High predation risk decimates survival during the reproduction season
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36262266
PubMed Central
PMC9576000
DOI
10.1002/ece3.9407
PII: ECE39407
Knihovny.cz E-zdroje
- Klíčová slova
- CJS model, caudal autotomy, escape rate, predation risk, predator pressure, reptile,
- Publikační typ
- časopisecké články MeSH
Predators attack conspicuous prey phenotypes that are present in the environment. Male display behavior of conspicuous nuptial coloration becomes risky in the presence of a predator, and adult males face higher predation risk. High predation risk in one sex will lead to low survival and sex ratio bias in adult cohorts, unless the increased predation risk is compensated by higher escape rate.Here, we tested the hypothesis that sand lizards (Lacerta agilis) have sex-specific predation risk and escape rate. We expected the differences to manifest in changes in sex ratio with age, differences in frequency of tail autotomy, and in sex-specific survival rate.We developed a statistical model to estimate predation risk and escape rate, combining the observed sex ratio and frequency of tail autotomy with likelihood-based survival rate. Using Bayesian framework, we estimated the model parameters. We projected the date of the tail autotomy events from growth rates derived from capture-recapture data measurements.We found statistically stable sex ratio in age groups, equal frequency of tail regenerates between sexes, and similar survival rate. Predation risk is similar between sexes, and escape rate increases survival by about 5%. We found low survival rate and a low number of tail autotomy events in females during months when sand lizards mate and lay eggs, indicating high predator pressure throughout reproduction. Our data show that gravid females fail to escape predation.The risks of reproduction season in an ectotherm are a convolution of morphological changes (conspicuous coloration in males and body allometry changes in gravid females), behavior (nuptial displays), and environmental conditions which challenge lizard thermal performance. Performance of endotherm predators in cold spring months endangers gravid females more than displaying males in bright nuptial coloration.
Department of Biology Faculty of Education Masaryk University Brno Czech Republic
Institute of Animal Physiology and Genetics Czech Academy of Sciences Brno Czech Republic
Institute of Automation and Computer Science Brno University of Technology Brno Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
RECETOX Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Amat, F. , Llorente, G. A. , & Carretero, M. A. (2003). A preliminary study on thermal ecology, activity times and microhabitat use of Lacerta agilis (Squamata: Lacertidae) in the Pyrenees. Folia Zoologica, 52, 413–422.
Angilletta, M., Jr. (2009). Thermal adaptation: A theoretical and empirical synthesis. Oxford University Press. 10.1093/acprof:oso/9780198570875.001.1 DOI
Baban, N. S. , Orozaliev, A. , Kirchhof, S. , Stubbs, C. J. , & Song, Y.‐A. (2022). Biomimetic fracture model of lizard tail autotomy. Science, 375(6582), 770–774. 10.1126/science.abh1614 PubMed DOI
Badiane, A. , & Font, E. (2021). Information content of ultraviolet‐reflecting colour patches and visual perception of body coloration in the Tyrrhenian wall lizard Podarcis tiliguerta . Behavioral Ecology and Sociobiology, 75, 96. 10.1007/s00265-021-03023-2 DOI
Bajer, K. , Molnár, O. , Török, J. , & Herczeg, G. (2011). Ultraviolet nuptial colour determines fight success in male European green lizards (Lacerta viridis). Biology Letters, 7, 866–868. 10.1098/rsbl.2011.0520 PubMed DOI PMC
Barthelme, S. (2020). imager: Image processing library based on ‘CImg’ . R package version 0.42.3. https://CRAN.R‐project.org/package=imager
Bateman, P. W. , & Fleming, P. A. (2009). To cut a long tail short: A review of lizard caudal autotomy studies carried out over the last 20 years. Journal of Zoology, 277, 1–14. 10.1111/j.1469-7998.2008.00484.x DOI
Bauwens, D. , & Thoen, C. (1981). Escape tactics and vulnerability to predation associated with reproduction in the lizard Lacerta vivipara . Journal of Animal Ecology, 50, 733–743. 10.2307/4133 DOI
Blanke, I. , & Fearnley, H. (2015). The sand lizard: Between light and shadow. Laurenti Verlag.
