Reductive Modification of Carbon Nitride Structure by Metals-The Influence on Structure and Photocatalytic Hydrogen Evolution
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
POWR.03.02.00-00-I023/17
EUROPEAN SOCIAL FUND
CZ.02.1.01./0.0/0.0/17_049/0008419
EU structural funding in Operational Programme Research, Development and Education
LM2018098
LARGE RESEARCH INFRASTRUCTURE ENREGAT, supported by the Ministry of Education, Youth and Sports of the Czech Republic
PubMed
35160664
PubMed Central
PMC8836795
DOI
10.3390/ma15030710
PII: ma15030710
Knihovny.cz E-zdroje
- Klíčová slova
- graphitic carbon nitride, metal photocatalysts, photocatalytic activity, physicochemical characterization, wet impregnation method,
- Publikační typ
- časopisecké články MeSH
Pt, Ru, and Ir were introduced onto the surface of graphitic carbon nitride (g-C3N4) using the wet impregnation method. A reduction of these photocatalysts with hydrogen causes several changes, such as a significant increase in the specific surface area, a C/N atomic ratio, a number of defects in the crystalline structure of g-C3N4, and the contribution of nitrogen bound to the amino and imino groups. According to the X-ray photoelectron spectroscopy results, a transition layer is formed at the g-C3N4/metal nanoparticle interphase, which contains metal at a positive degree of oxidation bonded to nitrogen. These structural changes significantly enhanced the photocatalytic activity in the production of hydrogen through the water-splitting reaction. The activity of the platinum photocatalyst was 24 times greater than that of pristine g-C3N4. Moreover, the enhanced activity was attributed to significantly better separation of photogenerated electron-hole pairs on metal nanoparticles and structural distortions of g-C3N4.
Zobrazit více v PubMed
Kumaravel V., Imam M., Badreldin A., Chava R., Do J., Kang M., Abdel-Wahab A. Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts. 2019;9:276. doi: 10.3390/catal9030276. DOI
Wang S., Zhang J., Li B., Sun H., Wang S. Engineered Graphitic Carbon Nitride-Based Photocatalysts for Visible-Light-Driven Water Splitting: A Review. Energy Fuels. 2021;35:6504–6526. doi: 10.1021/acs.energyfuels.1c00503. DOI
Du Y., Rabani J. The Measure of TiO2 Photocatalytic Efficiency and the Comparison of Different Photocatalytic Titania. J. Phys. Chem. B. 2003;107:11970–11978. doi: 10.1021/jp035491z. DOI
Lin W.-C., Yang W.-D., Huang I.L., Wu T.-S., Chung Z.-J. Hydrogen Production from Methanol/Water Photocatalytic Decomposition Using Pt/TiO2−xNx Catalyst. Energy Fuels. 2009;23:2192–2196. doi: 10.1021/ef801091p. DOI
Kawai T., Sakata T. Photocatalytic hydrogen production from liquid methanol and water. J. Chem. Soc. Chem. Commun. 1980;15:694–695. doi: 10.1039/c39800000694. DOI
Dozzi M.V., Chiarello G.L., Pedroni M., Livraghi S., Giamello E., Selli E. High photocatalytic hydrogen production on Cu(II) pre-grafted Pt/TiO2. Appl. Catal. B. 2017;209:417–428. doi: 10.1016/j.apcatb.2017.03.007. DOI
