p53-mediated control of gene expression via mRNA translation during Endoplasmic Reticulum stress
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26397130
PubMed Central
PMC4825612
DOI
10.1080/15384101.2015.1090066
Knihovny.cz E-zdroje
- Klíčová slova
- ER stress, MDM2, mRNA translation, p53, p53/47,
- MeSH
- chaperon endoplazmatického retikula BiP MeSH
- down regulace MeSH
- genový knockdown MeSH
- HCT116 buňky MeSH
- inhibitor p21 cyklin-dependentní kinasy biosyntéza genetika MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- nádory genetika metabolismus patologie MeSH
- proteiny tepelného šoku metabolismus MeSH
- protoonkogenní proteiny c-mdm2 biosyntéza genetika MeSH
- regulace genové exprese u nádorů * MeSH
- signální dráha UPR MeSH
- signální transdukce MeSH
- stres endoplazmatického retikula * MeSH
- transfekce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CDKN1A protein, human MeSH Prohlížeč
- chaperon endoplazmatického retikula BiP MeSH
- inhibitor p21 cyklin-dependentní kinasy MeSH
- MDM2 protein, human MeSH Prohlížeč
- messenger RNA MeSH
- nádorový supresorový protein p53 MeSH
- proteiny tepelného šoku MeSH
- protoonkogenní proteiny c-mdm2 MeSH
- TP53 protein, human MeSH Prohlížeč
p53 is activated by different stress and damage pathways and regulates cell biological responses including cell cycle arrest, repair pathways, apoptosis and senescence. Following DNA damage, the levels of p53 increase and via binding to target gene promoters, p53 induces expression of multiple genes including p21(CDKN1A) and mdm2. The effects of p53 on gene expression during the DNA damage response are well mimicked by overexpressing p53 under normal conditions. However, stress to the Endoplasmic Reticulum (ER) and the consequent Unfolded Protein Response (UPR) leads to the induction of the p53/47 isoform that lacks the first 40 aa of p53 and to an active suppression of p21(CDKN1A) transcription and mRNA translation. We now show that during ER stress p53 also suppresses MDM2 protein levels via a similar mechanism. These observations not only raise questions about the physiological role of MDM2 during ER stress but it also reveals a new facet of p53 as a repressor toward 2 of its major target genes during the UPR. As suppression of p21(CDKN1A) and MDM2 protein synthesis is mediated via their coding sequences, it raises the possibility that p53 controls mRNA translation via a common mechanism that might play an important role in how p53 regulates gene expression during the UPR, as compared to the transcription-dependent gene regulation taking place during the DNA damage response.
b Department of Medical Biosciences ; Umeå University ; Umeå Sweden
c RECAMO; Masaryk Memorial Cancer Institute ; Brno Czech Republic
Zobrazit více v PubMed
Efeyan A, Serrano M. p53: guardian of the genome and policeman of the oncogenes. Cell Cycle 2007; 6:1006-10; PMID:17457049; http://dx.doi.org/10.4161/cc.6.9.4211 PubMed DOI
Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol 2007; 8:275-83; PMID:17380161; http://dx.doi.org/10.1038/nrm2147 PubMed DOI
El-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y, et al.. WAF1/CIP1 Is Induced in p53-mediated G1 Arrest and Apoptosis. Cancer Res 1994; 54:1169-74; PMID:8118801 PubMed
Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 1992; 71:587-97; PMID:1423616; http://dx.doi.org/10.1016/0092-8674(92)90593-2 PubMed DOI
Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80:293-9; PMID:7834749; http://dx.doi.org/10.1016/0092-8674(95)90513-8 PubMed DOI
Lanigan F, Geraghty JG, Bracken AP. Transcriptional regulation of cellular senescence. Oncogene 2011; 30:2901-11; PMID:21383691; http://dx.doi.org/10.1038/onc.2011.34 PubMed DOI
Efeyan A, Collado M, Velasco-Miguel S, Serrano M. Genetic dissection of the role of p21Cip1/Waf1 in p53-mediated tumour suppression. Oncogene 2007; 26:1645-9; PMID:16964282; http://dx.doi.org/10.1038/sj.onc.1209972 PubMed DOI
Adnane J, Jackson RJ, Nicosia SV, Cantor AB, Pledger WJ, Sebti SM. Loss of p21WAF1/CIP1 accelerates Ras oncogenesis in a transgenic/knockout mammary cancer model. Oncogene 2000; 19:5338-47; PMID:11103935; http://dx.doi.org/10.1038/sj.onc.1203956 PubMed DOI
Barak Y, Juven T, Haffner R, Oren M. mdm2 expression is induced by wild type p53 activity. EMBO J 1993; 12:461-8; PMID:8440237 PubMed PMC
Barak Y, Gottlieb E, Juven-Gershon T, Oren M. Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Gen Dev 1994; 8:1739-49; PMID:7958853; http://dx.doi.org/10.1101/gad.8.15.1739 PubMed DOI
