Fabrication of Graphene/Molybdenum Disulfide Composites and Their Usage as Actuators for Electrochemical Sensors and Biosensors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
31533260
PubMed Central
PMC6766905
DOI
10.3390/molecules24183374
PII: molecules24183374
Knihovny.cz E-zdroje
- Klíčová slova
- 2D materials, bioanalysis, biomarker, carbon, electrode,
- MeSH
- biosenzitivní techniky * MeSH
- chemické jevy MeSH
- disulfidy chemie MeSH
- elektrochemické techniky * MeSH
- grafit chemie MeSH
- molybden chemie MeSH
- nanokompozity chemie ultrastruktura MeSH
- nanotechnologie MeSH
- techniky syntetické chemie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- disulfidy MeSH
- grafit MeSH
- molybden MeSH
- molybdenum disulfide MeSH Prohlížeč
From the rediscovery of graphene in 2004, the interest in layered graphene analogs has been exponentially growing through various fields of science. Due to their unique properties, novel two-dimensional family of materials and especially transition metal dichalcogenides are promising for development of advanced materials of unprecedented functions. Progress in 2D materials synthesis paved the way for the studies on their hybridization with other materials to create functional composites, whose electronic, physical or chemical properties can be engineered for special applications. In this review we focused on recent progress in graphene-based and MoS2 hybrid nanostructures. We summarized and discussed various fabrication approaches and mentioned different 2D and 3D structures of composite materials with emphasis on their advances for electroanalytical chemistry. The major part of this review provides a comprehensive overview of the application of graphene-based materials and MoS2 composites in the fields of electrochemical sensors and biosensors.
Central European Institute of Technology Brno University of Technology Brno CZ 616 00 Czech Republic
Zobrazit více v PubMed
Frindt R.F. Optical absorption of a few unit-cell layers of MoS2. Phys. Rev. 1965;140:A536–A539. doi: 10.1103/PhysRev.140.A536. DOI
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Novoselov K.S., Jiang D., Schedin F., Booth T.J., Khotkevich V.V., Morozov S.V., Geim A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA. 2005;102:10451–10453. doi: 10.1073/pnas.0502848102. PubMed DOI PMC
Das S., Robinson J.A., Dubey M., Terrones H., Terrones M. Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids. In: Clarke D.R., editor. Annual Review of Materials Research. Volume 45. Annual Reviews; Palo Alto, CA, USA: 2015. pp. 1–27.
Xu M.S., Liang T., Shi M.M., Chen H.Z. Graphene-Like Two-Dimensional Materials. Chem. Rev. 2013;113:3766–3798. doi: 10.1021/cr300263a. PubMed DOI
Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009;81:109–162. doi: 10.1103/RevModPhys.81.109. DOI
Thevenot D.R., Toth K., Durst R.A., Wilson G.S. Electrochemical biosensors: Recommended definitions and classification—(Technical Report) Pure Appl. Chem. 1999;71:2333–2348. doi: 10.1351/pac199971122333. PubMed DOI
Zhou M., Zhai Y.M., Dong S.J. Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide. Anal. Chem. 2009;81:5603–5613. doi: 10.1021/ac900136z. PubMed DOI