Rosseler O., Shankar M.V., Du M.K.-L., Schmidlin L., Keller N., Keller V. Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2 (anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion. J. Catal. 2010;269:179–190. doi: 10.1016/j.jcat.2009.11.006. DOI
Choi H., Kang M. Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2. Int. J. Hydrogen Energy. 2007;32:3841–3848. doi: 10.1016/j.ijhydene.2007.05.011. DOI
Park M.-S., Kang M. The preparation of the anatase and rutile forms of Ag–TiO2 and hydrogen production from methanol/water decomposition. Mater. Lett. 2008;62:183–187. doi: 10.1016/j.matlet.2007.04.105. DOI
Ge M.Z., Cai J.S., Iocozzia J., Cao C.Y., Huang J.Y., Zhang X.N., Shen J.L., Wang S.C., Zhang S.N., Zhang K.Q., et al. A review of TiO2 nanostructured catalysts for sustainable H2 generation. Int. J. Hydrogen Energy. 2017;42:8418–8449. doi: 10.1016/j.ijhydene.2016.12.052. DOI
Cao S.W., Low J.X., Yu J.G., Jaroniec M. Polymeric Photocatalysts Based on Graphitic Carbon Nitride. Adv. Mater. 2015;27:2150–2176. doi: 10.1002/adma.201500033. PubMed DOI
Ismael M., Wu Y. A mini-review on the synthesis and structural modification of g-C3N4-based materials, and their applications in solar energy conversion and environmental remediation. Sustain. Energ. Fuels. 2019;3:2907–2925. doi: 10.1039/C9SE00422J. DOI
Yao S., Xue S., Peng S., Jing M., Qian X., Shen X., Li T., Wang Y. Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium–sulfur batteries. J. Mater. Sci. Mater. Electron. 2018;29:17921–17930. doi: 10.1007/s10854-018-9906-2. DOI
Zhang Y.W., Liu J.H., Wu G., Chen W. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale. 2012;4:5300–5303. doi: 10.1039/c2nr30948c. PubMed DOI
Zhang G.G., Zhang J.S., Zhang M.W., Wang X.C. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem. 2012;22:8083–8091. doi: 10.1039/c2jm00097k. DOI
Li X.F., Zhang J., Shen L.H., Ma Y.M., Lei W.W., Cui Q.L., Zou G.T. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl. Phys. A-Mater. Sci. Process. 2009;94:387–392. doi: 10.1007/s00339-008-4816-4. DOI
Yan S.C., Li Z.S., Zou Z.G. Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine. Langmuir. 2009;25:10397–10401. doi: 10.1021/la900923z. PubMed DOI
Cui Y.J., Ding Z.X., Liu P., Antonietti M., Fu X.Z., Wang X.C. Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Phys. Chem. Chem. Phys. 2012;14:1455–1462. doi: 10.1039/C1CP22820J. PubMed DOI
Alwin E., Kočí K., Wojcieszak R., Zieliński M., Edelmannová M., Pietrowski M. Influence of High Temperature Synthesis on the Structure of Graphitic Carbon Nitride and Its Hydrogen Generation Ability. Materials. 2020;13:2756. doi: 10.3390/ma13122756. PubMed DOI PMC
Wang X.C., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J.M., Domen K., Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009;8:76–80. doi: 10.1038/nmat2317. PubMed DOI
