Perspectives in the Application of High, Medium, and Low Molecular Weight Oat β-d-Glucans in Dietary Nutrition and Food Technology-A Short Overview
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
2/0051/18
Slovak Academy of Sciences
LX22NPO5102
Next Generation Infrastructures
no number
Generali/Ceska Pojistovna Foundation
no number
UniCredit Bank Czech Republic and Slovakia, a.s., Prague (CZ)
no number
ARPA Foundation (IT)
RVO 61388971
Czech Academy of Sciences, Institute of Microbiology
PubMed
36981048
PubMed Central
PMC10048208
DOI
10.3390/foods12061121
PII: foods12061121
Knihovny.cz E-zdroje
- Klíčová slova
- cancer, cereal β-d-glucans, glycaemia, immunity, microbiome, molecular weight, oats,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
For centuries human civilization has cultivated oats, and now they are consumed in various forms of food, from instant breakfasts to beverages. They are a nutrient-rich food containing linear mixed-linkage (1 → 3) (1 → 4)-β-d-glucans, which are relatively well soluble in water and responsible for various biological effects: the regulation of the blood cholesterol level, as well as being anti-inflammatory, prebiotic, antioxidant, and tumor-preventing. Numerous studies, especially in the last two decades, highlight the differences in the biological properties of the oat β-d-glucan fractions of low, medium, and high molecular weight. These fractions differ in their features due to variations in bioavailability related to the rheological properties of these polysaccharides, and their association with food matrices, purity, and mode of preparation or modification. There is strong evidence that, under different conditions, the molecular weight may determine the potency of oat-extracted β-d-glucans. In this review, we intend to give a concise overview of the properties and studies of the biological activities of oat β-d-glucan preparations depending on their molecular weight and how they represent a prospective ingredient of functional food with the potential to prevent or modulate various pathological conditions.
Zobrazit více v PubMed
Synytsya A., Novák M. Structural Diversity of Fungal Glucans. Carbohydr. Polym. 2013;92:792–809. doi: 10.1016/j.carbpol.2012.09.077. PubMed DOI
Synytsya A., Novak M. Structural Analysis of Glucans. Ann. Transl. Med. 2014;2:17. PubMed PMC
Ohno N. Structural Diversity and Physiological Functions of β-Glucans. Int. J. Med. Mushrooms. 2005;7:167–174. doi: 10.1615/IntJMedMushr.v7.i12.160. DOI
Hu X., Zhao J., Zhao Q., Zheng J. Structure and Characteristic of β-Glucan in Cereal: A Review. J. Food Process. Preserv. 2015;39:3145–3153. doi: 10.1111/jfpp.12384. DOI
Kadam S.U., Tiwari B.K., O’Donnell C.P. Extraction, Structure and Biofunctional Activities of Laminarin from Brown Algae. Int. J. Food Sci. Technol. 2015;50:24–31. doi: 10.1111/ijfs.12692. DOI
Usoltseva R.V., Belik A.A., Kusaykin M.I., Malyarenko O.S., Zvyagintseva T.N., Ermakova S.P. Laminarans and 1,3-β-d-Glucanases. Int. J. Biol. Macromol. 2020;163:1010–1025. doi: 10.1016/j.ijbiomac.2020.07.034. PubMed DOI
Lazaridou A., Biliaderis C.G., Micha-Screttas M., Steele B.R. A Comparative Study on Structure–Function Relations of Mixed-Linkage (1→3), (1→4) Linear β-d-Glucans. Food Hydrocol. 2004;18:837–855. doi: 10.1016/j.foodhyd.2004.01.002. DOI
Eichhorn S.J., Baillie C.A., Zafeiropoulos N., Mwaikambo L.Y., Ansell M.P., Dufresne A., Entwistle K.M., Herrera-Franco P.J., Escamilla G.C., Groom L., et al. Current International Research into Cellulosic Fibres and Composites. J. Mater. Sci. 2001;36:2107–2131. doi: 10.1023/A:1017512029696. DOI
Chawla P.R., Bajaj I.B., Survase S.A., Sin ghal R.S. Microbial Cellulose: Fermentative Production and Applications. Food Technol. Biotechnol. 2009;47:107–124.
Cheng Y., Mondal A.K., Wu S., Xu D., Ning D., Ni Y., Huang F. Study on the Anti-Biodegradation Property of Tunicate Cellulose. Polymers. 2020;12:3071. doi: 10.3390/polym12123071. PubMed DOI PMC
Limberger-Bayer V.M., de Francisco A., Chan A., Oro T., Ogliari P.J., Barreto P.L. Barley β-Glucans Extraction and Partial Characterization. Food Chem. 2014;154:84–89. doi: 10.1016/j.foodchem.2013.12.104. PubMed DOI
Wood P.J. Oat and Rye β-Glucan: Properties and Function. Cereal Chem. 2010;87:315–330. doi: 10.1094/CCHEM-87-4-0315. DOI
Cui W., Wood P.J., Weisz J., Beer M.U. Nonstarch Polysaccharides from Preprocessed Wheat Bran: Carbohydrate Analysis and Novel Rheological Properties. Cereal Chem. 1999;76:129–133. doi: 10.1094/CCHEM.1999.76.1.129. DOI
Nakashima A., Yamada K., Iwata O., Sugimoto R., Atsuji K., Ogawa T., Ishibashi-Ohgo N., Suzuki K. β-Glucan in Foods and Its Physiological Functions. J. Nutr. Sci. Vitaminol. 2018;64:8–17. doi: 10.3177/jnsv.64.8. PubMed DOI
Barsanti L., Gualtieri P. Paramylon, a Potent Immunomodulator from WZSL Mutant of Euglena Gracilis. Molecules. 2019;24:3114. doi: 10.3390/molecules24173114. PubMed DOI PMC
Ding Q., Zhang L., Xu X., Zhang X., Wu C. Solution Properties of Pachyman from Poria cocos Mycelia in Dimethyl Sulfoxide. J. Macromol. Sci. B. 2001;40:147–156. doi: 10.1081/MB-100000257. DOI