Bochkovskiy, A. , Wang, C.‐Y. , & Liao, H.‐Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection, https://arxiv.org/abs/2004.10934
Böhme, W. , & Bischoff, W. (1984). Echsen (Sauria) II: (Lacertidae II: Lacerta). Aula‐Verlag.
Brown, J. S. , & Vincent, T. L. (1992). Organization of predator‐prey as an evolutionary game. Evolution, 46, 1269–1283. 10.1111/j.1558-5646.1992.tb01123.x PubMed DOI
Chen, C.‐W. , Whiting, M. J. , Yang, E.‐C. , & Lin, S.‐M. (2021). Do I stay or do I go? Shifts in perch use by lizards during morning twilight suggest anticipatory behaviour. Biology Letters, 17, 20210388. 10.1098/rsbl.2021.0388 PubMed DOI PMC
Cooch, E. G. , & White, G. C. (2021). Program MARK: A gentle introduction. http://www.phidot.org/software/mark/docs/book/
Cooper, W. E., Jr. , Pérez‐Mellado, V. , & Vitt, L. J. (2004). Ease and effectiveness of costly autotomy vary with predation intensity among lizard populations. Journal of Zoology, 262, 243–255. 10.1017/S095283690300462X DOI
Cormack, R. (1964). Estimates of survival from the sighting of marked animals. Biometrika, 51, 429–438.
Danchin, E. , Giraldeau, L.‐A. , & Cézilly, F. (2008). Behavioural ecology. Oxford University Press.
Dolezel, P. , Skrabanek, P. , Stursa, D. , Zanon, B. B. , Adrian, H. C. , & Kryda, P. (2022. ISSN 1877‐7503). Centroid based person detection using pixelwise prediction of the position. Journal of Computational Science, 63, 101760. 10.1016/j.jocs.2022.101760 DOI
Dračková, T. , Smolinský, R. , Hiadlovská, Z. , Dolinay, M. , & Martínková, N. (2020). Quantifying colour difference in animals with variable patterning. Journal of Vertebrate Biology, 69, 20029. 10.25225/jvb.20029 DOI
Ekner, A. , Sajkowska, Z. , Dudek, K. , & Tryjanowski, P. (2011). Medical cautery units as a permanent and non‐invasive method of marking lizards. Acta Herpetologica, 6, 229–236. 10.13128/Acta_Herpetol-9346 DOI
Eplanova, G. V. , & Roitberg, E. S. (2015). Sex identification of juvenile sand lizards, Lacerta agilis using digital images. Amphibia‐Reptilia, 36, 215–222. 10.1163/15685381-00002996 DOI
Fernández‐Rodríguez, I. , & Braña, F. (2020). The movement dynamics of autotomized lizards and their tails reveal functional costs of caudal autotomy. Integrative Zoology, 15, 511–521. 10.1111/1749-4877.12443 PubMed DOI
Fleming, P. A. , & Bateman, P. W. (2012). Autotomy, tail regeneration and jumping ability in cape dwarf geckos (Lygodactylus capensis) (Gekkonidae). African Zoology, 47, 55–59. 10.1080/15627020.2012.11407523 DOI
Fowler‐Finn, K. D. , & Hebets, E. A. (2011). More ornamented males exhibit increased predation risk and antipredatory escapes, but not greater mortality. Ethology, 117, 102–114. 10.1111/j.1439-0310.2010.01852.x DOI
García‐Muñoz, E. , & Sillero, N. (2010). Two new types of noose for capturing herps. Acta Herpetologica, 5, 259–264. 10.13128/Acta_Herpetol-9033 DOI
Gelman, A. , & Rubin, D. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–511.
