Cutting edge concepts: Does bilirubin enhance exercise performance?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
Grantová podpora
P20 GM104357
NIGMS NIH HHS - United States
R01 DK121797
NIDDK NIH HHS - United States
PubMed
36713945
PubMed Central
PMC9874874
DOI
10.3389/fspor.2022.1040687
Knihovny.cz E-zdroje
- Klíčová slova
- BLVRA, HO-1, bilirubin, biliverdin reductase, exercise performance, heme oxygenase, oxidative stress, reactive oxygen species,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Exercise performance is dependent on many factors, such as muscular strength and endurance, cardiovascular capacity, liver health, and metabolic flexibility. Recent studies show that plasma levels of bilirubin, which has classically been viewed as a liver dysfunction biomarker, are elevated by exercise training and that elite athletes may have significantly higher levels. Other studies have shown higher plasma bilirubin levels in athletes and active individuals compared to general, sedentary populations. The reason for these adaptions is unclear, but it could be related to bilirubin's antioxidant properties in response to a large number of reactive oxygen species (ROS) that originates from mitochondria during exercise. However, the mechanisms of these are unknown. Current research has re-defined bilirubin as a metabolic hormone that interacts with nuclear receptors to drive gene transcription, which reduces body weight. Bilirubin has been shown to reduce adiposity and improve the cardiovascular system, which might be related to the adaption of bilirubin increasing during exercise. No studies have directly tested if elevating bilirubin levels can influence athletic performance. However, based on the mechanisms proposed in the present review, this seems plausible and an area to consider for future studies. Here, we discuss the importance of bilirubin and exercise and how the combination might improve metabolic health outcomes and possibly athletic performance.
Center for Muscle Biology University of Kentucky College of Medicine Lexington KY United States
Department of Dietetics and Human Nutrition University of Kentucky Lexington KY United States
Markey Cancer Center University of Kentucky Lexington KY United States
Zobrazit více v PubMed
Sargeant JA, Gray LJ, Bodicoat DH, Willis SA, Stensel DJ, Nimmo MA, et al. The effect of exercise training on intrahepatic triglyceride and hepatic insulin sensitivity: a systematic review and meta-analysis. Obes Rev. (2018) 19(10):1446–59. 10.1111/obr.12719 PubMed DOI
Fiuza-Luces C, Santos-Lozano A, Joyner M, Carrera-Bastos P, Picazo O, Zugaza JL, et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat Rev Cardiol. (2018) 15(12):731–43. 10.1038/s41569-018-0065-1 PubMed DOI
Ho SS, Dhaliwal SS, Hills AP, Pal S. The effect of 12 weeks of aerobic, resistance or combination exercise training on cardiovascular risk factors in the overweight and obese in a randomized trial. BMC Public Health. (2012) 12:704. 10.1186/1471-2458-12-704 PubMed DOI PMC
Holloszy JO. Adaptations of skeletal muscle mitochondria to endurance exercise: a personal perspective. Exerc Sport Sci Rev. (2004) 32(2):41–3. 10.1097/00003677-200404000-00001 PubMed DOI
Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of inactivity in chronic diseases: evolutionary insight and pathophysiological mechanisms. Physiol Rev. (2017) 97(4):1351–402. 10.1152/physrev.00019.2016 PubMed DOI PMC
Smedlund KB, Sanchez ER, Hinds TD, Jr. FKBP51 And the molecular chaperoning of metabolism. Trends Endocrinol Metab. (2021) 32(11):862–74. 10.1016/j.tem.2021.08.003 PubMed DOI PMC
Denou E, Marcinko K, Surette MG, Steinberg GR, Schertzer JD. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. Am J Physiol Endocrinol Metab. (2016) 310(11):E982–93. 10.1152/ajpendo.00537.2015 PubMed DOI PMC
Carbajo-Pescador S, Porras D, García-Mediavilla MV, Martínez-Flórez S, Juarez-Fernández M, Cuevas MJ, et al. Beneficial effects of exercise on gut microbiota functionality and barrier integrity, and gut-liver crosstalk in an in vivo model of early obesity and non-alcoholic fatty liver disease. Dis Model Mech. (2019) 12(5):dmm039206. 10.1242/dmm.039206 PubMed DOI PMC
Thyfault JP, Bergouignan A. Exercise and metabolic health: beyond skeletal muscle. Diabetologia. (2020) 63(8):1464–74. 10.1007/s00125-020-05177-6 PubMed DOI PMC
Trefts E, Williams AS, Wasserman DH. Exercise and the regulation of hepatic metabolism. Prog Mol Biol Transl Sci. (2015) 135:203–25. 10.1016/bs.pmbts.2015.07.010 PubMed DOI PMC
Badmus OO, Hillhouse SA, Anderson CD, Hinds TD, Stec DE. Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways. Clin Sci. (2022) 136(18):1347–66. 10.1042/CS20220572 PubMed DOI PMC
Hu C, Hoene M, Plomgaard P, Hansen JS, Zhao X, Li J, et al. Muscle-liver substrate fluxes in exercising humans and potential effects on hepatic metabolism. J Clin Endocrinol Metab. (2020) 105(4):1196–1209. 10.1210/clinem/dgz266 PubMed DOI PMC
Marino JS, Stechschulte LA, Stec DE, Nestor-Kalinoski A, Coleman S, Hinds TD, Jr. Glucocorticoid receptor beta induces hepatic steatosis by augmenting inflammation and inhibition of the peroxisome proliferator-activated receptor (PPAR) alpha. J Biol Chem. (2016) 291(50):25776–788. 10.1074/jbc.M116.752311 PubMed DOI PMC
Rector RS, Uptergrove GM, Morris EM, Borengasser SJ, Laughlin MH, Booth FW, et al. Daily exercise vs. caloric restriction for prevention of nonalcoholic fatty liver disease in the OLETF rat model. Am J Physiol Gastrointest Liver Physiol. (2011) 300(5):G874–83. 10.1152/ajpgi.00510.2010 PubMed DOI PMC
Linden MA, Fletcher JA, Morris EM, Meers GM, Laughlin MH, Booth FW, et al. Treating NAFLD in OLETF rats with vigorous-intensity interval exercise training. Med Sci Sports Exerc. (2015) 47(3):556–67. 10.1249/MSS.0000000000000430 PubMed DOI PMC
Thyfault JP, Rector RS. Exercise combats hepatic steatosis: potential mechanisms and clinical implications. Diabetes. (2020) 69(4):517–24. 10.2337/dbi18-0043 PubMed DOI PMC
Creeden JF, Kipp ZA, Xu M, Flight RM, Moseley HNB, Martinez GJ, et al. Hepatic kinome atlas: an in-depth identification of kinase pathways in liver fibrosis of humans and rodents. Hepatology. (2022) 76(5):1376–88. 10.1002/hep.32467 PubMed DOI PMC
Thomas DT, DelCimmuto NR, Flack KD, Stec DE, Hinds TD, Jr. Reactive oxygen Species (ROS) and antioxidants as immunomodulators in exercise: implications for heme oxygenase and bilirubin. Antioxidants. (2022) 11(2):179. 10.3390/antiox11020179 PubMed DOI PMC