Pereyra M.T., Prieto A., Bernabé M., Leal J.A. Studies of New Polysaccharides from Lasallia pustulata (L.) Hoffm. Lichenologist. 2003;35:177–185. doi: 10.1016/S0024-2829(03)00015-X. DOI
Alves da Cunha M.A., Turmina J.A., Ivanov R.C., Barroso R.R., Marques P.T., Fonseca E.A., Fortes Z.B., Dekker R.F., Khaper N., Barbosa A.M. Lasiodiplodan, an Exocellular (1→ 6)-β-d-Glucan from Lasiodiplodia theobromae MMPI: Production on Glucose, Fermentation Kinetics, Rheology and Anti-Proliferative Activity. J. Ind. Microbiol. Biotechnol. 2012;39:1179–1188. doi: 10.1007/s10295-012-1112-2. PubMed DOI
Mandal S., Maity K.K., Bhunia S.K., Dey B., Patra S., Sikdar S.R., Islam S.S. Chemical Analysis of New Water-Soluble (1→ 6)-,(1→ 4)-α, β-Glucan and Water-Insoluble (1→ 3)-,(1→ 4)-β-Glucan (Calocyban) from Alkaline Extract of an Edible Mushroom, Calocybe indica (Dudh Chattu) Carbohydr. Res. 2010;345:2657–2663. doi: 10.1016/j.carres.2010.10.005. PubMed DOI
Barbosa A.M., Steluti R.M., Dekker R.F., Cardoso M.S., Da Silva M.C. Structural Characterization of Botryosphaeran: A (1→ 3; 1→ 6)-β-d-Glucan Produced by the Ascomyceteous Fungus, Botryosphaeria sp. Carbohydr. Res. 2003;338:1691–1698. doi: 10.1016/S0008-6215(03)00240-4. PubMed DOI
Schmid F., Stone B.A., Brownlee R.T., McDougall B.M., Seviour R.J. Structure and Assembly of Epiglucan, the Extracellular (1→ 3; 1→ 6)-β-Glucan Produced by the Fungus Epicoccum nigrum Strain F19. Carbohydr. Res. 2006;341:365–373. doi: 10.1016/j.carres.2005.10.013. PubMed DOI
Tada R., Adachi Y., Ishibashi K., Ohno N. An Unambiguous Structural Elucidation of a 1, 3-β-d-Glucan Obtained from Liquid-Cultured Grifola Frondosa by Solution NMR Experiments. Carbohydr. Res. 2009;344:400–404. doi: 10.1016/j.carres.2008.11.005. PubMed DOI
Kobayashi H., Matsunaga K., Oguchi Y. Antimetastatic Effects of PSK (Krestin), a Protein-Bound Polysaccharide Obtained from Basidiomycetes: An Overview. Cancer Epidemiol. Biomarkers Prev. 1995;4:275–281. PubMed
Zhang Y., Li S., Wang X., Zhang L., Cheung P.C. Advances in Lentinan: Isolation, Structure, Chain Conformation and Bioactivities. Food Hydrocol. 2011;25:196–206. doi: 10.1016/j.foodhyd.2010.02.001. DOI
Misaki A., Kawaguchi K., Miyaji H., Nagae H., Hokkoku S., Kakuta M., Sasaki T. Structure of Pestalotan, a Highly Branched (1→ 3)-β-D-Glucan Elaborated by Pestalotia Sp. 815, and the Enhancement of Its Antitumor Activity by Polyol Modification of the Side Chains. Carbohydr. Res. 1984;129:209–227. doi: 10.1016/0008-6215(84)85313-6. PubMed DOI
Karácsonyi Š., Kuniak L. Polysaccharides of Pleurotus ostreatus: Isolation and Structure of Pleuran, an Alkali-Insoluble β-d-Glucan. Carbohydr. Polym. 1994;24:107–111. doi: 10.1016/0144-8617(94)90019-1. DOI
Zhang Y., Kong H., Fang Y., Nishinari K., Phillips G.O. Schizophyllan: A Review on Its Structure, Properties, Bioactivities and Recent Developments. Bioact. Carbohydr. Diet. Fibre. 2013;1:53–71. doi: 10.1016/j.bcdf.2013.01.002. DOI
Coviello T., Palleschi A., Grassi M., Matricardi P., Bocchinfuso G., Alhaique F. Scleroglucan: A Versatile Polysaccharide for Modified Drug Delivery. Molecules. 2005;10:6–33. doi: 10.3390/10010006. PubMed DOI PMC
Fizpatrick F.W., DiCarlo F.J. Zymosan. Ann. N. Y. Acad. Sci. 1964;118:235–261. doi: 10.1111/j.1749-6632.1964.tb33982.x. DOI
Khan A.A., Gani A., Khanday F.A., Masoodi F.A. Biological and Pharmaceutical Activities of Mushroom β-Glucan Discussed as a Potential Functional Food Ingredient. Bioact. Carbohydr. Diet. Fibre. 2018;16:1–13. doi: 10.1016/j.bcdf.2017.12.002. DOI
Zielke C., Kosik O., Ainalem M.-L., Lovegrove A., Stradner A., Nilsson L. Characterization of Cereal β-Glucan Extracts from Oat and Barley and Quantification of Proteinaceous Matter. PLoS ONE. 2017;12:e0172034. doi: 10.1371/journal.pone.0172034. PubMed DOI PMC
Zielke C., Stradner A., Nilsson L. Characterization of Cereal β-Glucan Extracts: Conformation and Structural Aspects. Food Hydrocol. 2018;79:218–227. doi: 10.1016/j.foodhyd.2017.12.036. DOI
Ronda F., Perez-Quirce S., Lazaridou A., Biliaderis C.G. Effect of Barley and Oat β-Glucan Concentrates on Gluten-Free Rice-Based Doughs and Bread Characteristics. Food Hydrocol. 2015;48:197–207. doi: 10.1016/j.foodhyd.2015.02.031. DOI
Stewart D., McDougall G. Oat Agriculture, Cultivation and Breeding Targets: Implications for Human Nutrition and Health. Br. J. Nutr. 2014;112:S50–S57. doi: 10.1017/S0007114514002736. PubMed DOI
Angelov A., Yaneva-Marinova T., Gotcheva V. Oats as a Matrix of Choice for Developing Fermented Functional Beverages. J. Food Sci. Technol. 2018;55:2351–2360. doi: 10.1007/s13197-018-3186-y. PubMed DOI PMC
Tsopmo A. Processing and Impact on Active Components in Food. Elsevier; Amsterdam, The Netherlands: 2015. Processing Oats and Bioactive Components; pp. 361–368.
Comino I., de Lourdes Moreno M., Sousa C. Role of Oats in Celiac Disease. World J. Gastroenterol. 2015;21:11825. doi: 10.3748/wjg.v21.i41.11825. PubMed DOI PMC
Sargautiene V., Zariņš Z., Ligere R. Effects of the Modulation Gut Microbiota by Oat β-Glucan on Type 2 Diabetes Mellitus. Int. J. Res. Stud. Biosci. 2015;3:2349–2357.