Wang P., Han C.Y., Zhou F.Y., Lu J.S., Han X.G., Wang Z.W. Electrochemical determination of tert-butylhydroquinone and butylated hydroxyanisole at choline functionalized film supported graphene interface. Sens. Actuator B-Chem. 2016;224:885–891. doi: 10.1016/j.snb.2015.10.098. DOI
Jiang B.Y., Wang M., Chen Y., Xie J.Q., Xiang Y. Highly sensitive electrochemical detection of cocaine on graphene/AuNP modified electrode via catalytic redox-recycling amplification. Biosens. Bioelectron. 2012;32:305–308. doi: 10.1016/j.bios.2011.12.010. PubMed DOI
Kudr J., Richtera L., Nejdl L., Xhaxhiu K., Vitek P., Rutkay-Nedecky B., Hynek D., Kopel P., Adam V., Kizek R. Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide. Materials. 2016;9:31. doi: 10.3390/ma9010031. PubMed DOI PMC
Zhang W.S., Zhang P.P., Su Z.Q., Wei G. Synthesis and sensor applications of MoS2-based nanocomposites. Nanoscale. 2015;7:18364–18378. doi: 10.1039/C5NR06121K. PubMed DOI
Wang Y.S., Ma T.C., Ma S.Y., Liu Y.J., Tian Y.P., Wang R.N., Jiang Y.B., Hou D.J., Wang J.L. Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots. Microchim. Acta. 2017;184:203–210. doi: 10.1007/s00604-016-2011-4. DOI
Sinha A., Dhanjai, Tan B., Huang Y.J., Zhao H.M., Dang X.M., Chen J.P., Jain R. MoS2 nanostructures for electrochemical sensing of multidisciplinary targets: A review. Trac-Trends Anal. Chem. 2018;102:75–90. doi: 10.1016/j.trac.2018.01.008. DOI
Kalantar-zadeh K., Ou J.Z. Biosensors Based on Two-Dimensional MoS2. ACS Sens. 2016;1:5–16. doi: 10.1021/acssensors.5b00142. DOI
Wang Y.H., Huang K.J., Wu X. Recent advances in transition-metal dichalcogenides based electrochemical biosensors: A review. Biosens. Bioelectron. 2017;97:305–316. doi: 10.1016/j.bios.2017.06.011. PubMed DOI
Thanh T.D., Chuong N.D., Hien H.V., Kshetri T., Tuan L.H., Kim N.H., Lee J.H. Recent advances in two-dimensional transition metal dichalcogenides-graphene heterostructured materials for electrochemical applications. Prog. Mater. Sci. 2018;96:51–85. doi: 10.1016/j.pmatsci.2018.03.007. DOI
Yu Z.T., Ye J.B., Chen W.X., Xu S.R., Huang F.H. Fabrication of few-layer molybdenum disulfide/reduced graphene oxide hybrids with enhanced lithium storage performance through a supramolecule-mediated hydrothermal route. Carbon. 2017;114:125–133. doi: 10.1016/j.carbon.2016.12.002. DOI
Huang G.C., Chen T., Chen W.X., Wang Z., Chang K., Ma L., Huang F.H., Chen D.Y., Lee J.Y. Graphene-Like MoS2/Graphene Composites: Cationic Surfactant-Assisted Hydrothermal Synthesis and Electrochemical Reversible Storage of Lithium. Small. 2013;9:3693–3703. doi: 10.1002/smll.201300415. PubMed DOI
Guo X.R., Hou Y., Ren R., Chen J.H. Temperature-dependent Crystallization of MoS2 Nanoflakes on Graphene Nanosheets for Electrocatalysis. Nanoscale Res. Lett. 2017;12:479. doi: 10.1186/s11671-017-2248-9. PubMed DOI PMC
Chang K., Chen W.X. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 2011;47:4252–4254. doi: 10.1039/c1cc10631g. PubMed DOI
Wang G., Zhang J., Yang S., Wang F.X., Zhuang X.D., Mullen K., Feng X.L. Vertically Aligned MoS2 Nanosheets Patterned on Electrochemically Exfoliated Graphene for High-Performance Lithium and Sodium Storage. Adv. Energy Mater. 2018;8:1702254. doi: 10.1002/aenm.201702254. DOI