Hinds TD, Jr, Creeden JF, Gordon DM, Stec DF, Donald MC, Stec DE. Bilirubin nanoparticles reduce diet-induced hepatic steatosis, improve fat utilization, and increase plasma beta-hydroxybutyrate. Front Pharmacol. (2020) 11:594574. 10.3389/fphar.2020.594574 PubMed DOI PMC
Hinds TD, Jr, Hosick PA, Hankins MW, Nestor-Kalinoski A, Stec DE. Mice with hyperbilirubinemia due to Gilbert's syndrome polymorphism are resistant to hepatic steatosis by decreased serine 73 phosphorylation of PPARalpha. Am J Physiol Endocrinol Metab. (2017) 312(4):E244–E252. 10.1152/ajpendo.00396.2016 PubMed DOI PMC
Hinds TD, Jr, Burns KA, Hosick PA, McBeth L, Nestor-Kalinoski A, Drummond HA, et al. Biliverdin reductase A attenuates hepatic steatosis by inhibition of glycogen synthase kinase (GSK) 3beta phosphorylation of serine 73 of peroxisome proliferator-activated receptor (PPAR) alpha. J Biol Chem. (2016) 291(48):25179–191. 10.1074/jbc.M116.731703 PubMed DOI PMC
Gordon DM, Adeosun SO, Ngwudike SI, Anderson CD, Hall JE, Hinds TD, Jr, et al. CRISPR Cas9-mediated deletion of biliverdin reductase A (BVRA) in mouse liver cells induces oxidative stress and lipid accumulation. Arch Biochem Biophys. (2019) 672:108072. 10.1016/j.abb.2019.108072 PubMed DOI PMC
Kim YJ, Kim HJ, Lee SG, Kim DH, In Jang S, Go HS, et al. Aerobic exercise for eight weeks provides protective effects towards liver and cardiometabolic health and adipose tissue remodeling under metabolic stress for one week: a study in mice. Metab Clin Exp. (2022) 130:155178. 10.1016/j.metabol.2022.155178 PubMed DOI
Flack KD, Hays HM, Moreland J, Long DE. Exercise for weight loss: further evaluating energy compensation with exercise. Med Sci Sports Exerc. (2020) 52(11):2466–75. 10.1249/MSS.0000000000002376 PubMed DOI PMC
Berggren JR, Hulver MW, Dohm GL, Houmard JA. Weight loss and exercise: implications for muscle lipid metabolism and insulin action. Med Sci Sports Exerc. (2004) 36(7):1191–5. 10.1249/01.MSS.0000074670.03001.98 PubMed DOI
Mora-Rodriguez R, Ortega JF, Ramirez-Jimenez M, Moreno-Cabanas A, Morales-Palomo F. Insulin sensitivity improvement with exercise training is mediated by body weight loss in subjects with metabolic syndrome. Diabetes Metab. (2019) 46(3):210–218. 10.1016/j.diabet.2019.05.004 PubMed DOI
Andersson C, Weeke P, Fosbøl EL, Brendorp B, Køber L, Coutinho W, et al. Acute effect of weight loss on levels of total bilirubin in obese, cardiovascular high-risk patients: an analysis from the lead-in period of the sibutramine cardiovascular outcome trial. Metab Clin Exp. (2009) 58(8):1109–15. 10.1016/j.metabol.2009.04.003 PubMed DOI
Ji LL. Exercise-induced modulation of antioxidant defense. Ann N Y Acad Sci. (2002) 959:82–92. 10.1111/j.1749-6632.2002.tb02085.x PubMed DOI
Vargas-Mendoza N, Morales-Gonzalez A, Madrigal-Santillan EO, Madrigal-Bujaidar E, Alvarez-Gonzalez I, Garcia-Melo LF, et al. Antioxidant and adaptative response mediated by Nrf2 during physical exercise. Antioxidants. (2019) 8(6):196. 10.3390/antiox8060196 PubMed DOI PMC
Radak Z, Chung HY, Koltai E, Taylor AW, Goto S. Exercise, oxidative stress and hormesis. Ageing Res Rev. (2008) 7(1):34–42. 10.1016/j.arr.2007.04.004 PubMed DOI