Noble E.E., Hsu T.M., Kanoski S.E. Gut to Brain Dysbiosis: Mechanisms Linking Western Diet Consumption, the Microbiome, and Cognitive Impairment. Front. Behav. Neurosci. 2017;11:9. doi: 10.3389/fnbeh.2017.00009. PubMed DOI PMC
Gao H., Song R., Li Y., Zhang W., Wan Z., Wang Y., Zhang H., Han S. Effects of Oat Fiber Intervention on Cognitive Behavior in LDLR–/–Mice Modeling Atherosclerosis by Targeting the Microbiome–Gut–Brain Axis. J. Agric. Food Chem. 2020;68:14480–14491. doi: 10.1021/acs.jafc.0c05677. PubMed DOI
Martínez-Villaluenga C., Peñas E. Health Benefits of Oat: Current Evidence and Molecular Mechanisms. Curr. Opin. Food Sci. 2017;14:26–31. doi: 10.1016/j.cofs.2017.01.004. DOI
Schmidt M. Cereal β-glucans: An underutilized health endorsing food ingredient. Crit. Rev. Food Sci. Nutr. 2022;62:3281–3300. doi: 10.1080/10408398.2020.1864619. PubMed DOI
Izydorczyk M.S. Carbohydrates in Food. CRC Press; Boca Raton, FL, USA: 2017. Functional Properties of Cereal Cell Wall Polysaccharides; pp. 215–278.
Lazaridou A., Biliaderis C.G. Molecular Aspects of Cereal β-Glucan Functionality: Physical Properties, Technological Applications and Physiological Effects. J. Cereal Sci. 2007;46:101–118. doi: 10.1016/j.jcs.2007.05.003. DOI
Atanasov J., Schloermann W., Trautvetter U., Glei M. The Effects of β-Glucans on Intestinal Health. Ernahr. Umsch. 2020;67:52–59.
Mathews R., Kamil A., Chu Y. Global Review of Heart Health Claims for Oat β-Glucan Products. Nutr. Rev. 2020;78:78–97. doi: 10.1093/nutrit/nuz069. PubMed DOI
DJukić N.H., Knežević D.S. Molecular Characterization and Genetic Diversity Analysis β-Glucan Content Variability in Grain of Oat (Avena sativa L.) Genetika. 2014;46:529–536. doi: 10.2298/GENSR1402529D. DOI
Ciecierska A., Drywien M., Hamulka J., Sadkowski T. Nutraceutical Functions of β-Glucans in Human Nutrition. Roczniki Państwowego Zakl. Hig. 2019;70:315–324. PubMed
Wang Q., Sheng X., Shi A., Hu H., Yang Y., Liu L., Fei L., Liu H. β-Glucans: Relationships between Modification, Conformation and Functional Activities. Molecules. 2017;22:257. doi: 10.3390/molecules22020257. PubMed DOI PMC
Kaur R., Sharma M., Ji D., Xu M., Agyei D. Structural Features, Modification, and Functionalities of β-Glucan. Fibers. 2019;8:1. doi: 10.3390/fib8010001. DOI
Suchecka D., Gromadzka-Ostrowska J., Żyla E., Harasym J., Oczkowski M. Selected Physiological Activities and Health Promoting Properties of Cereal β-Glucans. A Review. J. Anim. Feed Sci. 2017;26:183–191. doi: 10.22358/jafs/70066/2017. DOI
Bhosale S., Singru S., Khismatrao D. Oats: Prospects and Challenges in India. US Nat. Libr. Med. Enlist. J. 2022;8:15–155.
El Khoury D., Cuda C., Luhovyy B.L., Anderson G.H. Beta glucan: Health benefits in obesity and metabolic syndrome. J. Nutr. Metab. 2012;2012:851362. doi: 10.1155/2012/851362. PubMed DOI PMC
Bacic A., Fincher G.B., Stone B., editors. Chemistry, Biochemistry, and Biology of 1-3 Beta Glucans and Related Polysaccharides. Academic Press; Cambridge, MA, USA: 2009. pp. 1–350.
Pérez-Quirce S., Lazaridou A., Biliaderis C.G., Ronda F. Effect of β-Glucan Molecular Weight on Rice Flour Dough Rheology, Quality Parameters of Breads and in Vitro Starch Digestibility. LWT—Food Sci. Technol. 2017;82:446–453. doi: 10.1016/j.lwt.2017.04.065. DOI
Zielke C., Lu Y., Nilsson L. Aggregation and Microstructure of Cereal β-Glucan and Its Association with Other Biomolecules. Colloids Surf. A Physicochem. Eng. Asp. 2019;560:402–409. doi: 10.1016/j.colsurfa.2018.10.042. DOI
Rose D.J. Impact of Whole Grains on the Gut Microbiota: The next Frontier for Oats? Br. J. Nutr. 2014;112:S44–S49. doi: 10.1017/S0007114514002244. PubMed DOI
Rebello C.J., Johnson W.D., Martin C.K., Han H., Chu Y.-F., Bordenave N., van Klinken B.J.W., O’Shea M., Greenway F.L. Instant Oatmeal Increases Satiety and Reduces Energy Intake Compared to a Ready-to-Eat Oat-Based Breakfast Cereal: A Randomized Crossover Trial. J. Am. Coll. Nutr. 2016;35:41–49. doi: 10.1080/07315724.2015.1032442. PubMed DOI PMC
Karp S., Wyrwisz J., Kurek M.A. The Impact of Different Levels of Oat β-Glucan and Water on Gluten-Free Cake Rheology and Physicochemical Characterisation. J. Food Sci. Technol. 2020;57:3628–3638. doi: 10.1007/s13197-020-04395-5. PubMed DOI PMC
Brummer Y., Defelice C., Wu Y., Kwong M., Wood P.J., Tosh S.M. Textural and Rheological Properties of Oat Beta-Glucan Gels with Varying Molecular Weight Composition. J. Agric. Food Chem. 2014;62:3160–3167. doi: 10.1021/jf405131d. PubMed DOI
Murphy E.A., Davis J.M., Carmichael M.D. Immune Modulating Effects of β-Glucan. Curr. Opin. Clin. Nutr. Metabol. Care. 2010;13:656–661. doi: 10.1097/MCO.0b013e32833f1afb. PubMed DOI
Rieder A., Samuelsen A.B. Do Cereal Mixed-Linked β-Glucans Possess Immune-Modulating Activities? Mol. Nutr. Food Res. 2012;56:536–547. doi: 10.1002/mnfr.201100723. PubMed DOI
Kremmyda A., MacNaughtan W., Arapoglou D., Eliopoulos C., Metafa M., Harding S.E., Israilides C. The detection, purity and structural properties of partially soluble mushroom and cereal β-d-glucans: A solid-state NMR study. Carbohydr. Polym. 2021;266:118103. doi: 10.1016/j.carbpol.2021.118103. PubMed DOI
Novák M., Větvička V. β-Glucans, History, and the Present: Immunomodulatory Aspects and Mechanisms of Action. J. Immunotoxicol. 2008;5:47–57. doi: 10.1080/15476910802019045. PubMed DOI
Lee D.H., Kim H.W. Innate Immunity Induced by Fungal β-Glucans via Dectin-1 Signaling Pathway. Int. J. Med. Mushrooms. 2014;16:1–16. doi: 10.1615/IntJMedMushr.v16.i1.10. PubMed DOI
Choromanska A., Lubinska S., Szewczyk A., Saczko J., Kulbacka J. Mechanisms of Antimelanoma Effect of Oat β-Glucan Supported by Electroporation. Bioelectrochemistry. 2018;123:255–259. doi: 10.1016/j.bioelechem.2018.06.005. PubMed DOI