Liu G., Niu P., Sun C.H., Smith S.C., Chen Z.G., Lu G.Q., Cheng H.M. Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4. J. Am. Chem. Soc. 2010;132:11642–11648. doi: 10.1021/ja103798k. PubMed DOI
Thaweesak S., Wang S., Lyu M., Xiao M., Peerakiatkhajohn P., Wang L. Boron-doped graphitic carbon nitride nanosheets for enhanced visible light photocatalytic water splitting. Dalton Trans. 2017;46:10714–10720. doi: 10.1039/C7DT00933J. PubMed DOI
Li K., Zeng Z., Yan L., Luo S., Luo X., Huo M., Guo Y. Fabrication of platinum-deposited carbon nitride nanotubes by a one-step solvothermal treatment strategy and their efficient visible-light photocatalytic activity. Appl. Catal. B. 2015;165:428–437. doi: 10.1016/j.apcatb.2014.10.039. DOI
Khan M.A., Maity P., Al-Oufi M., Al-Howaish I.K., Idriss H. Electron Transfer of the Metal/Semiconductor System in Photocatalysis. J. Phys. Chem. C. 2018;122:16779–16787. doi: 10.1021/acs.jpcc.8b03741. DOI
Koci K., Troppova I., Edelmannova M., Starostka J., Matejova L., Lang J., Reli M., Drobna H., Rokicinska A., Kustrowski P., et al. Photocatalytic decomposition of methanol over La/TiO2 materials. Environ. Sci. Pollut. Res. 2018;25:34818–34825. doi: 10.1007/s11356-017-0460-x. PubMed DOI
Vaidya P.D., Rodrigues A.E. Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chem. Eng. J. 2006;117:39–49. doi: 10.1016/j.cej.2005.12.008. DOI
Jun C.H. Transition metal-catalyzed carbon-carbon bond activation. Chem. Soc. Rev. 2004;33:610–618. doi: 10.1039/B308864M. PubMed DOI
Alwin E., Nowicki W., Wojcieszak R., Zielinski M., Pietrowski M. Elucidating the structure of the graphitic carbon nitride nanomaterials via X-ray photoelectron spectroscopy and X-ray powder diffraction techniques. Dalton Trans. 2020;49:12805–12813. doi: 10.1039/D0DT02325F. PubMed DOI
Wirnhier E., Mesch M.B., Senker J., Schnick W. Formation and Characterization of Melam, Melam Hydrate, and a Melam-Melem Adduct. Chem. Eur. J. 2013;19:2041–2049. doi: 10.1002/chem.201203340. PubMed DOI
Tyborski T., Merschjann C., Orthmann S., Yang F., Lux-Steiner M.C., Schedel-Niedrig T. Crystal structure of polymeric carbon nitride and the determination of its process-temperature-induced modifications. J. Phys. Condens. Matter. 2013;25:7. doi: 10.1088/0953-8984/25/39/395402. PubMed DOI
Lotsch B.V., Schnick W. New light on an old story: Formation of melam during thermal condensation of melamine. Chem. Eur. J. 2007;13:4956–4968. doi: 10.1002/chem.200601291. PubMed DOI
Wojtyła S., Śpiewak K., Baran T. Doped Graphitic Carbon Nitride: Insights from Spectroscopy and Electrochemistry. J. Inorg. Organomet. Polym. Mater. 2020;30:3418–3428. doi: 10.1007/s10904-020-01496-8. DOI
Le S., Jiang T., Zhao Q., Liu X., Li Y., Fang B., Gong M. Cu-doped mesoporous graphitic carbon nitride for enhanced visible-light driven photocatalysis. RSC Adv. 2016;6:38811–38819. doi: 10.1039/C6RA03982K. DOI
Wu S., Yu H., Chen S., Quan X. Enhanced Photocatalytic H2O2 Production over Carbon Nitride by Doping and Defect Engineering. ACS Catal. 2020;10:14380–14389. doi: 10.1021/acscatal.0c03359. DOI