Pant V, Xiong S, Jackson JG, Post SM, Abbas HA, Quintas-Cardama A, Hamir AN, Lozano G. The p53-Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity. Gen Dev 2013; 27:1857-67; PMID:23973961; http://dx.doi.org/10.1101/gad.227249.113 PubMed DOI PMC
Candeias MM, Malbert-Colas L, Powell DJ, Daskalogianni C, Maslon MM, Naski N, Bourougaa K, Calvo F, Fahraeus R. P53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol 2008; 10:1098-105; PMID:19160491; http://dx.doi.org/10.1038/ncb1770 PubMed DOI
Naski N, Gajjar M, Bourougaa K, Malbert-Colas L, Fahraeus R, Candeias MM. The p53 mRNA-Mdm2 interaction. Cell Cycle 2009; 8:31-4; PMID:19106616; http://dx.doi.org/10.4161/cc.8.1.7326 PubMed DOI
Malbert-Colas L, Ponnuswamy A, Olivares-Illana V, Tournillon AS, Naski N, Fahraeus R. HDMX folds the nascent p53 mRNA following activation by the ATM kinase. Mol Cell 2014; 54:500-11; PMID:24813712; http://dx.doi.org/10.1016/j.molcel.2014.02.035 PubMed DOI
Zhao L, Ackerman SL. Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol 2006; 18:444-52; PMID:16781856; http://dx.doi.org/10.1016/j.ceb.2006.06.005 PubMed DOI
Lisbona F, Hetz C. Turning off the unfolded protein response: an interplay between the apoptosis machinery and ER stress signaling. Cell Cycle 2009; 8:1643-4; PMID:19411860; http://dx.doi.org/10.4161/cc.8.11.8637 PubMed DOI
Bourougaa K, Naski N, Boularan C, Mlynarczyk C, Candeias MM, Marullo S, Fahraeus R. Endoplasmic reticulum stress induces G2 cell-cycle arrest via mRNA translation of the p53 isoform p53/47. Mol Cell 2010; 38:78-88; PMID:20385091; http://dx.doi.org/10.1016/j.molcel.2010.01.041 PubMed DOI
Pyronnet S, Dostie J, Sonenberg N. Suppression of cap-dependent translation in mitosis. Gen Dev 2001; 15:2083-93; PMID:11511540; http://dx.doi.org/10.1101/gad.889201 PubMed DOI PMC
Mlynarczyk C, Fahraeus R. Endoplasmic reticulum stress sensitizes cells to DNA damage-induced apoptosis through p53-dependent suppression of p21(CDKN1A). Nat Commun 2014; 5:5067; PMID:25295585; http://dx.doi.org/10.1038/ncomms6067 PubMed DOI
Candeias MM, Powell DJ, Roubalova E, Apcher S, Bourougaa K, Vojtesek B, Bruzzoni-Giovanelli H, Fahraeus R. Expression of p53 and p53/47 are controlled by alternative mechanisms of messenger RNA translation initiation. Oncogene 2006; 25:6936-47; PMID:16983332; http://dx.doi.org/10.1038/sj.onc.1209996 PubMed DOI
Maier B, Gluba W, Bernier B, Turner T, Mohammad K, Guise T, Sutherland A, Thorner M, Scrable H. Modulation of mammalian life span by the short isoform of p53. Gen Dev 2004; 18:306-19; PMID:14871929; http://dx.doi.org/10.1101/gad.1162404 PubMed DOI PMC
Ungewitter E, Scrable H. Delta40p53 controls the switch from pluripotency to differentiation by regulating IGF signaling in ESCs. Gen Dev 2010; 24:2408-19; PMID:21041409; http://dx.doi.org/10.1101/gad.1987810 PubMed DOI PMC
Takahashi R, Giannini C, Sarkaria JN, Schroeder M, Rogers J, Mastroeni D, Scrable H. p53 isoform profiling in glioblastoma and injured brain. Oncogene 2013; 32:3165-74; PMID:22824800; http://dx.doi.org/10.1038/onc.2012.322 PubMed DOI PMC
Ho J, Benchimol S. Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Differ 2003; 10:404-8; PMID:12719716; http://dx.doi.org/10.1038/sj.cdd.4401191 PubMed DOI
Riley KJ, Maher LJ 3rd. p53 RNA interactions: new clues in an old mystery. RNA 2007; 13:1825-33; PMID:17804642; http://dx.doi.org/10.1261/rna.673407 PubMed DOI PMC
Chen D, Zhang Z, Li M, Wang W, Li Y, Rayburn ER, Hill DL, Wang H, Zhang R. Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene 2007; 26:5029-37; PMID:17310983; http://dx.doi.org/10.1038/sj.onc.1210327 PubMed DOI
Horn HF, Vousden KH. Cooperation between the ribosomal proteins L5 and L11 in the p53 pathway. Oncogene 2008; 27:5774-84; PMID:18560357; http://dx.doi.org/10.1038/onc.2008.189 PubMed DOI
Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R, Zhang Y. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell 2003; 12:1151-64; PMID:14636574; http://dx.doi.org/10.1016/S1097-2765(03)00431-3 PubMed DOI
Crighton D, Woiwode A, Zhang C, Mandavia N, Morton JP, Warnock LJ, Milner J, White RJ, Johnson DL. p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. The EMBO J 2003; 22:2810-20; PMID:12773395; http://dx.doi.org/10.1093/emboj/cdg265 PubMed DOI PMC
Powell DJ, Hrstka R, Candeias M, Bourougaa K, Vojtesek B, Fahraeus R. Stress-dependent changes in the properties of p53 complexes by the alternative translation product p53/47. Cell Cycle 2008; 7:950-9; PMID:18414054; http://dx.doi.org/10.4161/cc.7.7.5626 PubMed DOI
Alternative Mechanisms of p53 Action During the Unfolded Protein Response