Choromanska A., Kulbacka J., Rembialkowska N., Pilat J., Oledzki R., Harasym J., Saczko J. Anticancer Properties of Low Molecular Weight Oat Beta-Glucan—An in Vitro Study. Int. J. Biol. Macromol. 2015;80:23–28. doi: 10.1016/j.ijbiomac.2015.05.035. PubMed DOI
Mikkelsen M.S., Jespersen B.M., Mehlsen A., Engelsen S.B., Frøkiær H. Cereal β-Glucan Immune Modulating Activity Depends on the Polymer Fine Structure. Food Res. Int. 2014;62:829–836. doi: 10.1016/j.foodres.2014.04.021. DOI
Yun C.-H., Estrada A., Van Kessel A., Park B.-C., Laarveld B. β-Glucan, Extracted from Oat, Enhances Disease Resistance against Bacterial and Parasitic Infections. FEMS Immunol. Med. Microbiol. 2003;35:67–75. doi: 10.1016/S0928-8244(02)00460-1. PubMed DOI
Murphy E.A., Davis J.M., Carmichael M.D., Mayer E.P., Ghaffar A. Benefits of Oat β-Glucan and Sucrose Feedings on Infection and Macrophage Antiviral Resistance Following Exercise Stress. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009;297:R1188–R1194. doi: 10.1152/ajpregu.00396.2009. PubMed DOI
Cheung N.-K.V., Modak S., Vickers A., Knuckles B. Orally Administered β-Glucans Enhance Anti-Tumor Effects of Monoclonal Antibodies. Cancer Immunol. Immunother. 2002;51:557–564. doi: 10.1007/s00262-002-0321-3. PubMed DOI PMC
Gamel T.H., Abdel-Aal E.-S.M., Ames N.P., Duss R., Tosh S.M. Enzymatic Extraction of β-Glucan from Oat Bran Cereals and Oat Crackers and Optimization of Viscosity Measurement. J. Cereal Sci. 2014;59:33–40. doi: 10.1016/j.jcs.2013.10.011. DOI
Wani S.M., Gani A., Mir S.A., Masoodi F.A., Khanday F.A. β-Glucan: A Dual Regulator of Apoptosis and Cell Proliferation. Int. J. Biol. Macromol. 2021;182:1229–1237. doi: 10.1016/j.ijbiomac.2021.05.065. PubMed DOI
Zhang Y., Liu X., Zhao J., Wang J., Song Q., Zhao C. The Phagocytic Receptors of β-Glucan. Int. J. Biol. Macromol. 2022;205:430–441. doi: 10.1016/j.ijbiomac.2022.02.111. PubMed DOI
Li X., Luo H., Ye Y., Chen X., Zou Y., Duan J., Xiang D. Β-glucan, a Dectin-1 Ligand, Promotes Macrophage M1 Polarization via NF-κB/Autophagy Pathway. Int. J. Oncol. 2019;54:271–282. PubMed
Sahasrabudhe N.M., Tian L., van den Berg M., Bruggeman G., Bruininx E., Schols H.A., Faas M.M., de Vos P. Endo-Glucanase Digestion of Oat β-Glucan Enhances Dectin-1 Activation in Human Dendritic Cells. J. Funct. Foods. 2016;21:104–112. doi: 10.1016/j.jff.2015.11.037. DOI
Shoukat M., Sorrentino A. Cereal β-Glucan: A Promising Prebiotic Polysaccharide and Its Impact on the Gut Health. Int. J. Food Sci. 2021;56:2088–2097. doi: 10.1111/ijfs.14971. DOI
Maheshwari G., Sowrirajan S., Joseph B. Extraction and Isolation of β-Glucan from Grain Sources—A Review. J. Food Sci. 2017;82:1535–1545. doi: 10.1111/1750-3841.13765. PubMed DOI
Mitra S., Lahnstein J., James A.P., Fenton H.K., Burton R.A., Cato L., Solah V.A. Effect of Processing on Viscosity and Molecular Weight of (1,3)(1,4)-β-Glucan in Western Australian Oat Cultivars. Cereal Chem. 2017;94:625–632. doi: 10.1094/CCHEM-11-16-0268-R. DOI
Dotsenko G., Andersson A.A.M., Andersson R. Material Disintegration Affects Enzymatic Determination of β-Glucan in Barley and Oats. J. Cereal Sci. 2019;88:138–144. doi: 10.1016/j.jcs.2019.05.018. DOI
Decker E.A., Rose D.J., Stewart D. Processing of Oats and the Impact of Processing Operations on Nutrition and Health Benefits. Br. J. Nutr. 2014;112:S58–S64. doi: 10.1017/S000711451400227X. PubMed DOI
de Souza N.L., Bartz J., da Rosa Zavareze E., de Oliveira P.D., da Silva W.S.V., Alves G.H., Dias A.R.G. Functional, Thermal and Rheological Properties of Oat β-Glucan Modified by Acetylation. Food Chem. 2015;178:243–250. doi: 10.1016/j.foodchem.2015.01.079. PubMed DOI
Andersson A.A.M., Börjesdotter D. Effects of Environment and Variety on Content and Molecular Weight of β-Glucan in Oats. J. Cereal Sci. 2011;54:122–128. doi: 10.1016/j.jcs.2011.03.003. DOI
Ekström L.M.N.K., Henningsson Bok E.A.E., Sjöö M.E., Östman E.M. Oat β-Glucan Containing Bread Increases the Glycaemic Profile. J. Funct. Foods. 2017;32:106–111. doi: 10.1016/j.jff.2017.02.027. DOI
Mejía S.M.V., de Francisco A., Bohrer B.M. A Comprehensive Review on Cereal β-Glucan: Extraction, Characterization, Causes of Degradation, and Food Application. Crit. Rev. Food Sci. Nutr. 2020;60:3693–3704. doi: 10.1080/10408398.2019.1706444. PubMed DOI
Gamel T.H., Abdel-Aal E.-S.M., Tosh S.M. Effect of Yeast-Fermented and Sour-Dough Making Processes on Physicochemical Characteristics of β-Glucan in Whole Wheat/Oat Bread. LWT—Food Sci. Technol. 2015;60:78–85. doi: 10.1016/j.lwt.2014.07.030. DOI
Wang X., Storsley J., Thandapilly S.J., Ames N. Effects of Processing, Cultivar, and Environment on the Physicochemical Properties of Oat β-Glucan. Cereal Chem. 2016;93:402–408. doi: 10.1094/CCHEM-12-15-0245-R. DOI
Roubroeks J.P., Andersson R., Mastromauro D.I., Christensen B.E., Åman P. Molecular Weight, Structure and Shape of Oat (1→3),(1→4)-β-d-Glucan Fractions Obtained by Enzymatic Degradation with (1→4)-β-d-Glucan 4-Glucanohydrolase from Trichoderma reesei. Carbohydr. Polym. 2001;46:275–285. doi: 10.1016/S0144-8617(00)00329-5. DOI
Bae I.Y., Lee S., Kim S.M., Lee H.G. Effect of Partially Hydrolyzed Oat β-Glucan on the Weight Gain and Lipid Profile of Mice. Food Hydrocoll. 2009;23:2016–2021. doi: 10.1016/j.foodhyd.2009.03.016. DOI
Immerstrand T., Andersson K., Wange C., Rascon A., Hellstrand P., Nyman M., Cui S.W., Bergenståhl B., Trägårdh C., Öste R. Effects of oat bran, processed to different molecular weights of β-glucan, on plasma lipids and caecal formation of SCFA in mice. Brit. J. Nutr. 2010;104:364–373. doi: 10.1017/S0007114510000553. PubMed DOI
Pradeep N.S., Edison L.K., editors. Microbial Beta Glucanases: Molecular Structure, Functions and Applications. Springer Nature; Berlin/Heidelberg, Germany: 2022. pp. 1–195.
