Shape-Selective Targeting on RNA Bulges by Peptidomimetic Metallohelices
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
20-00735S
Czech Science Foundation
PubMed
32329091
DOI
10.1002/chem.202001107
Knihovny.cz E-zdroje
- Klíčová slova
- RNA bulges, RNA recognition, RNase A footprinting, metallohelices, peptidomimetics,
- MeSH
- konformace nukleové kyseliny MeSH
- peptidomimetika chemie MeSH
- RNA chemie MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- peptidomimetika MeSH
- RNA MeSH
RNA bulges represent one of the most common motifs in the RNA secondary structure and serve in a variety of biological functions. Compounds stabilizing RNA bulges are important for probing RNA structure and function and for therapy of some diseases. Here, the ability of a series of enantiomeric pairs of optically pure bimetallic metallohelices with different flexible linkers to target various RNA bulges is investigated. The results show that binding affinities of the metallohelices to bulged RNA differ and strongly depend on the size of the bulge and the base composition of the bulge loop. Notably, the shorter, more compact, and less flexible metallohelices bind to RNA bulges most efficiently and selectively. Interestingly, the ability of the metallohelices to bind to RNA bulges correlates with their previously reported antimicrobial activity, which suggests that the selective recognition of bulged regions in RNA by the metallohelices might also contribute to their biological activity.
Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 61265 Brno Czech Republic
Zobrazit více v PubMed
T. Hermann, D. J. Patel, Structure 2000, 8, R47-R54.
L. Guan, M. D. Disney, ACS Chem. Biol. 2012, 7, 73-86.
Z. Xiao, N. Zhang, Y. Lin, G. B. Jones, I. H. Goldberg, Chem. Commun. 2006, 4431-4433;
S. T. Meyer, P. J. Hergenrother, Org. Lett. 2009, 11, 4052-4055.
C. B. Spillane, J. A. Smith, D. P. Buck, J. G. Collins, F. R. Keene, Dalton Trans. 2007, 5290-5296;
D. P. Buck, C. B. Spillane, J. G. Collins, F. R. Keene, Mol. BioSyst. 2008, 4, 851-854.
C. S. Chow, L. S. Behlen, O. C. Uhlenbeck, J. K. Barton, Biochemistry 1992, 31, 972-982.
E. Kikuta, S. Aoki, E. Kimura, J. Am. Chem. Soc. 2001, 123, 7911-7912.
J. Zhang, F. Takei, K. Nakatani, Bioorg. Med. Chem. 2007, 15, 4813-4817.
J. Malina, M. J. Hannon, V. Brabec, FEBS J. 2014, 281, 987-997.
J. Malina, M. J. Hannon, V. Brabec, Sci. Rep. 2016, 6, 29674.
L. Cardo, I. Nawroth, P. J. Cail, J. A. McKeating, M. J. Hannon, Sci. Rep. 2018, 8, 13342.
S. E. Howson, A. Bolhuis, V. Brabec, G. J. Clarkson, J. Malina, A. Rodger, P. Scott, Nat. Chem. 2012, 4, 31-36.
D. E. Mitchell, G. Clarkson, D. J. Fox, R. A. Vipond, P. Scott, M. I. Gibson, J. Am. Chem. Soc. 2017, 139, 9835-9838.
Y. J. Guan, Z. Du, N. Gao, Y. Cao, X. H. Wang, P. Scott, H. L. Song, J. S. Ren, X. G. Qu, Sci. Adv. 2018, 4, eaao6718.
O. Hrabina, J. Malina, H. Kostrhunova, V. Novohradsky, J. Pracharova, N. Rogers, D. H. Simpson, P. Scott, V. Brabec, Inorg. Chem. 2020, 59, 3304-3311.
D. H. Simpson, A. Hapeshi, N. J. Rogers, V. Brabec, G. J. Clarkson, D. J. Fox, O. Hrabina, G. L. Kay, A. K. King, J. Malina, A. D. Millard, J. Moat, D. I. Roper, H. Song, N. R. Waterfield, P. Scott, Chem. Sci. 2019, 10, 9708-9720.
V. Brabec, S. E. Howson, R. A. Kaner, R. M. Lord, J. Malina, R. M. Phillips, Q. M. A. Abdallah, P. C. McGowan, A. Rodger, P. Scott, Chem. Sci. 2013, 4, 4407-4416;
J. Malina, P. Scott, V. Brabec, Dalton Trans. 2015, 44, 14656-14665.
G. Chen, D. H. Turner, Biochemistry 2006, 45, 4025-4043;
L. Huang, D. M. J. Lilley, J. Mol. Biol. 2016, 428, 790-801.
M. J. Hannon, C. L. Painting, A. Jackson, J. Hamblin, W. Errington, Chem. Commun. 1997, 1807-1808.