Reductive Modification of Carbon Nitride Structure by Metals-The Influence on Structure and Photocatalytic Hydrogen Evolution

. 2022 Jan 18 ; 15 (3) : . [epub] 20220118

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35160664

Grantová podpora
POWR.03.02.00-00-I023/17 EUROPEAN SOCIAL FUND
CZ.02.1.01./0.0/0.0/17_049/0008419 EU structural funding in Operational Programme Research, Development and Education
LM2018098 LARGE RESEARCH INFRASTRUCTURE ENREGAT, supported by the Ministry of Education, Youth and Sports of the Czech Republic

Pt, Ru, and Ir were introduced onto the surface of graphitic carbon nitride (g-C3N4) using the wet impregnation method. A reduction of these photocatalysts with hydrogen causes several changes, such as a significant increase in the specific surface area, a C/N atomic ratio, a number of defects in the crystalline structure of g-C3N4, and the contribution of nitrogen bound to the amino and imino groups. According to the X-ray photoelectron spectroscopy results, a transition layer is formed at the g-C3N4/metal nanoparticle interphase, which contains metal at a positive degree of oxidation bonded to nitrogen. These structural changes significantly enhanced the photocatalytic activity in the production of hydrogen through the water-splitting reaction. The activity of the platinum photocatalyst was 24 times greater than that of pristine g-C3N4. Moreover, the enhanced activity was attributed to significantly better separation of photogenerated electron-hole pairs on metal nanoparticles and structural distortions of g-C3N4.

Zobrazit více v PubMed

Kumaravel V., Imam M., Badreldin A., Chava R., Do J., Kang M., Abdel-Wahab A. Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts. 2019;9:276. doi: 10.3390/catal9030276. DOI

Wang S., Zhang J., Li B., Sun H., Wang S. Engineered Graphitic Carbon Nitride-Based Photocatalysts for Visible-Light-Driven Water Splitting: A Review. Energy Fuels. 2021;35:6504–6526. doi: 10.1021/acs.energyfuels.1c00503. DOI

Du Y., Rabani J. The Measure of TiO2 Photocatalytic Efficiency and the Comparison of Different Photocatalytic Titania. J. Phys. Chem. B. 2003;107:11970–11978. doi: 10.1021/jp035491z. DOI

Lin W.-C., Yang W.-D., Huang I.L., Wu T.-S., Chung Z.-J. Hydrogen Production from Methanol/Water Photocatalytic Decomposition Using Pt/TiO2−xNx Catalyst. Energy Fuels. 2009;23:2192–2196. doi: 10.1021/ef801091p. DOI

Kawai T., Sakata T. Photocatalytic hydrogen production from liquid methanol and water. J. Chem. Soc. Chem. Commun. 1980;15:694–695. doi: 10.1039/c39800000694. DOI

Dozzi M.V., Chiarello G.L., Pedroni M., Livraghi S., Giamello E., Selli E. High photocatalytic hydrogen production on Cu(II) pre-grafted Pt/TiO2. Appl. Catal. B. 2017;209:417–428. doi: 10.1016/j.apcatb.2017.03.007. DOI

Rosseler O., Shankar M.V., Du M.K.-L., Schmidlin L., Keller N., Keller V. Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2 (anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion. J. Catal. 2010;269:179–190. doi: 10.1016/j.jcat.2009.11.006. DOI

Choi H., Kang M. Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2. Int. J. Hydrogen Energy. 2007;32:3841–3848. doi: 10.1016/j.ijhydene.2007.05.011. DOI

Park M.-S., Kang M. The preparation of the anatase and rutile forms of Ag–TiO2 and hydrogen production from methanol/water decomposition. Mater. Lett. 2008;62:183–187. doi: 10.1016/j.matlet.2007.04.105. DOI

Ge M.Z., Cai J.S., Iocozzia J., Cao C.Y., Huang J.Y., Zhang X.N., Shen J.L., Wang S.C., Zhang S.N., Zhang K.Q., et al. A review of TiO2 nanostructured catalysts for sustainable H2 generation. Int. J. Hydrogen Energy. 2017;42:8418–8449. doi: 10.1016/j.ijhydene.2016.12.052. DOI

Cao S.W., Low J.X., Yu J.G., Jaroniec M. Polymeric Photocatalysts Based on Graphitic Carbon Nitride. Adv. Mater. 2015;27:2150–2176. doi: 10.1002/adma.201500033. PubMed DOI

Ismael M., Wu Y. A mini-review on the synthesis and structural modification of g-C3N4-based materials, and their applications in solar energy conversion and environmental remediation. Sustain. Energ. Fuels. 2019;3:2907–2925. doi: 10.1039/C9SE00422J. DOI

