Abdelmohsen U. R.; Rateb M. E. Bio-guided isolation of antimalarial metabolites from the coculture of two Red Sea sponge-derived Actinokineospora and Rhodococcus spp. Mar. Drugs. 2021, 19 (2), 109.10.3390/md19020109. PubMed DOI PMC
El-Hawary S. S.; Sayed A. M.; Mohammed R.; Khanfar M. A.; Rateb M. E.; Mohammed T. A.; Hajjar D.; Hassan H. M.; Gulder T. A.; Abdelmohsen U. R. New Pim-1 kinase inhibitor from the co-culture of two sponge-associated actinomycetes. Front. Chem. 2018, 6, 538.10.3389/fchem.2018.00538. PubMed DOI PMC
Shamikh Y. I.; El Shamy A. A.; Gaber Y.; Abdelmohsen U. R.; Madkour H. A.; Horn H.; Hassan H. M.; Elmaidomy A. H.; Alkhalifah D. H. M.; Hozzein W. N. Actinomycetes from the Red Sea sponge Coscinoderma mathewsi: Isolation, diversity, and potential for bioactive compounds discovery. Microorganisms 2020, 8 (5), 783.10.3390/microorganisms8050783. PubMed DOI PMC
S Hifnawy M.; Hassan H. M.; Mohammed R.; M Fouda M.; Sayed A. M.; A Hamed A.; F AbouZid S.; Rateb M. E.; Alhadrami H. A.; Abdelmohsen U. R. Induction of antibacterial metabolites by co-cultivation of two Red-Sea-sponge-associated actinomycetes Micromonospora sp. UR56 and Actinokinespora sp. EG49. Mar. Drugs. 2020, 18 (5), 243.10.3390/md18050243. PubMed DOI PMC
Genilloud O. Mining actinomycetes for novel antibiotics in the omics era: Are we ready to exploit this new paradigm?. Antibiotics 2018, 7 (4), 85.10.3390/antibiotics7040085. PubMed DOI PMC
Zhang M. M.; Wang Y.; Ang E. L.; Zhao H. Engineering microbial hosts for production of bacterial natural products. Nat. Prod. Rep. 2016, 33 (8), 963–987. 10.1039/C6NP00017G. PubMed DOI PMC
Mao D.; Okada B. K.; Wu Y.; Xu F.; Seyedsayamdost M. R. Recent advances in activating silent biosynthetic gene clusters in bacteria. Curr. Opin. Microbiol. 2018, 45, 156–163. 10.1016/j.mib.2018.05.001. PubMed DOI PMC
Selim M. M.; Abdelhamid S. A.; Mohamed S. S. Secondary metabolites and biodiversity of actinomycetes. J. Genet. Eng. Biotechnol. 2021, 19 (1), 72.10.1186/s43141-021-00156-9. PubMed DOI PMC
Spohn M.; Kirchner N.; Kulik A.; Jochim A.; Wolf F.; Muenzer P.; Borst O.; Gross H.; Wohlleben W.; Stegmann E. Overproduction of Ristomycin A by activation of a silent gene cluster in Amycolatopsis japonicum MG417-CF17. Antimicrob. Agents Chemother. 2014, 58, 6185–6196. 10.1128/AAC.03512-14. PubMed DOI PMC
Zhang M. M.; Wong F. T.; Wang Y.; Luo S.; Lim Y. H.; Heng E.; Yeo W. L.; Cobb R. E; Enghiad B.; Ang E. L.; Zhao H. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat. Chem. Biol. 2017, 13, 607–609. 10.1038/nchembio.2341. PubMed DOI PMC
Luo Y.; Huang H.; Liang J.; Wang M.; Lu L.; Shao Z.; Cobb R. E.; Zhao H. Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nat. Commun. 2013, 4 (1), 2894.10.1038/ncomms3894. PubMed DOI PMC
Stackebrandt E.; Schumann P.. Introduction to the Taxonomy of Actinobacteria. In The Prokaryotes: Vol. 3: Archaea. Bacteria: Firmicutes, Actinomycetes.; Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E., Eds.; Springer, New York, 2006; pp 297–321. 10.1007/0-387-30743-5_16. DOI
Land M.; Hauser L.; Jun S.-R.; Nookaew I.; Leuze M. R.; Ahn T.-H.; Karpinets T.; Lund O.; Kora G.; Wassenaar T.; et al. Insights from 20 years of bacterialgenome sequencing. Funct. Integr. Genomics. 2015, 15 (2), 141–161. 10.1007/s10142-015-0433-4. PubMed DOI PMC
Bartoš O.; Chmel M.; Swierczková I. The overlooked evolutionary dynamics of 16S rRNA revises its role as the “gold standard” for bacterial species identification. Sci. Rep. 2024, 14 (1), 9067.10.1038/s41598-024-59667-3. PubMed DOI PMC
