High predation risk decimates survival during the reproduction season

. 2022 Oct ; 12 (10) : e9407. [epub] 20221017

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36262266

Predators attack conspicuous prey phenotypes that are present in the environment. Male display behavior of conspicuous nuptial coloration becomes risky in the presence of a predator, and adult males face higher predation risk. High predation risk in one sex will lead to low survival and sex ratio bias in adult cohorts, unless the increased predation risk is compensated by higher escape rate.Here, we tested the hypothesis that sand lizards (Lacerta agilis) have sex-specific predation risk and escape rate. We expected the differences to manifest in changes in sex ratio with age, differences in frequency of tail autotomy, and in sex-specific survival rate.We developed a statistical model to estimate predation risk and escape rate, combining the observed sex ratio and frequency of tail autotomy with likelihood-based survival rate. Using Bayesian framework, we estimated the model parameters. We projected the date of the tail autotomy events from growth rates derived from capture-recapture data measurements.We found statistically stable sex ratio in age groups, equal frequency of tail regenerates between sexes, and similar survival rate. Predation risk is similar between sexes, and escape rate increases survival by about 5%. We found low survival rate and a low number of tail autotomy events in females during months when sand lizards mate and lay eggs, indicating high predator pressure throughout reproduction. Our data show that gravid females fail to escape predation.The risks of reproduction season in an ectotherm are a convolution of morphological changes (conspicuous coloration in males and body allometry changes in gravid females), behavior (nuptial displays), and environmental conditions which challenge lizard thermal performance. Performance of endotherm predators in cold spring months endangers gravid females more than displaying males in bright nuptial coloration.

Zobrazit více v PubMed

Amat, F. , Llorente, G. A. , & Carretero, M. A. (2003). A preliminary study on thermal ecology, activity times and microhabitat use of Lacerta agilis (Squamata: Lacertidae) in the Pyrenees. Folia Zoologica, 52, 413–422.

Angilletta, M., Jr. (2009). Thermal adaptation: A theoretical and empirical synthesis. Oxford University Press. 10.1093/acprof:oso/9780198570875.001.1 DOI

Baban, N. S. , Orozaliev, A. , Kirchhof, S. , Stubbs, C. J. , & Song, Y.‐A. (2022). Biomimetic fracture model of lizard tail autotomy. Science, 375(6582), 770–774. 10.1126/science.abh1614 PubMed DOI

Badiane, A. , & Font, E. (2021). Information content of ultraviolet‐reflecting colour patches and visual perception of body coloration in the Tyrrhenian wall lizard Podarcis tiliguerta . Behavioral Ecology and Sociobiology, 75, 96. 10.1007/s00265-021-03023-2 DOI

Bajer, K. , Molnár, O. , Török, J. , & Herczeg, G. (2011). Ultraviolet nuptial colour determines fight success in male European green lizards (Lacerta viridis). Biology Letters, 7, 866–868. 10.1098/rsbl.2011.0520 PubMed DOI PMC

Barthelme, S. (2020). imager: Image processing library based on ‘CImg’ . R package version 0.42.3. https://CRAN.R‐project.org/package=imager

Bateman, P. W. , & Fleming, P. A. (2009). To cut a long tail short: A review of lizard caudal autotomy studies carried out over the last 20 years. Journal of Zoology, 277, 1–14. 10.1111/j.1469-7998.2008.00484.x DOI

Bauwens, D. , & Thoen, C. (1981). Escape tactics and vulnerability to predation associated with reproduction in the lizard Lacerta vivipara . Journal of Animal Ecology, 50, 733–743. 10.2307/4133 DOI

Blanke, I. , & Fearnley, H. (2015). The sand lizard: Between light and shadow. Laurenti Verlag.

Bochkovskiy, A. , Wang, C.‐Y. , & Liao, H.‐Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection, https://arxiv.org/abs/2004.10934

Böhme, W. , & Bischoff, W. (1984). Echsen (Sauria) II: (Lacertidae II: Lacerta). Aula‐Verlag.