Yao S., Xue S., Peng S., Jing M., Qian X., Shen X., Li T., Wang Y. Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium–sulfur batteries. J. Mater. Sci. Mater. Electron. 2018;29:17921–17930. doi: 10.1007/s10854-018-9906-2. DOI

Zhang Y.W., Liu J.H., Wu G., Chen W. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale. 2012;4:5300–5303. doi: 10.1039/c2nr30948c. PubMed DOI

Zhang G.G., Zhang J.S., Zhang M.W., Wang X.C. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem. 2012;22:8083–8091. doi: 10.1039/c2jm00097k. DOI

Li X.F., Zhang J., Shen L.H., Ma Y.M., Lei W.W., Cui Q.L., Zou G.T. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl. Phys. A-Mater. Sci. Process. 2009;94:387–392. doi: 10.1007/s00339-008-4816-4. DOI

Yan S.C., Li Z.S., Zou Z.G. Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine. Langmuir. 2009;25:10397–10401. doi: 10.1021/la900923z. PubMed DOI

Cui Y.J., Ding Z.X., Liu P., Antonietti M., Fu X.Z., Wang X.C. Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Phys. Chem. Chem. Phys. 2012;14:1455–1462. doi: 10.1039/C1CP22820J. PubMed DOI

Alwin E., Kočí K., Wojcieszak R., Zieliński M., Edelmannová M., Pietrowski M. Influence of High Temperature Synthesis on the Structure of Graphitic Carbon Nitride and Its Hydrogen Generation Ability. Materials. 2020;13:2756. doi: 10.3390/ma13122756. PubMed DOI PMC

Wang X.C., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J.M., Domen K., Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009;8:76–80. doi: 10.1038/nmat2317. PubMed DOI

Liu G., Niu P., Sun C.H., Smith S.C., Chen Z.G., Lu G.Q., Cheng H.M. Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4. J. Am. Chem. Soc. 2010;132:11642–11648. doi: 10.1021/ja103798k. PubMed DOI

Thaweesak S., Wang S., Lyu M., Xiao M., Peerakiatkhajohn P., Wang L. Boron-doped graphitic carbon nitride nanosheets for enhanced visible light photocatalytic water splitting. Dalton Trans. 2017;46:10714–10720. doi: 10.1039/C7DT00933J. PubMed DOI

Li K., Zeng Z., Yan L., Luo S., Luo X., Huo M., Guo Y. Fabrication of platinum-deposited carbon nitride nanotubes by a one-step solvothermal treatment strategy and their efficient visible-light photocatalytic activity. Appl. Catal. B. 2015;165:428–437. doi: 10.1016/j.apcatb.2014.10.039. DOI

Khan M.A., Maity P., Al-Oufi M., Al-Howaish I.K., Idriss H. Electron Transfer of the Metal/Semiconductor System in Photocatalysis. J. Phys. Chem. C. 2018;122:16779–16787. doi: 10.1021/acs.jpcc.8b03741. DOI

Koci K., Troppova I., Edelmannova M., Starostka J., Matejova L., Lang J., Reli M., Drobna H., Rokicinska A., Kustrowski P., et al. Photocatalytic decomposition of methanol over La/TiO2 materials. Environ. Sci. Pollut. Res. 2018;25:34818–34825. doi: 10.1007/s11356-017-0460-x. PubMed DOI

Vaidya P.D., Rodrigues A.E. Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chem. Eng. J. 2006;117:39–49. doi: 10.1016/j.cej.2005.12.008. DOI

Jun C.H. Transition metal-catalyzed carbon-carbon bond activation. Chem. Soc. Rev. 2004;33:610–618. doi: 10.1039/B308864M. PubMed DOI

Alwin E., Nowicki W., Wojcieszak R., Zielinski M., Pietrowski M. Elucidating the structure of the graphitic carbon nitride nanomaterials via X-ray photoelectron spectroscopy and X-ray powder diffraction techniques. Dalton Trans. 2020;49:12805–12813. doi: 10.1039/D0DT02325F. PubMed DOI

Wirnhier E., Mesch M.B., Senker J., Schnick W. Formation and Characterization of Melam, Melam Hydrate, and a Melam-Melem Adduct. Chem. Eur. J. 2013;19:2041–2049. doi: 10.1002/chem.201203340. PubMed DOI

Tyborski T., Merschjann C., Orthmann S., Yang F., Lux-Steiner M.C., Schedel-Niedrig T. Crystal structure of polymeric carbon nitride and the determination of its process-temperature-induced modifications. J. Phys. Condens. Matter. 2013;25:7. doi: 10.1088/0953-8984/25/39/395402. PubMed DOI

Lotsch B.V., Schnick W. New light on an old story: Formation of melam during thermal condensation of melamine. Chem. Eur. J. 2007;13:4956–4968. doi: 10.1002/chem.200601291. PubMed DOI