Teng Y.Q., Zhao H.L., Zhang Z.J., Zhao L.N., Zhang Y., Li Z.L., Xia Q., Du Z.H., Swierczek K. MoS2 nanosheets vertically grown on reduced graphene oxide via oxygen bonds with carbon coating as ultrafast sodium ion batteries anodes. Carbon. 2017;119:91–100. doi: 10.1016/j.carbon.2017.04.017. DOI
Sun H.Y., Zhao Y.Y., Molhave K. Graphene Oxide-Directed Tunable Assembly of MoS2 Ultrathin Nanosheets for Electrocatalytic Hydrogen Evolution. ChemistrySelect. 2017;2:4696–4704. doi: 10.1002/slct.201701177. DOI
Zhao L., Hong C.C., Lin L.X., Wu H.P., Su Y.W., Zhang X.B., Liu A.P. Controllable nanoscale engineering of vertically aligned MoS2 ultrathin nanosheets by nitrogen doping of 3D graphene hydrogel for improved electrocatalytic hydrogen evolution. Carbon. 2017;116:223–231. doi: 10.1016/j.carbon.2017.02.010. DOI
Zhu C.B., Mu X.K., van Aken P.A., Yu Y., Maier J. Single-Layered Ultrasmall Nanoplates of MoS2 Embedded in Carbon Nanofibers with Excellent Electrochemical Performance for Lithium and Sodium Storage. Angew. Chem.-Int. Ed. 2014;53:2152–2156. doi: 10.1002/anie.201308354. PubMed DOI
Chen Y.M., Yu X.Y., Li Z., Paik U., Lou X.W. Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries. Sci. Adv. 2016;2:e1600021. doi: 10.1126/sciadv.1600021. PubMed DOI PMC
Yu H.L., Zhu C.L., Zhang K., Chen Y.J., Li C.Y., Gao P., Yang P.P., Ouyang Q.Y. Three-dimensional hierarchical MoS2 nanoflake array/carbon cloth as high-performance flexible lithium-ion battery anodes. J. Mater. Chem. A. 2014;2:4551–4557. doi: 10.1039/C3TA14744D. DOI
Li A.N., Hu Y.Z., Yu M.P., Liu X.W., Li M.G. In situ growth of MoS2 on carbon nanofibers with enhanced electrochemical catalytic activity for the hydrogen evolution. Int. J. Hydrog. Energy. 2017;42:9419–9427. doi: 10.1016/j.ijhydene.2017.01.142. DOI
Srivastava S.K., Kartick B., Choudhury S., Stamm M. Thermally fabricated MoS2-graphene hybrids as high performance anode in lithium ion battery. Mater. Chem. Phys. 2016;183:383–391. doi: 10.1016/j.matchemphys.2016.08.042. DOI
Koroteev V.O., Bulushev D.A., Chuvilin A.L., Okotrub A.V., Bulusheva L.G. Nanometer-Sized MoS2 Clusters on Graphene Flakes for Catalytic Formic Acid Decomposition. ACS Catal. 2014;4:3950–3956. doi: 10.1021/cs500943b. DOI
Wang Y.F., Guo Y.J., Chen W.T., Luo Q., Lu W.L., Xu P., Chen D.L., Yin X., He M. Sulfur-doped reduced graphene oxide/MoS2 composite with exposed active sites as efficient Pt-free counter electrode for dye-sensitized solar cell. Appl. Surf. Sci. 2018;452:232–238. doi: 10.1016/j.apsusc.2018.04.276. DOI
Li J.L., Qin W., Xie J.P., Lin R., Wang Z.L., Pan L.K., Mai W.J. Rational design of MoS2-reduced graphene oxide sponges as free-standing anodes for sodium-ion batteries. Chem. Eng. J. 2018;332:260–266. doi: 10.1016/j.cej.2017.09.088. DOI
Jiang L.F., Lin B.H., Li X.M., Song X.F., Xia H., Li L., Zeng H.B. Monolayer MoS2-Graphene Hybrid Aerogels with Controllable Porosity for Lithium-Ion Batteries with High Reversible Capacity. ACS Appl. Mater. Interfaces. 2016;8:2680–2687. doi: 10.1021/acsami.5b10692. PubMed DOI