Gillis, G. B. , Bonvini, L. , & Irschick, D. J. (2009). Losing stability: Tail loss and jumping in the arboreal lizard Anolis carolinensis . Journal of Experimental Biology, 212, 604–609. 10.1242/jeb.024349 PubMed DOI
Gomes, V. , Carretero, M. A. , & Kaliontzopoulou, A. (2018). Run for your life, but bite for your rights? How interactions between natural and sexual selection shape functional morphology across habitats. The Science of Nature, 105, 9. 10.1007/s00114-017-1537-6 PubMed DOI
Gvoždík, L. (2000). Seasonal activity, sex ratio, and abundance in a population of Lacerta agilis Linnaeus, 1758 from The Czech Republic (Squamata: Lacertidae). Herpetozoa, 13, 165–169.
Husak, J. F. (2006). Do female collared lizards change field use of maximal sprint speed capacity when gravid? Oecologia, 150, 339–343. 10.1007/s00442-006-0513-1 PubMed DOI
Irschick, D. , Vanhooydonck, B. , Herrel, A. , & Andronescu, A. (2003). Effects of loading and size on maximum power output and gait characteristics in geckos. The Journal of Experimental Biology, 206, 3923–3934. 10.1242/jeb.00617 PubMed DOI
Itescu, Y. , Schwarz, R. , Meiri, S. , & Pafilis, P. (2017). Intraspecific competition, not predation, drives lizard tail loss on islands. Journal of Animal Ecology, 86, 66–74. 10.1111/1365-2656.12591 PubMed DOI
Jagnandan, K. , & Higham, T. E. (2018). How rapid changes in body mass affect the locomotion of terrestrial vertebrates: Ecology, evolution and biomechanics of a natural perturbation. Biological Journal of the Linnean Society, 124, 279–293. 10.1093/biolinnean/bly056 DOI
Jolly, G. (1965). Explicit estimates from capture‐recapture data with both death and immigration‐stochastic model. Biometrika, 52, 225–247. PubMed
Kaliontzopoulou, A. , Bandeira, V. , & Carretero, M. A. (2013). Sexual dimorphism in locomotor performance and its relation to morphology in wall lizards (Podarcis bocagei). Journal of Zoology, 289, 294–302. 10.1111/jzo.12006 DOI
Kuo, C.‐Y. , & Irschick, D. J. (2016). Ecology drives natural variation in an extreme antipredator trait: A cost–benefit analysis integrating modelling and field data. Functional Ecology, 30, 953–963. 10.1111/1365-2435.12593 DOI
Laake, J. (2013). RMark: An R interface for analysis of capture‐recapture data with MARK. AFSC processed rep. 2013‐01, Alaska Fisheries Science Center, NOAA, National Marine Fisheries Service. http://www.afsc.noaa.gov/Publications/ProcRpt/PR2013‐01.pdf
Lailvaux, S. , Alexander, G. , & Whiting, M. (2003). Sex‐based differences and similarities in locomotor performance, thermal preferences, and escape behaviour in the lizard Platysaurus intermedius wilhelmi . Physiological and Biochemical Zoology, 76, 511–521. 10.1086/376423 PubMed DOI
Le Galliard, J.‐F. , Le Bris, M. , & Clobert, J. (2003). Timing of locomotor impairment and shift in thermal preferences during gravidity in a viviparous lizard. Functional Ecology, 17, 877–885. 10.1046/j.0269-8463.2003.00800.x DOI