Brown, J. S. , & Vincent, T. L. (1992). Organization of predator‐prey as an evolutionary game. Evolution, 46, 1269–1283. 10.1111/j.1558-5646.1992.tb01123.x PubMed DOI

Chen, C.‐W. , Whiting, M. J. , Yang, E.‐C. , & Lin, S.‐M. (2021). Do I stay or do I go? Shifts in perch use by lizards during morning twilight suggest anticipatory behaviour. Biology Letters, 17, 20210388. 10.1098/rsbl.2021.0388 PubMed DOI PMC

Cooch, E. G. , & White, G. C. (2021). Program MARK: A gentle introduction. http://www.phidot.org/software/mark/docs/book/

Cooper, W. E., Jr. , Pérez‐Mellado, V. , & Vitt, L. J. (2004). Ease and effectiveness of costly autotomy vary with predation intensity among lizard populations. Journal of Zoology, 262, 243–255. 10.1017/S095283690300462X DOI

Cormack, R. (1964). Estimates of survival from the sighting of marked animals. Biometrika, 51, 429–438.

Danchin, E. , Giraldeau, L.‐A. , & Cézilly, F. (2008). Behavioural ecology. Oxford University Press.

Dolezel, P. , Skrabanek, P. , Stursa, D. , Zanon, B. B. , Adrian, H. C. , & Kryda, P. (2022. ISSN 1877‐7503). Centroid based person detection using pixelwise prediction of the position. Journal of Computational Science, 63, 101760. 10.1016/j.jocs.2022.101760 DOI

Dračková, T. , Smolinský, R. , Hiadlovská, Z. , Dolinay, M. , & Martínková, N. (2020). Quantifying colour difference in animals with variable patterning. Journal of Vertebrate Biology, 69, 20029. 10.25225/jvb.20029 DOI

Ekner, A. , Sajkowska, Z. , Dudek, K. , & Tryjanowski, P. (2011). Medical cautery units as a permanent and non‐invasive method of marking lizards. Acta Herpetologica, 6, 229–236. 10.13128/Acta_Herpetol-9346 DOI

Eplanova, G. V. , & Roitberg, E. S. (2015). Sex identification of juvenile sand lizards, Lacerta agilis using digital images. Amphibia‐Reptilia, 36, 215–222. 10.1163/15685381-00002996 DOI

Fernández‐Rodríguez, I. , & Braña, F. (2020). The movement dynamics of autotomized lizards and their tails reveal functional costs of caudal autotomy. Integrative Zoology, 15, 511–521. 10.1111/1749-4877.12443 PubMed DOI

Fleming, P. A. , & Bateman, P. W. (2012). Autotomy, tail regeneration and jumping ability in cape dwarf geckos (Lygodactylus capensis) (Gekkonidae). African Zoology, 47, 55–59. 10.1080/15627020.2012.11407523 DOI

Fowler‐Finn, K. D. , & Hebets, E. A. (2011). More ornamented males exhibit increased predation risk and antipredatory escapes, but not greater mortality. Ethology, 117, 102–114. 10.1111/j.1439-0310.2010.01852.x DOI

García‐Muñoz, E. , & Sillero, N. (2010). Two new types of noose for capturing herps. Acta Herpetologica, 5, 259–264. 10.13128/Acta_Herpetol-9033 DOI

Gelman, A. , & Rubin, D. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–511.

Gillis, G. B. , Bonvini, L. , & Irschick, D. J. (2009). Losing stability: Tail loss and jumping in the arboreal lizard Anolis carolinensis . Journal of Experimental Biology, 212, 604–609. 10.1242/jeb.024349 PubMed DOI

Gomes, V. , Carretero, M. A. , & Kaliontzopoulou, A. (2018). Run for your life, but bite for your rights? How interactions between natural and sexual selection shape functional morphology across habitats. The Science of Nature, 105, 9. 10.1007/s00114-017-1537-6 PubMed DOI

Gvoždík, L. (2000). Seasonal activity, sex ratio, and abundance in a population of Lacerta agilis Linnaeus, 1758 from The Czech Republic (Squamata: Lacertidae). Herpetozoa, 13, 165–169.