Radak Z, Chung HY, Goto S. Exercise and hormesis: oxidative stress-related adaptation for successful aging. Biogerontology. (2005) 6(1):71–5. 10.1007/s10522-004-7386-7 PubMed DOI
Pingitore A, Lima GP, Mastorci F, Quinones A, Iervasi G, Vassalle C. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition. (2015) 31(7-8):916–22. 10.1016/j.nut.2015.02.005 PubMed DOI
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: current evidence and mechanistic insights. Redox Biol. (2020) 35:101471. 10.1016/j.redox.2020.101471 PubMed DOI PMC
Higgins MR, Izadi A, Kaviani M. Antioxidants and exercise performance: with a focus on vitamin E and C supplementation. Int J Environ Res Public Health. (2020) 17(22):8452. 10.3390/ijerph17228452 PubMed DOI PMC
Woronyczova J, Novakova M, Lenicek M, Batovsky M, Bolek E, Cifkova R, et al. Serum bilirubin concentrations and the prevalence of gilbert syndrome in elite athletes. Sports Med Open. (2022) 8(1):84. 10.1186/s40798-022-00463-6 PubMed DOI PMC
Gordon DM, Hong SH, Kipp ZA, Hinds TD, Jr. Identification of binding regions of bilirubin in the ligand-binding pocket of the peroxisome proliferator-activated receptor-A (PPARalpha). Molecules. (2021) 26(10):2975. 10.3390/molecules26102975 PubMed DOI PMC
Creeden JF, Gordon DM, Stec DE, Hinds TD, Jr. Bilirubin as a metabolic hormone: the physiological relevance of low levels. Am J Physiol Endocrinol Metab. (2021) 320(2):E191–207. 10.1152/ajpendo.00405.2020 PubMed DOI PMC
Gordon DM, Neifer KL, Hamoud AA, Hawk CF, Nestor-Kalinoski AL, Miruzzi SA, et al. Bilirubin remodels murine white adipose tissue by reshaping mitochondrial activity and the coregulator profile of peroxisome proliferator-activated receptor alpha. J Biol Chem. (2020) 295(29):9804–22. 10.1074/jbc.RA120.013700 PubMed DOI PMC
Hinds TD, Jr, Stec DE. Bilirubin safeguards cardiorenal and metabolic diseases: a protective role in health. Curr Hypertens Rep. (2019) 21(11):87. 10.1007/s11906-019-0994-z PubMed DOI PMC
Gordon DM, Blomquist TM, Miruzzi SA, McCullumsmith R, Stec DE, Hinds TD, Jr. RNA sequencing in human HepG2 hepatocytes reveals PPAR-alpha mediates transcriptome responsiveness of bilirubin. Physiol Genomics. (2019) 51(6):234–40. 10.1152/physiolgenomics.00028.2019 PubMed DOI PMC
Weaver L, Hamoud AR, Stec DE, Hinds TD, Jr. Biliverdin reductase and bilirubin in hepatic disease. Am J Physiol Gastrointest Liver Physiol. (2018) 314(6):G668–G76. 10.1152/ajpgi.00026.2018 PubMed DOI PMC
Hinds TD, Jr, Stec DE. Bilirubin, a cardiometabolic signaling molecule. Hypertension. (2018) 72(4):788–95. 10.1161/HYPERTENSIONAHA.118.11130 PubMed DOI PMC
Hamoud AR, Weaver L, Stec DE, Hinds TD, Jr. Bilirubin in the liver-gut signaling axis. Trends Endocrinol Metab. (2018) 29(3):140–150. 10.1016/j.tem.2018.01.002 PubMed DOI PMC
Stec DE, John K, Trabbic CJ, Luniwal A, Hankins MW, Baum J, et al. Bilirubin binding to PPARalpha inhibits lipid accumulation. PLoS One. (2016) 11(4):e0153427. 10.1371/journal.pone.0153427 PubMed DOI PMC
Vitek L, Tiribelli C. Bilirubin: the yellow hormone? J Hepatol. (2021) 75(6):1485–90. 10.1016/j.jhep.2021.06.010 PubMed DOI
Fischbach F. A manual of laboratory and diagnostic tests. 9th ed Philadelphia, PA: Lippincott Williams & Wilkins; (2014).