Mori K., Osaka R., Naka K., Tatsumi D., Yamashita H. Ultra-Low Loading of Ru Clusters over Graphitic Carbon Nitride: A Drastic Enhancement in Photocatalytic Hydrogen Evolution Activity. ChemCatChem. 2019;11:1963–1969. doi: 10.1002/cctc.201900073. DOI
Li X.B., Hartley G., Ward A.J., Young P.A., Masters A.F., Maschmeyer T. Hydrogenated Defects in Graphitic Carbon Nitride Nanosheets for Improved Photocatalytic Hydrogen Evolution. J. Phys. Chem. C. 2015;119:14938–14946. doi: 10.1021/acs.jpcc.5b03538. DOI
Das D., Banerjee D., Mondal M., Shett A., Das B., Das N.S., Ghorai U.K., Chattopadhyay K.K. Nickel doped graphitic carbon nitride nanosheets and its application for dye degradation by chemical catalysis. Mater. Res. Bull. 2018;101:291–304. doi: 10.1016/j.materresbull.2018.02.004. DOI
Akaike K., Aoyama K., Dekubo S., Onishi A., Kanai K. Characterizing Electronic Structure near the Energy Gap of Graphitic Carbon Nitride Based on Rational Interpretation of Chemical Analysis. Chem. Mater. 2018;30:2341–2352. doi: 10.1021/acs.chemmater.7b05316. DOI
Osadchii D.Y., Olivos-Suarez A.I., Bavykina A.V., Gascon J. Revisiting Nitrogen Species in Covalent Triazine Frameworks. Langmuir. 2017;33:14278–14285. doi: 10.1021/acs.langmuir.7b02929. PubMed DOI
Benisti I., Shaik F., Xing Z., Ben-refael A., Amirav L., Paz Y. The effect of Pt cocatalyst on the performance and transient IR spectrum of photocatalytic g-C3N4 nanospheres. Appl. Surf. Sci. 2021;542:148432. doi: 10.1016/j.apsusc.2020.148432. DOI
Tay Q., Kanhere P., Ng C.F., Chen S., Chakraborty S., Huan A.C.H., Sum T.C., Ahuja R., Chen Z. Defect Engineered g-C3N4 for Efficient Visible Light Photocatalytic Hydrogen Production. Chem. Mater. 2015;27:4930–4933. doi: 10.1021/acs.chemmater.5b02344. DOI
Cao Y.Q., Zhang Z.Z., Long J.L., Liang J., Lin H., Lin H.X., Wang X.X. Vacuum heat-treatment of carbon nitride for enhancing photocatalytic hydrogen evolution. J. Mater. Chem. A. 2014;2:17797–17807. doi: 10.1039/C4TA03070B. DOI
Wu H.-Z., Liu L.-M., Zhao S.-J. The role of the defect on the adsorption and dissociation of water on graphitic carbon nitride. Appl. Surf. Sci. 2015;358:363–369. doi: 10.1016/j.apsusc.2015.06.187. DOI
Parkinson C.R., Walker M., McConville C.F. Reaction of atomic oxygen with a Pt(111) surface: Chemical and structural determination using XPS, CAICISS and LEED. Surf. Sci. 2003;545:19–33. doi: 10.1016/j.susc.2003.08.029. DOI
Miller D., Sanchez Casalongue H., Bluhm H., Ogasawara H., Nilsson A., Kaya S. Different Reactivity of the Various Platinum Oxides and Chemisorbed Oxygen in CO Oxidation on Pt(111) J. Am. Chem. Soc. 2014;136:6340–6347. doi: 10.1021/ja413125q. PubMed DOI
Rednyle A., Ostroverkh A., Johanek V. Hydrogen production via methanol oxidation on platinum oxide thin film catalyst: Influence of methanol-to-oxygen ratio. Int. J. Hydrog. Energy. 2017;42:29254–29261.