Husak, J. F. (2006). Do female collared lizards change field use of maximal sprint speed capacity when gravid? Oecologia, 150, 339–343. 10.1007/s00442-006-0513-1 PubMed DOI

Irschick, D. , Vanhooydonck, B. , Herrel, A. , & Andronescu, A. (2003). Effects of loading and size on maximum power output and gait characteristics in geckos. The Journal of Experimental Biology, 206, 3923–3934. 10.1242/jeb.00617 PubMed DOI

Itescu, Y. , Schwarz, R. , Meiri, S. , & Pafilis, P. (2017). Intraspecific competition, not predation, drives lizard tail loss on islands. Journal of Animal Ecology, 86, 66–74. 10.1111/1365-2656.12591 PubMed DOI

Jagnandan, K. , & Higham, T. E. (2018). How rapid changes in body mass affect the locomotion of terrestrial vertebrates: Ecology, evolution and biomechanics of a natural perturbation. Biological Journal of the Linnean Society, 124, 279–293. 10.1093/biolinnean/bly056 DOI

Jolly, G. (1965). Explicit estimates from capture‐recapture data with both death and immigration‐stochastic model. Biometrika, 52, 225–247. PubMed

Kaliontzopoulou, A. , Bandeira, V. , & Carretero, M. A. (2013). Sexual dimorphism in locomotor performance and its relation to morphology in wall lizards (Podarcis bocagei). Journal of Zoology, 289, 294–302. 10.1111/jzo.12006 DOI

Kuo, C.‐Y. , & Irschick, D. J. (2016). Ecology drives natural variation in an extreme antipredator trait: A cost–benefit analysis integrating modelling and field data. Functional Ecology, 30, 953–963. 10.1111/1365-2435.12593 DOI

Laake, J. (2013). RMark: An R interface for analysis of capture‐recapture data with MARK. AFSC processed rep. 2013‐01, Alaska Fisheries Science Center, NOAA, National Marine Fisheries Service. http://www.afsc.noaa.gov/Publications/ProcRpt/PR2013‐01.pdf

Lailvaux, S. , Alexander, G. , & Whiting, M. (2003). Sex‐based differences and similarities in locomotor performance, thermal preferences, and escape behaviour in the lizard Platysaurus intermedius wilhelmi . Physiological and Biochemical Zoology, 76, 511–521. 10.1086/376423 PubMed DOI

Le Galliard, J.‐F. , Le Bris, M. , & Clobert, J. (2003). Timing of locomotor impairment and shift in thermal preferences during gravidity in a viviparous lizard. Functional Ecology, 17, 877–885. 10.1046/j.0269-8463.2003.00800.x DOI

Lin, J.‐W. , Chen, Y.‐R. , Wang, Y.‐H. , Hung, K.‐C. , & Lin, S.‐M. (2017). Tail regeneration after autotomy revives survival: A case from a long‐term monitored lizard population under avian predation. Proceedings of the Royal Society B: Biological Sciences, 284, 20162538. 10.1098/rspb.2016.2538 PubMed DOI PMC

López Juri, G. , Chiaraviglio, M. , & Cardozo, G. (2018. ISSN 0306‐4565). Do female reproductive stage and phenotype influence thermal requirements in an oviparous lizard? Journal of Thermal Biology, 71, 202–208. 10.1016/j.jtherbio.2017.11.013 PubMed DOI

Maginnis, T. L. (2006). The costs of autotomy and regeneration in animals: A review and framework for future research. Behavioral Ecology, 17, 857–872. 10.1093/beheco/arl010 DOI