Ji H.M., Luan A.L., Dai C.C., Li M., Yang G., Hou W.H. Highly active free-standing and flexible MoS2/rGO sandwich-structured films for supercapacitor applications. Solid State Commun. 2019;297:45–49. doi: 10.1016/j.ssc.2019.05.001. DOI
Wang Z., Chen T., Chen W.X., Chang K., Ma L., Huang G.C., Chen D.Y., Lee J.Y. CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries. J. Mater. Chem. A. 2013;1:2202–2210. doi: 10.1039/C2TA00598K. DOI
Li J.H., Wang H.K., Wei W., Meng L.J. Advanced MoS2 and graphene heterostructures as high-performance anode for sodium-ion batteries. Nanotechnology. 2019;30:104003. doi: 10.1088/1361-6528/aaf76c. PubMed DOI
Xiang J.Y., Dong D.D., Wen F.S., Zhao J., Zhang X.Y., Wang L.M., Liu Z.Y. Microwave synthesized self-standing electrode of MoS2 nanosheets assembled on graphene foam for high-performance Li-Ion and Na-Ion batteries. J. Alloy. Compd. 2016;660:11–16. doi: 10.1016/j.jallcom.2015.11.040. DOI
Li J.L., Liu X.J., Pan L.K., Qin W., Chen T.Q., Sun Z. MoS2-reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of methylene blue. Rsc Adv. 2014;4:9647–9651. doi: 10.1039/c3ra46956e. DOI
Li S.L., Min H.H., Xu F., Tong L., Chen J., Zhu C.Y., Sun L.T. All electrochemical fabrication of MoS2/graphene counter electrodes for efficient dye-sensitized solar cells. RSC Adv. 2016;6:34546–34552. doi: 10.1039/C6RA02494G. DOI
Wan X., Chen K., Chen Z.F., Xie F.Y., Zeng X.L., Xie W.G., Chen J., Xu J.B. Controlled Electrochemical Deposition of Large-Area MoS2 on Graphene for High-Responsivity Photodetectors. Adv. Funct. Mater. 2017;27:1603998. doi: 10.1002/adfm.201603998. DOI
Chen X.P., Zhang L.L., Chen S.S. Large area CVD growth of graphene. Synth. Met. 2015;210:95–108. doi: 10.1016/j.synthmet.2015.07.005. DOI
Vabbina P., Choudhary N., Chowdhury A.A., Sinha R., Karabiyik M., Das S., Choi W., Pala N. Highly Sensitive Wide Bandwidth Photodetector Based on Internal Photoemission in CVD Grown p-Type MoS2/Graphene Schottky Junction. ACS Appl. Mater. Interfaces. 2015;7:15206–15213. doi: 10.1021/acsami.5b00887. PubMed DOI
Gnanasekar P., Periyanagounder D., Kulandaivel J. Vertically aligned MoS2 nanosheets on graphene for highly stable electrocatalytic hydrogen evolution reactions. Nanoscale. 2019;11:2439–2446. doi: 10.1039/C8NR10092F. PubMed DOI
Biroju R.K., Pal S., Sharma R., Giri P.K., Narayanan T.N. Stacking sequence dependent photo-electrocatalytic performance of CVD grown MoS2/graphene van der Waals solids. Nanotechnology. 2017;28:085101. doi: 10.1088/1361-6528/aa565a. PubMed DOI
Chen K., Li C., Chen Z.L., Shi L.R., Reddy S., Meng H., Ji Q.Q., Zhang Y.F., Liu Z.F. Bioinspired synthesis of CVD graphene flakes and graphene-supported molybdenum sulfide catalysts for hydrogen evolution reaction. Nano Res. 2016;9:249–259. doi: 10.1007/s12274-016-1013-1. DOI
Kumar R., Dias W., Rubira R.J.G., Alaferdov A.V., Vaz A.R., Singh R.K., Teixeira S.R., Constantino C.J.L., Moshkalev S.A. Simple and Fast Approach for Synthesis of Reduced Graphene Oxide-MoS(2)Hybrids for Room Temperature Gas Detection. IEEE Trans. Electron Devices. 2018;65:3943–3949. doi: 10.1109/TED.2018.2851955. DOI
Venkatesan A., Rathi S., Lee I.Y., Park J., Lim D., Kang M., Joh H.I., Kim G.H., Kannan E.S. Molybdenum disulfide nanoparticles decorated reduced graphene oxide: Highly sensitive and selective hydrogen sensor. Nanotechnology. 2017;28:365501. doi: 10.1088/1361-6528/aa7d66. PubMed DOI