Chaari F., Belghith-Fendri L., Zaouri-Ellouzi S., Driss D., Blibech M., Kallel F., Bouaziz F., Mehdi Y., Ellouz-Chaabouni S., Ghorbel R. Antibacterial and antioxidant properties of mixed linkage β-oligosaccharides from extracted β-glucan hydrolysed by Penicillium occitanis EGL lichenase. Nat. Product Res. 2016;30:1353–1359. doi: 10.1080/14786419.2015.1056185. PubMed DOI
Yoo H.-U., Ko M.-J., Chung M.-S. Hydrolysis of Beta-Glucan in Oat Flour during Subcritical-Water Extraction. Food Chem. 2020;308:125670. doi: 10.1016/j.foodchem.2019.125670. PubMed DOI
Harasym J., Suchecka D., Gromadzka-Ostrowska J. Effect of Size Reduction by Freeze-Milling on Processing Properties of Beta-Glucan Oat Bran. J. Cereal Sci. 2015;61:119–125. doi: 10.1016/j.jcs.2014.10.010. DOI
Rosa-Sibakov N., de Oliveira Carvalho M.J., Lille M., Nordlund E. Impact of Enzymatic Hydrolysis and Microfluidization on the Techno-Functionality of Oat Bran in Suspension and Acid Milk Gel Models. Foods. 2022;11:228. doi: 10.3390/foods11020228. PubMed DOI PMC
Shah A., Masoodi F.A., Gani A., Ashwar B.A. Effect of γ-Irradiation on Antioxidant and Antiproliferative Properties of Oat β-Glucan. Radiat. Phys. Chem. 2015;117:120–127. doi: 10.1016/j.radphyschem.2015.06.022. DOI
Hussain P.R., Rather S.A., Suradkar P.P. Structural Characterization and Evaluation of Antioxidant, Anticancer and Hypoglycemic Activity of Radiation Degraded Oat (Avena sativa) β- Glucan. Radiat. Phys. Chem. 2018;144:218–230. doi: 10.1016/j.radphyschem.2017.08.018. DOI
Sun T., Li J., Qin Y., Xie J., Xue B., Li X., Gan J., Bian X., Shao Z. Rheological and Functional Properties of Oat β-Glucan with Different Molecular Weight. J. Mol. Struct. 2020;1209:127944. doi: 10.1016/j.molstruc.2020.127944. DOI
Shin M.S., Lee S., Lee K.Y., Lee H.G. Structural and Biological Characterization of Aminated-Derivatized Oat β-Glucan. J. Agric. Food Chem. 2005;53:5554–5558. doi: 10.1021/jf050273j. PubMed DOI
Song X., Hubbe M.A. Enhancement of Paper Dry Strength by Carboxymethylated β-d-Glucan from Oat as Additive. Holzforschung. 2014;68:257–263. doi: 10.1515/hf-2013-0108. DOI
Chang Y.J., Lee S., Yoo M.A., Lee H.G. Structural and Biological Characterization of Sulfated-Derivatized Oat β-Glucan. J. Agric. Food Chem. 2006;54:3815–3818. doi: 10.1021/jf060243w. PubMed DOI
Wu Z., Ming J., Gao R., Wang Y., Liang Q., Yu H., Zhao G. Characterization and Antioxidant Activity of the Complex of Tea Polyphenols and Oat β-Glucan. J. Agric. Food Chem. 2011;59:10737–10746. doi: 10.1021/jf202722w. PubMed DOI
Li Y.-C., Luo Y., Meng F.-B., Li J., Chen W.-J., Liu D.-Y., Zou L.-H., Zhou L. Preparation and Characterization of Feruloylated Oat β-Glucan with Antioxidant Activity and Colon-Targeted Delivery. Carbohydr. Polym. 2022;279:119002. doi: 10.1016/j.carbpol.2021.119002. PubMed DOI
Inglett G.E., Chen D. Antioxidant and Pasting Properties of Oat β-Glucan Hydrocolloids. Food Sci. Nutr. 2012;3:827–835.