Marshall, K. L. , Philpot, K. E. , & Stewens, M. (2015). Conspicuous male coloration impairs survival against avian predators in Aegean wall lizards. Podarcis erhardii. Ecology and Evolution, 5, 4115–4131. 10.1002/ece3.1650 PubMed DOI PMC

Marshall, K. L. , & Stewens, M. (2014). Wall lizards display conspicuous signals to conspecifics and reduce detection by avian predators. Behavioral Ecology, 25, 1325–1337. 10.1093/beheco/aru126 PubMed DOI PMC

Massetti, F. , Gomes, V. , Perera, A. , Rato, C. , & Kaliontzopoulou, A. (2017). Morphological and functional implications of sexual size dimorphism in the Moorish gecko, Tarentola mauritanica . Biological Journal of the Linnean Society, 122, 197–209. 10.1093/biolinnean/blx060 DOI

McQueen, A. , Naimo, A. C. , Teunissen, N. , Magrath, R. D. , Delhey, K. , & Peters, A. (2017). Bright birds are cautious: Seasonally conspicuous plumage prompts risk avoidance by male superb fairy‐wrens. Proceedings of the Royal Society B: Biological Sciences, 284, 20170446. 10.1098/rspb.2017.0446 PubMed DOI PMC

Mitoh, S. , & Yusa, Y. (2021). Extreme autotomy and whole‐body regeneration in photosynthetic sea slugs. Current Biology, 31(5), R233–R234. 10.1016/j.cub.2021.01.014 PubMed DOI

Naidenov, L. A. , & Allen, W. L. (2021). Tail autotomy works as a pre‐capture defense by deflecting attacks. Ecology and Evolution, 11, 3058–3064. 10.1002/ece3.7213 PubMed DOI PMC

Neuwirth, E. (2014). RColorBrewer: ColorBrewer palettes . https://CRAN.R‐project.org/package=RColorBrewer. R package version 1.1–2.

Olsson, M. (1994). Nuptial coloration in the sand lizard, Lacerta agilis: An intra‐sexually selected cue to fighting ability. Animal Behaviour, 48, 607–613. 10.1006/anbe.1994.1280 DOI

Olsson, M. , & Shine, R. (1997). The limits to reproductive output: Offspring size versus number in the sand lizard (Lacerta agilis). The American Naturalist, 149(1), 179–188.

Olsson, M. , Shine, R. , & Bak‐Olsson, E. (2000). Locomotor impairment of gravid lizards: Is the burden physical or physiological? Journal of Evolutionary Biology, 13, 263–268. 10.1046/j.1420-9101.2000.00162.x DOI

Plummer, M. , Best, N. , Cowles, K. , & Vines, K. (2006). CODA: Convergence diagnosis and output analysis for MCMC. R News, 6, 7–11.

R Core Team . (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/

Robin, X. , Turck, N. , Hainard, A. , Tiberti, N. , Lisacek, F. , Sanchez, J.‐C. , & Müller, M. (2011). pROC: An open‐source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12, 77. PubMed PMC

Rohlf, F. (2005). tpsDig, Digitize landmarks and outlines, version 2.05. http://life.bio.sunysb.edu/morph/

Roitberg, E. S. , Eplanova, G. V. , Kotenko, T. I. , Amat, F. , Carretero, M. A. , Kuranova, V. N. , Bulakhova, N. A. , Zinenko, O. I. , & Yakovlev, V. A. (2015). Geographic variation of life‐history traits in the sand lizard, Lacerta agilis: Testing Darwin's fecundity‐advantage hypothesis. Journal of Evolutionary Biology, 28, 613–629. 10.1111/jeb.12594 PubMed DOI

Ronneberger, O. , Fischer, P. , & Brox, T. (2015). U‐net: Convolutional networks for biomedical image segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9351, 234–241. 10.1007/978-3-319-24574-4_28 DOI