O'Brien L, Hosick PA, John K, Stec DE, Hinds TD, Jr. Biliverdin reductase isozymes in metabolism. Trends Endocrinol Metab. (2015) 26(4):212–20. 10.1016/j.tem.2015.02.001 PubMed DOI PMC
Stec DE, Gordon DM, Nestor-Kalinoski AL, Donald MC, Mitchell ZL, Creeden JF, et al. Biliverdin reductase A (BVRA) knockout in adipocytes induces hypertrophy and reduces mitochondria in white fat of obese mice. Biomolecules. (2020) 10(3):387. 10.3390/biom10030387 PubMed DOI PMC
Chen W, Tumanov S, Fazakerley DJ, Cantley J, James DE, Dunn LL, et al. Bilirubin deficiency renders mice susceptible to hepatic steatosis in the absence of insulin resistance. Redox Biol. (2021) 47:102152. 10.1016/j.redox.2021.102152 PubMed DOI PMC
Chen W, Maghzal GJ, Ayer A, Suarna C, Dunn LL, Stocker R. Absence of the biliverdin reductase-a gene is associated with increased endogenous oxidative stress. Free Radic Biol Med. (2018) 115:156–65. 10.1016/j.freeradbiomed.2017.11.020 PubMed DOI
Sundararaghavan VL, Sindhwani P, Hinds TD, Jr. Glucuronidation and UGT isozymes in bladder: new targets for the treatment of uroepithelial carcinomas? Oncotarget. (2017) 8(2):3640–8. 10.18632/oncotarget.12277 PubMed DOI PMC
Hinds TD, Jr, Creeden JF, Gordon DM, Spegele AC, Britton SL, Koch LG, et al. Rats genetically selected for high aerobic exercise capacity have elevated plasma bilirubin by upregulation of hepatic biliverdin reductase-A (BVRA) and suppression of UGT1A1. Antioxidants. (2020) 9(9):889. 10.3390/antiox9090889 PubMed DOI PMC
Woronyczova J, Novákova M, Lenicek M, Batovsky M, Bolek E, Cifkova R, et al. Serum bilirubin concentrations and the prevalence of gilbert syndrome in elite athletes. Sports Med Open Access. (2022) 8(1):84. 10.1186/s40798-022-00463-6 PubMed DOI PMC
Swift DL, Johannsen NM, Earnest CP, Blair SN, Church TS. Effect of different doses of aerobic exercise training on total bilirubin levels. Med Sci Sports Exerc. (2012) 44(4):569–74. 10.1249/MSS.0b013e3182357dd4 PubMed DOI PMC
Kabasakalis A, Tsalis G, Zafrana E, Loupos D, Mougios V. Effects of endurance and high-intensity swimming exercise on the redox status of adolescent male and female swimmers. J Sports Sci. (2014) 32(8):747–56. 10.1080/02640414.2013.850595 PubMed DOI
Devries MC, Samjoo IA, Hamadeh MJ, Tarnopolsky MA. Effect of endurance exercise on hepatic lipid content, enzymes, and adiposity in men and women. Obesity. (2008) 16(10):2281–8. 10.1038/oby.2008.358 PubMed DOI
Stamatakis E, Straker L, Hamer M, Gebel K. The 2018 physical activity guidelines for Americans: what's new? Implications for clinicians and the public. J Orthop Sports Phys Ther. (2019) 49(7):487–90. 10.2519/jospt.2019.0609 PubMed DOI
Anđelković M, Baralić I, Đorđević B, Stevuljević JK, Radivojević N, Dikić N, et al. Hematological and biochemical parameters in elite soccer players during A competitive half season. J Med Biochem. (2015) 34(4):460–6. 10.2478/jomb-2014-0057 PubMed DOI PMC
Banfi G, Di Gaetano N, Lopez RS, Melegati G. Decreased mean sphered cell volume values in top-level rugby players are related to the intravascular hemolysis induced by exercise. Lab Hematol. (2007) 13(3):103–7. 10.1532/LH96.07012 PubMed DOI
Witek K, Scislowska J, Turowski D, Lerczak K, Lewandowska-Pachecka S, Pokrywka A. Total bilirubin in athletes, determination of reference range. Biol Sport. (2017) 34(1):45–8. 10.5114/biolsport.2017.63732 PubMed DOI PMC