Xing L.W., Ma Z.F. A glassy carbon electrode modified with a nanocomposite consisting of MoS2 and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid. Microchim. Acta. 2016;183:257–263. doi: 10.1007/s00604-015-1648-8. DOI
Huang K.J., Wang L., Li J., Liu Y.M. Electrochemical sensing based on layered MoS2-graphene composites. Sens. Actuator B-Chem. 2013;178:671–677. doi: 10.1016/j.snb.2013.01.028. DOI
He B.S., Yan D.D. Au/ERGO nanoparticles supported on Cu-based metal-organic framework as a novel sensor for sensitive determination of nitrite. Food Control. 2019;103:70–77. doi: 10.1016/j.foodcont.2019.04.001. DOI
Li Y., Cheng C., Yang Y.P., Dun X.J., Gao J.M., Jin X.J. A novel electrochemical sensor based on CuO/H-C3N4/rGO nanocomposite for efficient electrochemical sensing nitrite. J. Alloy. Compd. 2019;798:764–772. doi: 10.1016/j.jallcom.2019.05.137. DOI
Suma B.P., Adarakatti P.S., Kempahanumakkagari S.K., Malingappa P. A new polyoxometalate/rGO/Pani composite modified electrode for electrochemical sensing of nitrite and its application to food and environmental samples. Mater. Chem. Phys. 2019;229:269–278. doi: 10.1016/j.matchemphys.2019.02.087. DOI
Wang P., Wang M.Y., Zhou F.Y., Yang G.H., Qu L.L., Miao X.M. Development of a paper-based, inexpensive, and disposable electrochemical sensing platform for nitrite detection. Electrochem. Commun. 2017;81:74–78. doi: 10.1016/j.elecom.2017.06.006. DOI
Hu J., Zhang J., Zhao Z.T., Liu J., Shi J.F., Li G., Li P.W., Zhang W.D., Lian K., Zhuiykov S. Synthesis and electrochemical properties of rGO-MoS2 heterostructures for highly sensitive nitrite detection. Ionics. 2018;24:577–587. doi: 10.1007/s11581-017-2202-y. DOI
Govindasamy M., Mani V., Chen S.M., Karthik R., Manibalan K., Umamaheswari R. MoS2 Flowers Grown on Graphene/Carbon Nanotubes: A Versatile Substrate for Electrochemical Determination of Hydrogen Peroxide. Int. J. Electrochem. Sci. 2016;11:2954–2961. doi: 10.20964/110402954. DOI
Govindasamy M., Chen S.M., Mani V., Akilarasan M., Kogularasu S., Subramani B. Nanocomposites composed of layered molybdenum disulfide and graphene for highly sensitive amperometric determination of methyl parathion. Microchim. Acta. 2017;184:725–733. doi: 10.1007/s00604-016-2062-6. DOI
Deo R.P., Wang J., Block I., Mulchandani A., Joshi K.A., Trojanowicz M., Scholz F., Chen W., Lin Y.H. Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal. Chim. Acta. 2005;530:185–189. doi: 10.1016/j.aca.2004.09.072. DOI
Kiransan K.D., Topcu E. Free-standing and Flexible MoS2/rGO Paper Electrode for Amperometric Detection of Folic Acid. Electroanalysis. 2018;30:810–818. doi: 10.1002/elan.201700778. DOI
Yoon J., Lee T., Bapurao G.B., Jo J., Oh B.K., Choi J.W. Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure. Biosens. Bioelectron. 2017;93:14–20. doi: 10.1016/j.bios.2016.11.064. PubMed DOI
Oohora K., Onoda A., Hayashi T. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts. Acc. Chem. Res. 2019;52:945–954. doi: 10.1021/acs.accounts.8b00676. PubMed DOI