Hitayezu R., Baakdah M.M., Kinnin J., Henderson K., Tsopmo A. Antioxidant Activity, Avenanthramide and Phenolic Acid Contents of Oat Milling Fractions. J. Cereal Sci. 2015;63:35–40. doi: 10.1016/j.jcs.2015.02.005. DOI
Marasca E., Boulos S., Nyström L. Bile Acid-Retention by Native and Modified Oat and Barley β-Glucan. Carbohydr. Polym. 2020;236:116034. doi: 10.1016/j.carbpol.2020.116034. PubMed DOI
Sun T., Xu H., Zhang H., Ding H., Cui S., Xie J., Xue B., Hua X. Maillard Reaction of Oat β-Glucan and the Rheological Property of Its Amino Acid/Peptide Conjugates. Food Hydrocol. 2018;76:30–34. doi: 10.1016/j.foodhyd.2017.07.025. DOI
Żyła E., Dziendzikowska K., Gajewska M., Wilczak J., Harasym J., Gromadzka-Ostrowska J. Beneficial Effects of Oat β-Glucan Dietary Supplementation in Colitis Depend on Its Molecular Weight. Molecules. 2019;24:3591. doi: 10.3390/molecules24193591. PubMed DOI PMC
Żyła E., Dziendzikowska K., Kamola D., Wilczak J., Sapierzyński R., Harasym J., Gromadzka-Ostrowska J. Anti-Inflammatory Activity of Oat Beta-Glucans in a Crohn’s Disease Model: Time- and Molar Mass-Dependent Effects. Int. J. Mol. Sci. 2021;22:4485. doi: 10.3390/ijms22094485. PubMed DOI PMC
Kopiasz Ł., Dziendzikowska K., Gajewska M., Wilczak J., Harasym J., Żyła E., Kamola D., Oczkowski M., Królikowski T., Gromadzka-Ostrowska J. Time-Dependent Indirect Antioxidative Effects of Oat β-Glucans on Peripheral Blood Parameters in the Animal Model of Colon Inflammation. Antioxidants. 2020;9:375. doi: 10.3390/antiox9050375. PubMed DOI PMC
Kopiasz Ł., Dziendzikowska K., Gajewska M., Oczkowski M., Majchrzak-Kuligowska K., Królikowski T., Gromadzka-Ostrowska J. Effects of Dietary Oat β-Glucans on Colon Apoptosis and Autophagy through TLRs and Dectin-1 Signaling Pathways—Crohn’s Disease Model Study. Nutrients. 2021;13:321. doi: 10.3390/nu13020321. PubMed DOI PMC
Kopiasz Ł., Dziendzikowska K., Gromadzka-Ostrowska J. Colon Expression of Chemokines and Their Receptors Depending on the Stage of Colitis and Oat β-Glucan Dietary Intervention—Crohn’s Disease Model Study. Int. J. Mol. Sci. 2022;23:1406. doi: 10.3390/ijms23031406. PubMed DOI PMC
Wilczak J., Błaszczyk K., Kamola D., Gajewska M., Harasym J.P., Jałosińska M., Gudej S., Suchecka D., Oczkowski M., Gromadzka-Ostrowska J. The Effect of Low or High Molecular Weight Oat β-Glucans on the Inflammatory and Oxidative Stress Status in the Colon of Rats with LPS-Induced Enteritis. Food Funct. 2015;6:590–603. doi: 10.1039/C4FO00638K. PubMed DOI
Błaszczyk K., Gajewska M., Wilczak J., Kamola D., Majewska A., Harasym J., Gromadzka-Ostrowska J. Oral Administration of Oat β-Glucan Preparations of Different Molecular Weight Results in Regulation of Genes Connected with Immune Response in Peripheral Blood of Rats with LPS-Induced Enteritis. Eur. J. Nutr. 2019;58:2859–2873. doi: 10.1007/s00394-018-1838-3. PubMed DOI PMC
Suchecka D., Harasym J.P., Wilczak J., Gajewska M., Oczkowski M., Gudej S., Błaszczyk K., Kamola D., Filip R., Gromadzka-Ostrowska J. Antioxidative and Anti-Inflammatory Effects of High β-Glucan Concentration Purified Aqueous Extract from Oat in Experimental Model of LPS-Induced Chronic Enteritis. J. Funct. Foods. 2015;14:244–254. doi: 10.1016/j.jff.2014.12.019. DOI
Suchecka D., Błaszczyk K., Harasym J., Gudej S., Wilczak J., Gromadzka-Ostrowska J. Impact of Purified Oat 1-3,1-4-β-d-Glucan of Different Molecular Weight on Alleviation of Inflammation Parameters during Gastritis. J. Funct. Foods. 2017;28:11–18. doi: 10.1016/j.jff.2016.10.028. DOI
Gudej S., Filip R., Harasym J., Wilczak J., Dziendzikowska K., Oczkowski M., Jałosińska M., Juszczak M., Lange E., Gromadzka-Ostrowska J. Clinical Outcomes after Oat β-Glucans Dietary Treatment in Gastritis Patients. Nutrients. 2021;13:2791. doi: 10.3390/nu13082791. PubMed DOI PMC
Ferguson J.J.A., Stojanovski E., MacDonald-Wicks L., Garg M.L. High Molecular Weight Oat β-Glucan Enhances Lipid-Lowering Effects of Phytosterols. A Randomised Controlled Trial. Clin. Nutr. 2020;39:80–89. doi: 10.1016/j.clnu.2019.02.007. PubMed DOI
Mäkelä N., Brinck O., Sontag-Strohm T. Viscosity of β-Glucan from Oat Products at the Intestinal Phase of the Gastrointestinal Model. Food Hydrocoll. 2020;100:105422. doi: 10.1016/j.foodhyd.2019.105422. DOI
Mäkelä N., Rosa-Sibakov N., Wang Y.-J., Mattila O., Nordlund E., Sontag-Strohm T. Role of β-Glucan Content, Molecular Weight and Phytate in the Bile Acid Binding of Oat β-Glucan. Food Chem. 2021;358:129917. doi: 10.1016/j.foodchem.2021.129917. PubMed DOI
Bae I.Y., Kim S.M., Lee S., Lee H.G. Effect of Enzymatic Hydrolysis on Cholesterol-Lowering Activity of Oat β-Glucan. New Biotechnol. 2010;27:85–88. doi: 10.1016/j.nbt.2009.11.003. PubMed DOI
Yu J., Xia J., Yang C., Pan D., Xu D., Sun G., Xia H. Effects of Oat β-Glucan Intake on Lipid Profiles in Hypercholesterolemic Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2022;14:2043. doi: 10.3390/nu14102043. PubMed DOI PMC
Hakkola S., Nylund L., Rosa-Sibakov N., Yang B., Nordlund E., Pahikkala T., Kalliomäki M., Aura A.-M., Linderborg K.M. Effect of Oat β-Glucan of Different Molecular Weights on Fecal Bile Acids, Urine Metabolites and Pressure in the Digestive Tract—A Human Cross over Trial. Food Chem. 2021;342:128219. doi: 10.1016/j.foodchem.2020.128219. PubMed DOI