Chun J.; Lee J. H.; Jung Y.; Kim M.; Kim S.; Kim B. K.; Lim Y. W. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 2007, 57, 2259–2261. 10.1099/ijs.0.64915-0. PubMed DOI
Maidak B. L.; Larsen N.; McCaughey M. J.; Overbeek R.; Olsen G. J.; Fogel K.; Blandy J.; Woese C. R. The ribosomal database project. Nucleic Acids Res. 1994, 22 (17), 3485–3487. 10.1093/nar/22.17.3485. PubMed DOI PMC
Cole J. R.; Wang Q.; Fish J. A.; Chai B.; McGarrell D. M.; Sun Y.; Brown C. T.; Porras-Alfaro A.; Kuske C. R.; Tiedje J. M. Ribosomal database project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014, 42, D633–D642. 10.1093/nar/gkt1244. PubMed DOI PMC
Nouioui I.; Carro L.; García-López M.; Meier-Kolthoff J. P.; Woyke T.; Kyrpides N. C.; Pukall R.; Klenk H. P.; Goodfellow M.; Göker M. Genome-based taxonomic classification of the phylum actinobacteria. Front. Microbiol. 2018, 9, 2007.10.3389/fmicb.2018.02007. PubMed DOI PMC
Joshi C. J.; Ke W.; Drangowska-Way A.; O’Rourke E. J.; Lewis N. E. What are housekeeping genes?. PLoS Comput. Biol. 2022, 18 (7), e101029510.1371/journal.pcbi.1010295. PubMed DOI PMC
Meier-Kolthoff J. P.; Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10 (1), 2182.10.1038/s41467-019-10210-3. PubMed DOI PMC
Richter M.; Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Nat. Acad. Sci. 2009, 106 (45), 19126–19131. 10.1073/pnas.0906412106. PubMed DOI PMC
Charlop-Powers Z.; Milshteyn A.; Brady S. F. Metagenomic small molecule discovery methods. Curr. Opin Microbiol. 2014, 19, 70–75. 10.1016/j.mib.2014.05.021. PubMed DOI PMC
Milshteyn A.; Schneider J. S.; Brady S. F. Mining the metabiome: Identifying novel natural products from microbial communities. J. Biol. Chem. 2014, 21 (9), 1211–1223. 10.1016/j.chembiol.2014.08.006. PubMed DOI PMC
Shokralla S.; Spall J. L.; Gibson J. F.; Hajibabaei M. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 2012, 21 (8), 1794–1805. 10.1111/j.1365-294X.2012.05538.x. PubMed DOI
Niu G. Genomics-driven natural product discovery in actinomycetes. Trends Biotechnol. 2018, 36 (3), 238–241. 10.1016/j.tibtech.2017.10.009. PubMed DOI
Hossain T. J. Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. Eur. J. Microbiol. Immunol. 2024, 14 (2), 97–115. 10.1556/1886.2024.00035. PubMed DOI PMC
Rütten A.; Kirchner T.; Musiol-Kroll E. M. Overview on strategies and assays for antibiotic discovery. Pharmaceuticals 2022, 15 (10), 1302.10.3390/ph15101302. PubMed DOI PMC
Balouiri M.; Sadiki M.; Ibnsouda S. K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6 (2), 71–79. 10.1016/j.jpha.2015.11.005. PubMed DOI PMC
Dueñas M. E.; Peltier-Heap R. E.; Leveridge M.; Annan R. S.; Büttner F. H.; Trost M. Advances in high-throughput mass spectrometry in drug discovery. EMBO Mol. Med. 2023, 15 (1), e14850.10.15252/emmm.202114850. PubMed DOI PMC
Szymański P.; Markowicz M.; Mikiciuk-Olasik E. Adaptation of high-throughput screening in drug discovery-toxicological screening tests. Int. J. Mol. Sci. 2012, 13 (1), 427–452. 10.3390/ijms13010427. PubMed DOI PMC
Chen Y.; Li E. M.; Xu L. Y. Guide to metabolomics analysis: A bioinformatics workflow. Metabolites 2022, 12 (4), 357.10.3390/metabo12040357. PubMed DOI PMC
Kapoore R. V.; Vaidyanathan S. Towards quantitative mass spectrometry-based metabolomics in microbial and mammalian systems. Philos. Trans. R. Soc. A 2016, 374, 2015036310.1098/rsta.2015.0363. PubMed DOI PMC