Yoon J., Shin J.W., Lim J., Mohammadniaei M., Bapurao G.B., Lee T., Choi J.W. Electrochemical nitric oxide biosensor based on amine-modified MoS2/graphene oxide/myoglobin hybrid. Colloid Surf. B-Biointerfaces. 2017;159:729–736. doi: 10.1016/j.colsurfb.2017.08.033. PubMed DOI
Zhang K.J., Sun H., Hou S.F. Layered MoS2-graphene composites for biosensor applications with sensitive electrochemical performance. Anal. Methods. 2016;8:3780–3787. doi: 10.1039/C6AY00959J. DOI
Liu H., Chen X.J., Su X., Duan C.Y., Guo K., Zhu Z.F. Flower-like MoS2 Modified Reduced Graphene Oxide Nanocomposite: Synthesis and Application for Lithium-Ion Batteries and Mediator-Free Biosensor. J. Electrochem. Soc. 2015;162:B312–B318. doi: 10.1149/2.0111512jes. DOI
Jeong J.M., Yang M., Kim D.S., Lee T.J., Choi B.G., Kim D.H. High performance electrochemical glucose sensor based on three-dimensional MoS2/graphene aerogel. J. Colloid Interface Sci. 2017;506:379–385. doi: 10.1016/j.jcis.2017.07.061. PubMed DOI
Wang Z.Y., Dong S., Gui M.X., Asif M., Wang W., Wang F., Liu H.F. Graphene paper supported MoS2 nanocrystals monolayer with Cu submicron-buds: High-performance flexible platform for sensing in sweat. Anal. Biochem. 2018;543:82–89. doi: 10.1016/j.ab.2017.12.010. PubMed DOI
Lin X.Y., Ni Y.N., Kokot S. Electrochemical and bio-sensing platform based on a novel 3D Cu nano-flowers/layered MoS2 composite. Biosens. Bioelectron. 2016;79:685–692. doi: 10.1016/j.bios.2015.12.072. PubMed DOI
Chen H., Fan G.K., Zhao J., Qiu M.J., Sun P., Fu Y.F., Han D.X., Cui G.F. A portable micro glucose sensor based on copper-based nanocomposite structure. New J. Chem. 2019;43:7806–7813. doi: 10.1039/C9NJ00888H. DOI
Vasilescu I., Eremia S.A.V., Kusko M., Radoi A., Vasile E., Radu G.L. Molybdenum disulphide and graphene quantum dots as electrode modifiers for laccase biosensor. Biosens. Bioelectron. 2016;75:232–237. doi: 10.1016/j.bios.2015.08.051. PubMed DOI
Zhang Y., Lai B.S., Juhas M. Recent Advances in Aptamer Discovery and Applications. Molecules. 2019;24:941. doi: 10.3390/molecules24050941. PubMed DOI PMC
Yuan Y.H., Li L.L., Zhao M., Zhou J., Chen Z.H., Bai L. An aptamer based voltammetric biosensor for endotoxins using a functionalized graphene and molybdenum disulfide composite as a new nanocarrier. Analyst. 2019;144:1253–1259. doi: 10.1039/C8AN02139B. PubMed DOI
Geleta G.S., Zhao Z., Wang Z.X. A novel reduced graphene oxide/molybdenum disulfide/polyaniline nanocomposite-based electrochemical aptasensor for detection of aflatoxin B-1. Analyst. 2018;143:1644–1649. doi: 10.1039/C7AN02050C. PubMed DOI
Chekin F., Bagga K., Subramanian P., Jijie R., Singh S.K., Kurungot S., Boukherroub R., Szunerits S. Nucleic aptamer modified porous reduced graphene oxide/MoS2 based electrodes for viral detection: Application to human papillomavirus (HPV) Sens. Actuator B-Chem. 2018;262:991–1000. doi: 10.1016/j.snb.2018.02.065. DOI
Tian L., Qi J.X., Qian K., Oderinde O., Cai Y.Y., Yao C., Song W., Wang Y.H. An ultrasensitive electrochemical cytosensor based on the magnetic field assisted binanozymes synergistic catalysis of Fe3O4 nanozyme and reduced graphene oxide/molybdenum disulfide nanozyme. Sens. Actuator B-Chem. 2018;260:676–684. doi: 10.1016/j.snb.2018.01.092. DOI