Lin, J.‐W. , Chen, Y.‐R. , Wang, Y.‐H. , Hung, K.‐C. , & Lin, S.‐M. (2017). Tail regeneration after autotomy revives survival: A case from a long‐term monitored lizard population under avian predation. Proceedings of the Royal Society B: Biological Sciences, 284, 20162538. 10.1098/rspb.2016.2538 PubMed DOI PMC
López Juri, G. , Chiaraviglio, M. , & Cardozo, G. (2018. ISSN 0306‐4565). Do female reproductive stage and phenotype influence thermal requirements in an oviparous lizard? Journal of Thermal Biology, 71, 202–208. 10.1016/j.jtherbio.2017.11.013 PubMed DOI
Maginnis, T. L. (2006). The costs of autotomy and regeneration in animals: A review and framework for future research. Behavioral Ecology, 17, 857–872. 10.1093/beheco/arl010 DOI
Marshall, K. L. , Philpot, K. E. , & Stewens, M. (2015). Conspicuous male coloration impairs survival against avian predators in Aegean wall lizards. Podarcis erhardii. Ecology and Evolution, 5, 4115–4131. 10.1002/ece3.1650 PubMed DOI PMC
Marshall, K. L. , & Stewens, M. (2014). Wall lizards display conspicuous signals to conspecifics and reduce detection by avian predators. Behavioral Ecology, 25, 1325–1337. 10.1093/beheco/aru126 PubMed DOI PMC
Massetti, F. , Gomes, V. , Perera, A. , Rato, C. , & Kaliontzopoulou, A. (2017). Morphological and functional implications of sexual size dimorphism in the Moorish gecko, Tarentola mauritanica . Biological Journal of the Linnean Society, 122, 197–209. 10.1093/biolinnean/blx060 DOI
McQueen, A. , Naimo, A. C. , Teunissen, N. , Magrath, R. D. , Delhey, K. , & Peters, A. (2017). Bright birds are cautious: Seasonally conspicuous plumage prompts risk avoidance by male superb fairy‐wrens. Proceedings of the Royal Society B: Biological Sciences, 284, 20170446. 10.1098/rspb.2017.0446 PubMed DOI PMC
Mitoh, S. , & Yusa, Y. (2021). Extreme autotomy and whole‐body regeneration in photosynthetic sea slugs. Current Biology, 31(5), R233–R234. 10.1016/j.cub.2021.01.014 PubMed DOI
Naidenov, L. A. , & Allen, W. L. (2021). Tail autotomy works as a pre‐capture defense by deflecting attacks. Ecology and Evolution, 11, 3058–3064. 10.1002/ece3.7213 PubMed DOI PMC
Neuwirth, E. (2014). RColorBrewer: ColorBrewer palettes . https://CRAN.R‐project.org/package=RColorBrewer. R package version 1.1–2.
Olsson, M. (1994). Nuptial coloration in the sand lizard, Lacerta agilis: An intra‐sexually selected cue to fighting ability. Animal Behaviour, 48, 607–613. 10.1006/anbe.1994.1280 DOI
Olsson, M. , & Shine, R. (1997). The limits to reproductive output: Offspring size versus number in the sand lizard (Lacerta agilis). The American Naturalist, 149(1), 179–188.
Olsson, M. , Shine, R. , & Bak‐Olsson, E. (2000). Locomotor impairment of gravid lizards: Is the burden physical or physiological? Journal of Evolutionary Biology, 13, 263–268. 10.1046/j.1420-9101.2000.00162.x DOI
Plummer, M. , Best, N. , Cowles, K. , & Vines, K. (2006). CODA: Convergence diagnosis and output analysis for MCMC. R News, 6, 7–11.