Rosa-Sibakov N., Mäkelä N., Aura A.-M., Sontag-Strohm T., Nordlund E. In Vitro Study for Investigating the Impact of Decreasing the Molecular Weight of Oat Bran Dietary Fibre Components on the Behaviour in Small and Large Intestine. Food Funct. 2020;11:6680–6691. doi: 10.1039/D0FO00367K. PubMed DOI
Shen R.-L., Wang Z., Dong J.-L., Xiang Q.-S., Liu Y.-Q. Effects of Oat Soluble and Insoluble β-Glucan on 1,2-Dimethylhydrazine-Induced Early Colon Carcinogenesis in Mice. Food Agric. Immunol. 2016;27:657–666. doi: 10.1080/09540105.2016.1148664. DOI
Bozbulut R., Sanlier N. Promising Effects of β-Glucans on Glyceamic Control in Diabetes. Trends Food Sci. Technol. 2019;83:159–166. doi: 10.1016/j.tifs.2018.11.018. DOI
Rieder A., Knutsen S.H., Fernandez A.S., Ballance S. At a High Dose Even Partially Degraded β-Glucan with Decreased Solubility Significantly Reduced the Glycaemic Response to Bread. Food Funct. 2019;10:1529–1539. doi: 10.1039/C8FO02098A. PubMed DOI
Liu M., Zhang Y., Zhang H., Hu B., Wang L., Qian H., Qi X. The Anti-Diabetic Activity of Oat β-d-Glucan in Streptozotocin–Nicotinamide Induced Diabetic Mice. Int. J. Biol. Macromol. 2016;91:1170–1176. doi: 10.1016/j.ijbiomac.2016.06.083. PubMed DOI
Regand A., Chowdhury Z., Tosh S.M., Wolever T.M.S., Wood P. The Molecular Weight, Solubility and Viscosity of Oat β-Glucan Affect Human Glycemic Response by Modifying Starch Digestibility. Food Chem. 2011;129:297–304. doi: 10.1016/j.foodchem.2011.04.053. PubMed DOI
Noronha J.C., Zurbau A., Wolever T.M.S. The Importance of Molecular Weight in Determining the Minimum Dose of Oat β-Glucan Required to Reduce the Glycaemic Response in Healthy Subjects without Diabetes: A Systematic Review and Meta-Regression Analysis. Eur. J. Clin. Nutr. 2022 doi: 10.1038/s41430-022-01176-5. PubMed DOI PMC
Andrade E.F., Orlando D.R. β-Glucans as a Therapeutic Agent: Literature Review. Madridge J. Food Technol. 2018;3:154–158. doi: 10.18689/mjft-1000123. DOI
Thies F., Masson L.F., Boffetta P., Kris-Etherton P. Oats and CVD Risk Markers: A Systematic Literature Review. Br. J. Nutr. 2014;112:S19–S30. doi: 10.1017/S0007114514002281. PubMed DOI
Zaremba S.M.M., Gow I.F., Drummond S., McCluskey J.T., Steinert R.E. Effects of Oat β-Glucan Consumption at Breakfast on Ad Libitum Eating, Appetite, Glycemia, Insulinemia and GLP-1 Concentrations in Healthy Subjects. Appetite. 2018;128:197–204. doi: 10.1016/j.appet.2018.06.019. PubMed DOI
Wolever T.M.S., Mattila O., Rosa-Sibakov N., Tosh S.M., Jenkins A.L., Ezatagha A., Duss R., Steinert R.E. Effect of Varying Molecular Weight of Oat β-Glucan Taken Just before Eating on Postprandial Glycemic Response in Healthy Humans. Nutrients. 2020;12:2275. doi: 10.3390/nu12082275. PubMed DOI PMC
Zurbau A., Noronha J.C., Khan T.A., Sievenpiper J.L., Wolever T. The effect of oat β-glucan on postprandial blood glucose and insulin responses: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2021;75:1540–1554. doi: 10.1038/s41430-021-00875-9. PubMed DOI PMC
Zhang Y., Zhang H., Wang L., Qian H., Qi X., Ding X., Hu B., Li J. The Effect of Oat β-Glucan on in Vitro Glucose Diffusion and Glucose Transport in Rat Small Intestine. J. Sci. Food Agric. 2016;96:484–491. doi: 10.1002/jsfa.7114. PubMed DOI
Henrion M., Francey C., Lê K.-A., Lamothe L. Cereal β-Glucans: The Impact of Processing and How It Affects Physiological Responses. Nutrients. 2019;11:1729. doi: 10.3390/nu11081729. PubMed DOI PMC
Du B., Xu B. Oxygen Radical Absorbance Capacity (ORAC) and Ferric Reducing Antioxidant Power (FRAP) of β-Glucans from Different Sources with Various Molecular Weight. Bioact. Carbohydr. Diet. Fibre. 2014;3:11–16. doi: 10.1016/j.bcdf.2013.12.001. DOI
Błaszczyk K., Wilczak J., Harasym J., Gudej S., Suchecka D., Królikowski T., Lange E., Gromadzka-Ostrowska J. Impact of Low and High Molecular Weight Oat β-Glucan on Oxidative Stress and Antioxidant Defense in Spleen of Rats with LPS Induced Enteritis. Food Hydrocoll. 2015;51:272–280. doi: 10.1016/j.foodhyd.2015.05.025. DOI
Suchecka D., Harasym J., Wilczak J., Gromadzka-Ostrowska J. Hepato- and Gastro- Protective Activity of Purified Oat 1–3, 1–4-β-d-Glucans of Different Molecular Weight. Int. J. Biol. Macromol. 2016;91:1177–1185. doi: 10.1016/j.ijbiomac.2016.06.062. PubMed DOI
Staka A., Bodnieks E., Puķītis A. Impact of Oat-Based Products on Human Gastrointestinal Tract. Proc. Latv. Acad. Sci. B Nat. Exact Appl. Sci. 2015;69:145–151. doi: 10.1515/prolas-2015-0021. DOI
Bai J., Li T., Zhang W., Fan M., Qian H., Li Y., Wang L. Systematic Assessment of Oat β-Glucan Catabolism during in Vitro Digestion and Fermentation. Food Chem. 2021;348:129116. doi: 10.1016/j.foodchem.2021.129116. PubMed DOI
Dong J., Yang M., Zhu Y., Shen R., Zhang K. Comparative Study of Thermal Processing on the Physicochemical Properties and Prebiotic Effects of the Oat β-Glucan by in Vitro Human Fecal Microbiota Fermentation. Food Res. Int. 2020;138:109818. doi: 10.1016/j.foodres.2020.109818. PubMed DOI
Jayachandran M., Chen J., Chung S.S.M., Xu B. A Critical Review on the Impacts of β-Glucans on Gut Microbiota and Human Health. J. Nutr. Biochem. 2018;61:101–110. doi: 10.1016/j.jnutbio.2018.06.010. PubMed DOI
Priyadarshini M., Kotlo K.U., Dudeja P.K., Layden B.T. Role of Short Chain Fatty Acid Receptors in Intestinal Physiology and Pathophysiology. Compr. Physiol. 2018;8:1091–1115. PubMed PMC