Fragala MS, Bi C, Chaump M, Kaufman HW, Kroll MH. Associations of aerobic and strength exercise with clinical laboratory test values. PLoS One. (2017) 12(10):e0180840. 10.1371/journal.pone.0180840 PubMed DOI PMC
Zalavras A, Fatouros IG, Deli CK, Draganidis D, Theodorou AA, Soulas D, et al. Age-related responses in circulating markers of redox status in healthy adolescents and adults during the course of a training macrocycle. Oxid Med Cell Longev. (2015) 2015:283921. 10.1155/2015/283921 PubMed DOI PMC
Hammouda O, Chtourou H, Chaouachi A, Chahed H, Ferchichi S, Kallel C, et al. Effect of short-term maximal exercise on biochemical markers of muscle damage, total antioxidant status, and homocysteine levels in football players. Asian J Sports Med. (2012) 3(4):239–46. 10.5812/asjsm.34544 PubMed DOI PMC
Fallon KE, Sivyer G, Sivyer K, Dare A. The biochemistry of runners in a 1600 km ultramarathon. Br J Sports Med. (1999) 33(4):264–9. 10.1136/bjsm.33.4.264 PubMed DOI PMC
Senturk UK, Gunduz F, Kuru O, Kocer G, Ozkaya YG, Yesilkaya A, et al. Exercise-induced oxidative stress leads hemolysis in sedentary but not trained humans. J Appl Physiol. (2005) 99(4):1434–41. 10.1152/japplphysiol.01392.2004 PubMed DOI
Miller BJ, Pate RR, Burgess W. Foot impact force and intravascular hemolysis during distance running. Int J Sports Med. (1988) 9(1):56–60. 10.1055/s-2007-1024979 PubMed DOI
Orino K, Lehman L, Tsuji Y, Ayaki H, Torti SV, Torti FM. Ferritin and the response to oxidative stress. Biochem J. (2001) 357(Pt 1):241–7. 10.1042/bj3570241 PubMed DOI PMC
Meneghini R. Iron homeostasis, oxidative stress, and DNA damage. Free Radic Biol Med. (1997) 23(5):783–92. 10.1016/S0891-5849(97)00016-6 PubMed DOI
Pizza FX, Flynn MG, Boone JB, Rodriguez-Zayas JR, Andres FF. Serum haptoglobin and ferritin during a competitive running and swimming season. Int J Sports Med. (1997) 18(4):233–7. 10.1055/s-2007-972625 PubMed DOI
Deruisseau KC, Roberts LM, Kushnick MR, Evans AM, Austin K, Haymes EM. Iron status of young males and females performing weight-training exercise. Med Sci Sports Exerc. (2004) 36(2):241–8. 10.1249/01.MSS.0000113483.13339.7B PubMed DOI
Malcovati L, Pascutto C, Cazzola M. Hematologic passport for athletes competing in endurance sports: a feasibility study. Haematologica. (2003) 88(5):570–81. 10.3324/%x PubMed DOI
Abraham NG, Kappas A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev. (2008) 60(1):79–127. 10.1124/pr.107.07104 PubMed DOI
Stec DE, Hinds TD, Jr. Natural product heme oxygenase inducers as treatment for nonalcoholic fatty liver disease. Int J Mol Sci. (2020) 21(24):9493. 10.3390/ijms21249493 PubMed DOI PMC
Adeosun SO, Moore KH, Lang DM, Nwaneri AC, Hinds TD, Jr, Stec DE. A novel fluorescence-based assay for the measurement of biliverdin reductase activity. React Oxyg Species. (2018) 5(13):35–45. 10.20455/ros.2018.809 PubMed DOI PMC
Petriz BA, Gomes CP, Almeida JA, de Oliveira GP, Jr, Ribeiro FM, Pereira RW, et al. The effects of acute and chronic exercise on skeletal muscle proteome. J Cell Physiol. (2017) 232(2):257–69. 10.1002/jcp.25477 PubMed DOI
Hellsten Y, Nyberg M. Cardiovascular adaptations to exercise training. Comp Physiol. (2016) 6:1–32. 10.1002/cphy.c140080 PubMed DOI
Ferraro E, Giammarioli AM, Chiandotto S, Spoletini I, Rosano G. Exercise-induced skeletal muscle remodeling and metabolic adaptation: redox signaling and role of autophagy. Antioxid Redox Signal. (2014) 21(1):154–76. 10.1089/ars.2013.5773 PubMed DOI PMC
Vitek L. Bilirubin as a signaling molecule. Med Res Rev. (2020) 40(4):1335–51. 10.1002/med.21660 PubMed DOI