Yang L., Zhou X., Song L., Wang Y., Wu X., Han N., Chen Y. Noble Metal/Tin Dioxide Hierarchical Hollow Spheres for Low-Concentration Breath Methane Sensing. ACS Appl. Nano Mater. 2018;1:6327–6336. doi: 10.1021/acsanm.8b01529. DOI
Hino S., Matsumoto K., Yamakado H., Yakushi K., Kuroda H. Photoelectron spectra of metallic conducting Pt-phthalocyanine radical salts. Synth. Met. 1989;32:301–308. doi: 10.1016/0379-6779(89)90772-8. DOI
Battistoni C., Giuliani A.M., Paparazzo E., Tarli F. Platinum complexes of the methyl esters of dithiocarbazic acid and 3-phenyldithiocarbazic acid. J. Chem. Soc. Dalton Trans. 1984:1293–1299. doi: 10.1039/dt9840001293. DOI
Zhang L.W., Long R., Zhang Y.M., Duan D.L., Xiong Y.J., Zhang Y.J., Bi Y.P. Direct Observation of Dynamic Bond Evolution in Single-Atom Pt/C3N4 Catalysts. Angew. Chem. Int. Ed. 2020;59:6224–6229. doi: 10.1002/anie.201915774. PubMed DOI
Li Y., Wang Z., Xia T., Ju H., Zhang K., Long R., Xu Q., Wang C., Song L., Zhu J., et al. Implementing Metal-to-Ligand Charge Transfer in Organic Semiconductor for Improved Visible-Near-Infrared Photocatalysis. Adv. Mater. 2016;28:6959–6965. doi: 10.1002/adma.201601960. PubMed DOI
Yin H., Li S.-L., Gan L.-Y., Wang P. Pt-embedded in monolayer g-C3N4 as a promising single-atom electrocatalyst for ammonia synthesis. J. Mater. Chem. A. 2019;7:11908–11914. doi: 10.1039/C9TA01624D. DOI
Gao G., Jiao Y., Waclawik E.R., Du A. Single Atom (Pd/Pt) Supported on Graphitic Carbon Nitride as an Efficient Photocatalyst for Visible-Light Reduction of Carbon Dioxide. J. Am. Chem. Soc. 2016;138:6292–6297. doi: 10.1021/jacs.6b02692. PubMed DOI
Peera S.G., Sahu A.K., Bhat S.D., Lee S.C. Nitrogen functionalized graphite nanofibers/Ir nanoparticles for enhanced oxygen reduction reaction in polymer electrolyte fuel cells (PEFCs) RSC Adv. 2014;4:11080–11088. doi: 10.1039/c3ra47533f. DOI
Freakley S.J., Ruiz-Esquius J., Morgan D.J. The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited. Surf. Interface Anal. 2017;49:794–799. doi: 10.1002/sia.6225. DOI
Pfeifer V., Jones T.E., Velez J.J.V., Massue C., Arrigo R., Teschner D., Girgsdies F., Scherzer M., Greiner M.T., Allan J., et al. The electronic structure of iridium and its oxides. Surf. Interface Anal. 2016;48:261–273. doi: 10.1002/sia.5895. PubMed DOI
Vasapollo G., Nobile C.F., Sacco A., Gowenlock B.G., Sabbatini L., Malitesta C., Zambonin P.G. Nitrosoarene complexes of rhodium(III), iridium(III), copper(I) and mercury(II). Use of XPS in determining the mode of bonding to transition metals. J. Organomet. Chem. 1989;378:239–244. doi: 10.1016/0022-328X(89)80012-9. DOI
Hu C.C., Chu C.H. Electrochemical and textural characterization of iridium-doped polyaniline films for electrochemical capacitors. Mater. Chem. Phys. 2000;65:329–338. doi: 10.1016/S0254-0584(00)00254-6. DOI
Morgan D.J. Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 2015;47:1072–1079. doi: 10.1002/sia.5852. DOI
Clark D.T., Woolsey I.S., Robinson S.D., Laing K.R., Wingfield J.N. Complexes of the platinum metals. 8. Electron spectroscopy for chemical analysis studies of some nitrosyl, aryldiazo, and aryldiimine derivatives of ruthenium, osmium, rhodium, and iridium. Lnorg. Chem. 1977;16:1201–1206. doi: 10.1021/ic50171a045. DOI
Folkesson B., Bjorøy M., Pappas J., Skaarup S., Aaltonen R., Swahn C.-G. ESCA Studies on the Charge Distribution in Some Dinitrogen Complexes of Rhenium, Iridium, Ruthenium, and Osmium. Acta Chem. Scand. 1973;27:287–302. doi: 10.3891/acta.chem.scand.27-0287. DOI
Lu B.Z., Guo L., Wu F., Peng Y., Lu J.E., Smart T.J., Wang N., Finfrock Y.Z., Morris D., Zhang P., et al. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 2019;10:11. doi: 10.1038/s41467-019-08419-3. PubMed DOI PMC