Dong J., Yu X., Dong L., Shen R. In Vitro Fermentation of Oat β-Glucan and Hydrolysates by Fecal Microbiota and Selected Probiotic Strains. J. Sci. Food Agric. 2017;97:4198–4203. doi: 10.1002/jsfa.8292. PubMed DOI
Lazaridou A., Serafeimidou A., Biliaderis C.G., Moschakis T., Tzanetakis N. Structure Development and Acidification Kinetics in Fermented Milk Containing Oat β-Glucan, a Yogurt Culture and a Probiotic Strain. Food Hydrocoll. 2014;39:204–214. doi: 10.1016/j.foodhyd.2014.01.015. DOI
Bai J., Li Y., Zhang W., Fan M., Qian H., Zhang H., Qi X., Wang L. Source of Gut Microbiota Determines Oat β-Glucan Degradation and Short Chain Fatty Acid-Producing Pathway. Food Biosci. 2021;41:101010. doi: 10.1016/j.fbio.2021.101010. DOI
Akkerman R., Logtenberg M.J., An R., Van Den Berg M.A., de Haan B.J., Faas M.M., Zoetendal E., de Vos P., Schols H.A. Endo-1,3(4)-β-Glucanase-Treatment of Oat β-Glucan Enhances Fermentability by Infant Fecal Microbiota, Stimulates Dectin-1 Activation and Attenuates Inflammatory Responses in Immature Dendritic Cells. Nutrients. 2020;12:1660. doi: 10.3390/nu12061660. PubMed DOI PMC
Luo Z., Ma L., Zhou T., Huang Y., Zhang L., Du Z., Yong K., Yao X., Shen L., Yu S., et al. Beta-Glucan Alters Gut Microbiota and Plasma Metabolites in Pre-Weaning Dairy Calves. Metabolites. 2022;12:687. doi: 10.3390/metabo12080687. PubMed DOI PMC
Vetvicka V., Vetvickova J. Glucans and Cancer: Comparison of Commercially Available β-Glucans—Part IV. Anticancer Res. 2018;38:1327–1333. PubMed
Shah A., Gani A., Masoodi F.A., Wani S.M., Ashwar B.A. Structural, Rheological and Nutraceutical Potential of β-Glucan from Barley and Oat. Bioact. Carbohydr. Diet. Fibre. 2017;10:10–16. doi: 10.1016/j.bcdf.2017.03.001. DOI
Baldassano S., Accardi G., Vasto S. Beta-Glucans and Cancer: The Influence of Inflammation and Gut Peptide. Eur. J. Med. Chem. 2017;142:486–492. doi: 10.1016/j.ejmech.2017.09.013. PubMed DOI
Parzonko A., Makarewicz-Wujec M., Jaszewska E., Harasym J., Kozłowska-Wojciechowska M. Pro-Apoptotic Properties of (1,3)(1,4)-β-d-Glucan from Avena Sativa on Human Melanoma HTB-140 Cells in Vitro. Int. J. Biol. Macromol. 2015;72:757–763. doi: 10.1016/j.ijbiomac.2014.09.033. PubMed DOI
Choromanska A., Kulbacka J., Harasym J., Oledzki R., Szewczyk A., Saczko J. High- and Low-Molecular Weight Oat Beta-Glucan Reveals Antitumor Activity in Human Epithelial Lung Cancer. Pathol. Oncol. Res. 2018;24:583–592. doi: 10.1007/s12253-017-0278-3. PubMed DOI PMC
Choromańska A., Kulbacka J., Harasym J., Dubińska-Magiera M., Saczko J. Anticancer Activity of Oat β-Glucan in Combination with Electroporation on Human Cancer Cells. Acta Pol. Pharm. 2017;74:616–623. PubMed
Zhang M., Chun L., Sandoval V., Graor H., Myers J., Nthale J., Rauhe P., Senders Z., Choong K., Huang A.Y., et al. Systemic Administration of β-Glucan of 200 KDa Modulates Melanoma Microenvironment and Suppresses Metastatic Cancer. Oncoimmunology. 2018;7:e1387347. doi: 10.1080/2162402X.2017.1387347. PubMed DOI PMC
Brummer Y., Duss R., Wolever T.M., Tosh S.M. Glycemic Response to Extruded Oat Bran Cereals Processed to Vary in Molecular Weight. Cereal Chem. 2012;89:255–261. doi: 10.1094/CCHEM-03-12-0031-R. DOI
Kwong M.G., Wolever T.M., Brummer Y., Tosh S.M. Attenuation of Glycemic Responses by Oat β-Glucan Solutions and Viscoelastic Gels is Dependent on Molecular Weight Distribution. Food Funct. 2013;4:401–408. doi: 10.1039/C2FO30202K. PubMed DOI
Mikkilä L. Master’s Thesis. Turku University of Applied Sciences; Turku, Finland: 2022. Oat in Fruit Juice Drink: The Behavior of Oat.
Naumann E., VaN Rees A.B., Önning G., Öste R., Wydra M., Mensink R.P. β-Glucan incorporated into a fruit drink effectively lowers serum LDL-cholesterol concentrations. Am. J. Clin. Nutr. 2006;83:601–605. doi: 10.1093/ajcn.83.3.601. PubMed DOI
Liu S., Zhao L., Zhang J., Wang L., Liu H. Functional Drink Powders from Vertical-stone-milled Oat and Highland Barley with High Dietary-fiber Levels Decrease the Postprandial Glycemic Response. J. Funct. Foods. 2021;83:104548. doi: 10.1016/j.jff.2021.104548. DOI
Kurek M.A., Moczkowska M., Karp S., Horbańczuk O.K., Rodak E. Application of Rich in β-Glucan Flours and Preparations in Bread Baked from Frozen Dough. Food Sci. Technol. Int. 2020;26:53–64. PubMed
Tosh S.M., Brummer Y., Wolever T.M., Wood P.J. Glycemic Response to Oat Bran Muffins Treated to Vary Molecular Weight of β-Glucan. Cereal Chem. 2008;85:211–217. doi: 10.1094/CCHEM-85-2-0211. DOI
Åman P., Rimsten L., Andersson R. Molecular Weight Distribution of β-Glucan in Oat-based Foods. Cereal Chem. 2004;81:356–360. doi: 10.1094/CCHEM.2004.81.3.356. DOI
Tosh S.M., Brummer Y., Miller S.S., Regand A., Defelice C., Duss R., Wolever T.M., Wood P.J. Processing Affects the Physicochemical Properties of β-Glucan in Oat Bran Cereal. J. Agric. Food Chem. 2010;58:7723–7730. doi: 10.1021/jf904553u. PubMed DOI
Kim S., Inglett G.E., Liu S.X. Content and Molecular Weight Distribution of Oat β-Glucan in Oatrim, Nutrim, and C-trim Products. Cereal Chem. 2008;85:701–705. doi: 10.1094/CCHEM-85-5-0701. DOI
Hamaker B.R., editor. Technology of Functional Cereal Products. Woodhead Publishing Limited; Cambridge, UK: 2007. pp. 1–568.