Wojtyła S., Śpiewak K., Baran T. Doped Graphitic Carbon Nitride: Insights from Spectroscopy and Electrochemistry. J. Inorg. Organomet. Polym. Mater. 2020;30:3418–3428. doi: 10.1007/s10904-020-01496-8. DOI

Le S., Jiang T., Zhao Q., Liu X., Li Y., Fang B., Gong M. Cu-doped mesoporous graphitic carbon nitride for enhanced visible-light driven photocatalysis. RSC Adv. 2016;6:38811–38819. doi: 10.1039/C6RA03982K. DOI

Wu S., Yu H., Chen S., Quan X. Enhanced Photocatalytic H2O2 Production over Carbon Nitride by Doping and Defect Engineering. ACS Catal. 2020;10:14380–14389. doi: 10.1021/acscatal.0c03359. DOI

Mori K., Osaka R., Naka K., Tatsumi D., Yamashita H. Ultra-Low Loading of Ru Clusters over Graphitic Carbon Nitride: A Drastic Enhancement in Photocatalytic Hydrogen Evolution Activity. ChemCatChem. 2019;11:1963–1969. doi: 10.1002/cctc.201900073. DOI

Li X.B., Hartley G., Ward A.J., Young P.A., Masters A.F., Maschmeyer T. Hydrogenated Defects in Graphitic Carbon Nitride Nanosheets for Improved Photocatalytic Hydrogen Evolution. J. Phys. Chem. C. 2015;119:14938–14946. doi: 10.1021/acs.jpcc.5b03538. DOI

Das D., Banerjee D., Mondal M., Shett A., Das B., Das N.S., Ghorai U.K., Chattopadhyay K.K. Nickel doped graphitic carbon nitride nanosheets and its application for dye degradation by chemical catalysis. Mater. Res. Bull. 2018;101:291–304. doi: 10.1016/j.materresbull.2018.02.004. DOI

Akaike K., Aoyama K., Dekubo S., Onishi A., Kanai K. Characterizing Electronic Structure near the Energy Gap of Graphitic Carbon Nitride Based on Rational Interpretation of Chemical Analysis. Chem. Mater. 2018;30:2341–2352. doi: 10.1021/acs.chemmater.7b05316. DOI

Osadchii D.Y., Olivos-Suarez A.I., Bavykina A.V., Gascon J. Revisiting Nitrogen Species in Covalent Triazine Frameworks. Langmuir. 2017;33:14278–14285. doi: 10.1021/acs.langmuir.7b02929. PubMed DOI

Benisti I., Shaik F., Xing Z., Ben-refael A., Amirav L., Paz Y. The effect of Pt cocatalyst on the performance and transient IR spectrum of photocatalytic g-C3N4 nanospheres. Appl. Surf. Sci. 2021;542:148432. doi: 10.1016/j.apsusc.2020.148432. DOI

Tay Q., Kanhere P., Ng C.F., Chen S., Chakraborty S., Huan A.C.H., Sum T.C., Ahuja R., Chen Z. Defect Engineered g-C3N4 for Efficient Visible Light Photocatalytic Hydrogen Production. Chem. Mater. 2015;27:4930–4933. doi: 10.1021/acs.chemmater.5b02344. DOI

Cao Y.Q., Zhang Z.Z., Long J.L., Liang J., Lin H., Lin H.X., Wang X.X. Vacuum heat-treatment of carbon nitride for enhancing photocatalytic hydrogen evolution. J. Mater. Chem. A. 2014;2:17797–17807. doi: 10.1039/C4TA03070B. DOI

Wu H.-Z., Liu L.-M., Zhao S.-J. The role of the defect on the adsorption and dissociation of water on graphitic carbon nitride. Appl. Surf. Sci. 2015;358:363–369. doi: 10.1016/j.apsusc.2015.06.187. DOI

Parkinson C.R., Walker M., McConville C.F. Reaction of atomic oxygen with a Pt(111) surface: Chemical and structural determination using XPS, CAICISS and LEED. Surf. Sci. 2003;545:19–33. doi: 10.1016/j.susc.2003.08.029. DOI

Miller D., Sanchez Casalongue H., Bluhm H., Ogasawara H., Nilsson A., Kaya S. Different Reactivity of the Various Platinum Oxides and Chemisorbed Oxygen in CO Oxidation on Pt(111) J. Am. Chem. Soc. 2014;136:6340–6347. doi: 10.1021/ja413125q. PubMed DOI

Rednyle A., Ostroverkh A., Johanek V. Hydrogen production via methanol oxidation on platinum oxide thin film catalyst: Influence of methanol-to-oxygen ratio. Int. J. Hydrog. Energy. 2017;42:29254–29261.