Ye D.; Li X.; Shen J.; Xia X. Microbial metabolomics: From novel technologies to diversified applications. TrAC Trends Anal. Chem. 2022, 148, 11654010.1016/j.trac.2022.116540. DOI
Yang J. Y.; Sanchez L. M.; Rath C. M.; Liu X.; Boudreau P. D.; Bruns N.; Glukhov E.; Wodtke A.; de Felicio R.; Fenner A.; et al. Molecular networking as a dereplication strategy. J. Nat. Prod. 2013, 76 (9), 1686–1699. 10.1021/np400413s. PubMed DOI PMC
Emwas A.-H.; Roy R.; McKay R. T.; Tenori L.; Saccenti E.; Gowda G. A. N.; Raftery D.; Alahmari F.; Jaremko L.; Jaremko M.; et al. NMR spectroscopy for metabolomics research. Metabolites 2019, 9 (7), 123.10.3390/metabo9070123. PubMed DOI PMC
Tawfike A. F.; Viegelmann C.; Edrada-Ebel R. Metabolomics and dereplication strategies in natural products. Methods Mol. Biol. 2013, 1055, 227–244. 10.1007/978-1-62703-577-4_17. PubMed DOI
Huber F.; Van der Burg S.; van der Hooft J. J.; Ridder L. MS2DeepScore: A novel deep learning similarity measure to compare tandem mass spectra. J. Cheminform. 2021, 13 (1), 84.10.1186/s13321-021-00558-4. PubMed DOI PMC
Quiros-Guerrero L. M.; Nothias L. F.; Gaudry A.; Marcourt L.; Allard P. M.; Rutz A.; David B.; Queiroz E. F.; Wolfender J. L. Inventa: A computational tool to discover structural novelty in natural extracts libraries. Front. Mol. Biosci. 2022, 9, 102833410.3389/fmolb.2022.1028334. PubMed DOI PMC
Morehouse N. J.; Clark T. N.; McMann E. J.; van Santen J. A.; Haeckl F. P. J.; Gray C. A.; Linington R. G. Annotation of natural product compound families using molecular networking topology and structural similarity fingerprinting. Nat. Commun. 2023, 14 (1), 308.10.1038/s41467-022-35734-z. PubMed DOI PMC
da Silva R. R.; Wang M.; Nothias L. F.; van der Hooft J. J. J.; Caraballo-Rodríguez A. M.; Fox E.; Balunas M. J.; Klassen J. L.; Lopes N. P.; Dorrestein P. C. Propagating annotations of molecular networks using in silico fragmentation. PLoS Comput. Biol. 2018, 14 (4), e1006089.10.1371/journal.pcbi.1006089. PubMed DOI PMC
Allard P. M.; Péresse T.; Bisson J.; Gindro K.; Marcourt L.; Pham V. C.; Roussi F.; Litaudon M.; Wolfender J. L. Integration of molecular networking and in-silico MS/MS fragmentation for natural products dereplication. Anal. Chem. 2016, 88 (6), 3317–3323. 10.1021/acs.analchem.5b04804. PubMed DOI
Ludwig M.; Nothias L.-F.; Dührkop K.; Koester I.; Fleischauer M.; Hoffmann M. A.; Petras D.; Vargas F.; Morsy M.; Aluwihare L.; et al. Database-independent molecular formula annotation using Gibbs sampling through ZODIAC. Nat. Mach. Intell. 2020, 2 (10), 629–641. 10.1038/s42256-020-00234-6. DOI
Dührkop K.; Nothias L.-F.; Fleischauer M.; Reher R.; Ludwig M.; Hoffmann M. A.; Petras D.; Gerwick W. H.; Rousu J.; Dorrestein P. C.; et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat. Biotechnol. 2021, 39 (4), 462–471. 10.1038/s41587-020-0740-8. PubMed DOI
Shin D.; Byun W. S.; Kang S.; Kang I.; Bae E. S.; An J. S.; Im J. H.; Park J.; Kim E.; Ko K.; et al. Targeted and logical discovery of piperazic acid-bearing natural products based on genomic and spectroscopic signatures. J. Am. Chem. Soc. 2023, 145 (36), 19676–19690. 10.1021/jacs.3c04699. PubMed DOI
Noureen N.; Cheema M. T.; Anwar S.; Hasnain S.; Sajid I. PCR-based screening approach: A rapid method to detect the biosynthetic potential of antimicrobials in actinobacterial strains. Polym. J. Microbiol. 2020, 69 (2), 139–149. 10.33073/pjm-2020-016. PubMed DOI PMC