Hinds TD, Jr, Adeosun SO, Alamodi AA, Stec DE. Does bilirubin prevent hepatic steatosis through activation of the PPARalpha nuclear receptor? Med Hypotheses. (2016) 95:54–7. 10.1016/j.mehy.2016.08.013 PubMed DOI PMC
Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. Bilirubin is an antioxidant of possible physiological importance. Science. (1987) 235(4792):1043–6. 10.1126/science.3029864 PubMed DOI
Lanone S, Bloc S, Foresti R, Almolki A, Taille C, Callebert J, et al. Bilirubin decreases nos2 expression via inhibition of NAD(P)H oxidase: implications for protection against endotoxic shock in rats. FASEB J. (2005) 19(13):1890–2. 10.1096/fj.04-2368fje PubMed DOI
Vera T, Granger JP, Stec DE. Inhibition of bilirubin metabolism induces moderate hyperbilirubinemia and attenuates ANG II-dependent hypertension in mice. Am J Physiol Regul Integr Comp Physiol. (2009) 297(3):R738–R43. 10.1152/ajpregu.90889.2008 PubMed DOI PMC
Stec DE, Hosick PA, Granger JP. Bilirubin, renal hemodynamics, and blood pressure. Front Pharmacol. (2012) 3:18. 10.3389/fphar.2012.00018 PubMed DOI PMC
Vera T, Stec DE. Moderate hyperbilirubinemia improves renal hemodynamics in ANG II-dependent hypertension. Am J Physiol Regul Integr Comp Physiol. (2010) 299(4):R1044–R9. 10.1152/ajpregu.00316.2010 PubMed DOI PMC
Kawamura K, Ishikawa K, Wada Y, Kimura S, Matsumoto H, Kohro T, et al. Bilirubin from heme oxygenase-1 attenuates vascular endothelial activation and dysfunction. Arterioscler Thromb Vasc Biol. (2005) 25(1):155–60. 10.1161/01.ATV.0000148405.18071.6a PubMed DOI
Pflueger A, Croatt AJ, Peterson TE, Smith LA, d'Uscio LV, Katusic ZS, et al. The hyperbilirubinemic gunn rat is resistant to the pressor effects of angiotensin II. Am J Physiol Renal Physiol. (2005) 288(3):F552–F8. 10.1152/ajprenal.00278.2004 PubMed DOI
Bakrania BA, Spradley FT, Satchell SC, Stec DE, Rimoldi JM, Gadepalli RSV, et al. Heme oxygenase-1 is a potent inhibitor of placental ischemia-mediated endothelin-1 production in cultured human glomerular endothelial cells. Am J Physiol Regul Integr Comp Physiol. (2018) 314(3):R427–R32. 10.1152/ajpregu.00370.2017 PubMed DOI PMC
Zhang S, Liu Y, Li Q, Dong X, Hu H, Hu R, et al. Exercise improved rat metabolism by raising PPAR-alpha. Int J Sports Med. (2011) 32(8):568–73. 10.1055/s-0031-1271755 PubMed DOI
Heffernan KS, Ranadive SM, Jae SY. Exercise as medicine for COVID-19: on PPAR with emerging pharmacotherapy. Med Hypotheses. (2020) 143:110197. 10.1016/j.mehy.2020.110197 PubMed DOI PMC
Ahmetov II, Mozhayskaya IA, Flavell DM, Astratenkova IV, Komkova AI, Lyubaeva EV, et al. PPARalpha gene variation and physical performance in Russian athletes. Eur J Appl Physiol. (2006) 97(1):103–8. 10.1007/s00421-006-0154-4 PubMed DOI
Tural E, Kara N, Agaoglu SA, Elbistan M, Tasmektepligil MY, Imamoglu O. PPAR-alpha and PPARGC1A gene variants have strong effects on aerobic performance of turkish elite endurance athletes. Mol Biol Rep. (2014) 41(9):5799–804. 10.1007/s11033-014-3453-6 PubMed DOI
Andrade-Souza VA, Ghiarone T, Sansonio A, Santos Silva KA, Tomazini F, Arcoverde L, et al. Exercise twice-a-day potentiates markers of mitochondrial biogenesis in men. FASEB J. (2020) 34(1):1602–19. 10.1096/fj.201901207RR PubMed DOI
Mosti MP, Ericsson M, Erben RG, Schuler C, Syversen U, Stunes AK. The PPARalpha agonist fenofibrate improves the musculoskeletal effects of exercise in ovariectomized rats. Endocrinology. (2016) 157(10):3924–34. 10.1210/en.2016-1114 PubMed DOI