Yang L., Zhou X., Song L., Wang Y., Wu X., Han N., Chen Y. Noble Metal/Tin Dioxide Hierarchical Hollow Spheres for Low-Concentration Breath Methane Sensing. ACS Appl. Nano Mater. 2018;1:6327–6336. doi: 10.1021/acsanm.8b01529. DOI

Hino S., Matsumoto K., Yamakado H., Yakushi K., Kuroda H. Photoelectron spectra of metallic conducting Pt-phthalocyanine radical salts. Synth. Met. 1989;32:301–308. doi: 10.1016/0379-6779(89)90772-8. DOI

Battistoni C., Giuliani A.M., Paparazzo E., Tarli F. Platinum complexes of the methyl esters of dithiocarbazic acid and 3-phenyldithiocarbazic acid. J. Chem. Soc. Dalton Trans. 1984:1293–1299. doi: 10.1039/dt9840001293. DOI

Zhang L.W., Long R., Zhang Y.M., Duan D.L., Xiong Y.J., Zhang Y.J., Bi Y.P. Direct Observation of Dynamic Bond Evolution in Single-Atom Pt/C3N4 Catalysts. Angew. Chem. Int. Ed. 2020;59:6224–6229. doi: 10.1002/anie.201915774. PubMed DOI

Li Y., Wang Z., Xia T., Ju H., Zhang K., Long R., Xu Q., Wang C., Song L., Zhu J., et al. Implementing Metal-to-Ligand Charge Transfer in Organic Semiconductor for Improved Visible-Near-Infrared Photocatalysis. Adv. Mater. 2016;28:6959–6965. doi: 10.1002/adma.201601960. PubMed DOI

Yin H., Li S.-L., Gan L.-Y., Wang P. Pt-embedded in monolayer g-C3N4 as a promising single-atom electrocatalyst for ammonia synthesis. J. Mater. Chem. A. 2019;7:11908–11914. doi: 10.1039/C9TA01624D. DOI

Gao G., Jiao Y., Waclawik E.R., Du A. Single Atom (Pd/Pt) Supported on Graphitic Carbon Nitride as an Efficient Photocatalyst for Visible-Light Reduction of Carbon Dioxide. J. Am. Chem. Soc. 2016;138:6292–6297. doi: 10.1021/jacs.6b02692. PubMed DOI

Peera S.G., Sahu A.K., Bhat S.D., Lee S.C. Nitrogen functionalized graphite nanofibers/Ir nanoparticles for enhanced oxygen reduction reaction in polymer electrolyte fuel cells (PEFCs) RSC Adv. 2014;4:11080–11088. doi: 10.1039/c3ra47533f. DOI

Freakley S.J., Ruiz-Esquius J., Morgan D.J. The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited. Surf. Interface Anal. 2017;49:794–799. doi: 10.1002/sia.6225. DOI

Pfeifer V., Jones T.E., Velez J.J.V., Massue C., Arrigo R., Teschner D., Girgsdies F., Scherzer M., Greiner M.T., Allan J., et al. The electronic structure of iridium and its oxides. Surf. Interface Anal. 2016;48:261–273. doi: 10.1002/sia.5895. PubMed DOI

Vasapollo G., Nobile C.F., Sacco A., Gowenlock B.G., Sabbatini L., Malitesta C., Zambonin P.G. Nitrosoarene complexes of rhodium(III), iridium(III), copper(I) and mercury(II). Use of XPS in determining the mode of bonding to transition metals. J. Organomet. Chem. 1989;378:239–244. doi: 10.1016/0022-328X(89)80012-9. DOI

Hu C.C., Chu C.H. Electrochemical and textural characterization of iridium-doped polyaniline films for electrochemical capacitors. Mater. Chem. Phys. 2000;65:329–338. doi: 10.1016/S0254-0584(00)00254-6. DOI

Morgan D.J. Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 2015;47:1072–1079. doi: 10.1002/sia.5852. DOI

Clark D.T., Woolsey I.S., Robinson S.D., Laing K.R., Wingfield J.N. Complexes of the platinum metals. 8. Electron spectroscopy for chemical analysis studies of some nitrosyl, aryldiazo, and aryldiimine derivatives of ruthenium, osmium, rhodium, and iridium. Lnorg. Chem. 1977;16:1201–1206. doi: 10.1021/ic50171a045. DOI

Folkesson B., Bjorøy M., Pappas J., Skaarup S., Aaltonen R., Swahn C.-G. ESCA Studies on the Charge Distribution in Some Dinitrogen Complexes of Rhenium, Iridium, Ruthenium, and Osmium. Acta Chem. Scand. 1973;27:287–302. doi: 10.3891/acta.chem.scand.27-0287. DOI

Lu B.Z., Guo L., Wu F., Peng Y., Lu J.E., Smart T.J., Wang N., Finfrock Y.Z., Morris D., Zhang P., et al. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 2019;10:11. doi: 10.1038/s41467-019-08419-3. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...