Samia, D. S. M. , Blumstein, D. T. , Stankowich, T. , & Cooper, W. E., Jr. (2016). Fifty years of chasing lizards: New insights advance optimal escape theory. Biological Reviews, 91, 349–366. 10.1111/brv.12173 PubMed DOI

Scales, J. , & Butler, M. (1997). Are powerful females powerful enough? Acceleration in gravid green iguanas (Iguana iguana). Integrative and Comparative Biology, 47, 285–294. 10.1093/icb/icm054 PubMed DOI

Seber, G. (1965). A note on the multiple recapture census. Biometrika, 52, 249–259. PubMed

Shine, R. (1980). "Costs" of reproduction in reptiles. Oecologia, 46, 92–100. 10.1007/BF00346 PubMed DOI

Shine, R. (2003). Effects of pregnancy on locomotor performance: An experimental study on lizards. Oecologia, 136, 450–456. 10.1007/s00442-003-1281-9 PubMed DOI

Simon, M. N. , Cespedes, A. M. , & Lailvaux, S. P. (2022). Sex‐specific multivariate morphology/performance relationships in Anolis carolinensis . Journal of Experimental Biology, 225, jeb243471. 10.1242/jeb.243471 PubMed DOI

Smolinský, R. , Hiadlovská, Z. , Maršala, V. , Škrabánek, P. , Škrobánek, M. , & Martínková, N. (2022). Data from: High predation risk decimates survival during the reproduction season. Dryad, Dataset. 10.5061/dryad.q83bk3jm9 PubMed DOI PMC

Smolinský, R. , Hiadlovská, Z. , & Martínková, N. (2021). Ectoparasite load increase in reproductively active sand lizards. Journal of Vertebrate Biology, 70, 20128. 10.25225/jvb.20128 DOI

Soetaert, K. (2019). plot3D: Plotting multi‐dimensional data . https://CRAN.R‐project.org/package=plot3D. R package version 1.3.

Stevens, M. , & Merilaita, S. (2011). Animal camouflage: Mechanisms and function. Cambridge University Press. 10.1017/CBO9780511852053 DOI

Stuart‐Fox, D. M. , Moussalli, A. , Marshall, J. N. , & Owens, I. P. F. (2003). Conspicuous males suffer higher predation risk: Visual modelling and experimental evidence from lizards. Animal Behaviour, 66, 541–550. 10.1006/anbe.2003.2235 DOI

Talavera, J. B. , Carriere, A. , Swierk, L. , & Putman, B. J. (2021). Tail autotomy is associated with boldness in male but not female water anoles. Behavioral Ecology and Sociobiology, 75, 44. 10.1007/s00265-021-02982-w DOI

Vanhooydonck, B. , & Van Damme, R. (2003). Relationships between locomotor performance, microhabitat use and antipredator behaviour in lacertid lizards. Functional Ecology, 17, 160–169. 10.1046/j.1365-2435.2003.00716.x DOI

Webb, J. , & Whiting, M. (2005). Why don't small snakes bask? Juvenile broad‐headed snakes trade thermal benefits for safety. Oikos, 110, 515–522. 10.1111/j.1558-5646.1992.tb01123.x DOI

Wilson, B. (1992). Tail injuries increase the risk of mortality in free‐living lizards (Uta stansburiana). Oecologia, 92, 145–152. 10.1007/BF00317275 PubMed DOI

Zamora‐Camacho, F. J. , Reguera, S. , Rubiño‐Hispán, M. V. , & Moreno‐Rueda, G. (2014). Effects of limb length, body mass, gender, gravidity, and elevation on escape speed in the lizard Psammodromus algirus . Evolutionary Biology, 41, 509–517. 10.1007/s11692-014-9285-4 DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

High predation risk decimates survival during the reproduction season

. 2022 Oct ; 12 (10) : e9407. [epub] 20221017

Zobrazit více v PubMed

Dryad
10.5061/dryad.q83bk3jm9

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...