Iemitsu M, Miyauchi T, Maeda S, Tanabe T, Takanashi M, Irukayama-Tomobe Y, et al. Aging-induced decrease in the PPAR-alpha level in hearts is improved by exercise training. Am J Physiol Heart Circ Physiol. (2002) 283(5):H1750–60. 10.1152/ajpheart.01051.2001 PubMed DOI
Cabral-Santos C, Silveira LS, Chimin P, Rosa-Neto JC, Lira FS. Moderate aerobic exercise-induced cytokines changes are disturbed in PPARalpha knockout mice. Cytokine. (2020) 134:155207. 10.1016/j.cyto.2020.155207 PubMed DOI
Hinds TD, Jr, Kipp ZA, Xu M, Yiannikouris FB, Morris AJ, Stec DF, et al. Adipose-specific PPARalpha knockout mice have increased lipogenesis by PASK-SREBP1 signaling and a polarity shift to inflammatory macrophages in white adipose tissue. Cells. (2021) 11(1):4. 10.3390/cells11010004 PubMed DOI PMC
Stec DE, Gordon DM, Hipp JA, Hong S, Mitchell ZL, Franco NR, et al. The loss of hepatic PPARalpha promotes inflammation and serum hyperlipidemia in diet-induced obesity. Am J Physiol Regul Integr Comp Physiol. (2019) 317(5):R733–R745. 10.1152/ajpregu.00153.2019 PubMed DOI PMC
Fry CS, Lee JD, Jackson JR, Kirby TJ, Stasko SA, Liu HL, et al. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. FASEB J. (2014) 28(4):1654–65. 10.1096/fj.13-239426 PubMed DOI PMC
Goh Q, Millay DP. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy. Elife. (2017) 6:e20007. 10.7554/eLife.20007 PubMed DOI PMC
Goh Q, Song T, Petrany MJ, Cramer AA, Sun C, Sadayappan S, et al. Myonuclear accretion is a determinant of exercise-induced remodeling in skeletal muscle. Elife. (2019) 8:e44876. 10.7554/eLife.44876 PubMed DOI PMC
Ryall JG. Metabolic reprogramming as a novel regulator of skeletal muscle development and regeneration. FEBS J. (2013) 280(17):4004–13. 10.1111/febs.12189 PubMed DOI
Kase ET, Andersen B, Nebb HI, Rustan AC, Thoresen GH. 22-Hydroxycholesterols regulate lipid metabolism differently than T0901317 in human myotubes. Biochim Biophys Acta. (2006) 1761(12):1515–22. 10.1016/j.bbalip.2006.09.010 PubMed DOI
Muoio DM, Way JM, Tanner CJ, Winegar DA, Kliewer SA, Houmard JA, et al. Peroxisome proliferator-activated receptor-alpha regulates fatty acid utilization in primary human skeletal muscle cells. Diabetes. (2002) 51(4):901–9. 10.2337/diabetes.51.4.901 PubMed DOI
Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C, et al. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes. (2003) 52(12):2874–81. 10.2337/diabetes.52.12.2874 PubMed DOI
Krämer DK, Ahlsén M, Norrbom J, Jansson E, Hjeltnes N, Gustafsson T, et al. Human skeletal muscle fibre type variations correlate with PPAR alpha, PPAR delta and PGC-1 alpha mRNA. Acta Physiol. (2006) 188(3-4):207–16. 10.1111/j.1748-1716.2006.01620.x PubMed DOI
Bakrania B, Du Toit EF, Ashton KJ, Wagner KH, Headrick JP, Bulmer AC. Chronically elevated bilirubin protects from cardiac reperfusion injury in the Male gunn rat. Acta Physiol. (2017) 220(4):461–70. 10.1111/apha.12858 PubMed DOI
Bakrania B, Du Toit EF, Ashton KJ, Kiessling CJ, Wagner KH, Headrick JP, et al. Hyperbilirubinemia modulates myocardial function, aortic ejection, and ischemic stress resistance in the gunn rat. Am J Physiol Heart Circ Physiol. (2014) 307(8):H1142–9. 10.1152/ajpheart.00001.2014 PubMed DOI
Murray AJ, Knight NS, Cole MA, Cochlin LE, Carter E, Tchabanenko K, et al. Novel ketone diet enhances physical and cognitive performance. FASEB J. (2016) 30(12):4021–32. 10.1096/fj.201600773R PubMed DOI PMC
The physiology of bilirubin: health and disease equilibrium