R Core Team . (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/
Robin, X. , Turck, N. , Hainard, A. , Tiberti, N. , Lisacek, F. , Sanchez, J.‐C. , & Müller, M. (2011). pROC: An open‐source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12, 77. PubMed PMC
Rohlf, F. (2005). tpsDig, Digitize landmarks and outlines, version 2.05. http://life.bio.sunysb.edu/morph/
Roitberg, E. S. , Eplanova, G. V. , Kotenko, T. I. , Amat, F. , Carretero, M. A. , Kuranova, V. N. , Bulakhova, N. A. , Zinenko, O. I. , & Yakovlev, V. A. (2015). Geographic variation of life‐history traits in the sand lizard, Lacerta agilis: Testing Darwin's fecundity‐advantage hypothesis. Journal of Evolutionary Biology, 28, 613–629. 10.1111/jeb.12594 PubMed DOI
Ronneberger, O. , Fischer, P. , & Brox, T. (2015). U‐net: Convolutional networks for biomedical image segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9351, 234–241. 10.1007/978-3-319-24574-4_28 DOI
Samia, D. S. M. , Blumstein, D. T. , Stankowich, T. , & Cooper, W. E., Jr. (2016). Fifty years of chasing lizards: New insights advance optimal escape theory. Biological Reviews, 91, 349–366. 10.1111/brv.12173 PubMed DOI
Scales, J. , & Butler, M. (1997). Are powerful females powerful enough? Acceleration in gravid green iguanas (Iguana iguana). Integrative and Comparative Biology, 47, 285–294. 10.1093/icb/icm054 PubMed DOI
Seber, G. (1965). A note on the multiple recapture census. Biometrika, 52, 249–259. PubMed
Shine, R. (1980). "Costs" of reproduction in reptiles. Oecologia, 46, 92–100. 10.1007/BF00346 PubMed DOI
Shine, R. (2003). Effects of pregnancy on locomotor performance: An experimental study on lizards. Oecologia, 136, 450–456. 10.1007/s00442-003-1281-9 PubMed DOI
Simon, M. N. , Cespedes, A. M. , & Lailvaux, S. P. (2022). Sex‐specific multivariate morphology/performance relationships in Anolis carolinensis . Journal of Experimental Biology, 225, jeb243471. 10.1242/jeb.243471 PubMed DOI
Smolinský, R. , Hiadlovská, Z. , Maršala, V. , Škrabánek, P. , Škrobánek, M. , & Martínková, N. (2022). Data from: High predation risk decimates survival during the reproduction season. Dryad, Dataset. 10.5061/dryad.q83bk3jm9 PubMed DOI PMC
Smolinský, R. , Hiadlovská, Z. , & Martínková, N. (2021). Ectoparasite load increase in reproductively active sand lizards. Journal of Vertebrate Biology, 70, 20128. 10.25225/jvb.20128 DOI
Soetaert, K. (2019). plot3D: Plotting multi‐dimensional data . https://CRAN.R‐project.org/package=plot3D. R package version 1.3.
Stevens, M. , & Merilaita, S. (2011). Animal camouflage: Mechanisms and function. Cambridge University Press. 10.1017/CBO9780511852053 DOI
Stuart‐Fox, D. M. , Moussalli, A. , Marshall, J. N. , & Owens, I. P. F. (2003). Conspicuous males suffer higher predation risk: Visual modelling and experimental evidence from lizards. Animal Behaviour, 66, 541–550. 10.1006/anbe.2003.2235 DOI
Talavera, J. B. , Carriere, A. , Swierk, L. , & Putman, B. J. (2021). Tail autotomy is associated with boldness in male but not female water anoles. Behavioral Ecology and Sociobiology, 75, 44. 10.1007/s00265-021-02982-w DOI
Vanhooydonck, B. , & Van Damme, R. (2003). Relationships between locomotor performance, microhabitat use and antipredator behaviour in lacertid lizards. Functional Ecology, 17, 160–169. 10.1046/j.1365-2435.2003.00716.x DOI
Webb, J. , & Whiting, M. (2005). Why don't small snakes bask? Juvenile broad‐headed snakes trade thermal benefits for safety. Oikos, 110, 515–522. 10.1111/j.1558-5646.1992.tb01123.x DOI
Wilson, B. (1992). Tail injuries increase the risk of mortality in free‐living lizards (Uta stansburiana). Oecologia, 92, 145–152. 10.1007/BF00317275 PubMed DOI
Zamora‐Camacho, F. J. , Reguera, S. , Rubiño‐Hispán, M. V. , & Moreno‐Rueda, G. (2014). Effects of limb length, body mass, gender, gravidity, and elevation on escape speed in the lizard Psammodromus algirus . Evolutionary Biology, 41, 509–517. 10.1007/s11692-014-9285-4 DOI
Dryad
10.5061/dryad.q83bk3jm9